

Application Type	Renewal
Facility Type	Non- Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0101087
APS ID	1017786
Authorization ID	1316934

Applicant and Facility Information

Applicant Name	Norman J Cutri D/B/A Twilight MHP		Facility Name	Twilight MHP
Applicant Address	1324 S Shore Drive Apt 601		Facility Address	Route 551
	Erie, PA	16505-2539	_	Edinburg, PA 16116
Applicant Contact	Normar	n Cutri	Facility Contact	Norman Cutri
Applicant Phone	(814) 65	54-6305	Facility Phone	(814) 654-6305
Client ID	44992		Site ID	262956
Ch 94 Load Status	Not Ove	erloaded	Municipality	Mahoning Township
Connection Status	No Limi	tations	County	Lawrence
Date Application Receiv	ved	January 14, 2020	EPA Waived?	Yes
Date Application Accep	ted	June 30, 2020	If No, Reason	
Purpose of Application		Renewal of an NPDES Permit for	an existing discharge of	treated sewage.

Summary of Review

No changes to discharge quantity are being proposed as part of this permit renewal.

There are changes to the TRC limits being proposed in this permit, which are addressed in the Water Quality-Based Limitations.

There are currently no open violations listed in eFacts for this permittee as of 1/27/2020.

Sludge use and disposal description and location(s): disposal of sludge with the New Castle POTW.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
х		Jordan A. Frey, E.I.T. Jordan A. Frey, E.I.T. / Civil Engineer Trainee	January 27, 2021
х		Justin C. Dickey Justin C. Dickey, P.E. / Environmental Engineer Manager	March 1, 2021

Discharge, Receiving Waters and Wa	ter Supply Information			
0.46-0.04			0475	
Outfall No. 001		Design Flow (MGD)	.0175	
Latitude <u>41º 2' 55.14"</u>		Longitude	<u>-80° 26' 5.16"</u>	
Quad Name Edinburg		Quad Code	41080A4	
Wastewater Description: <u>Sewage</u>	Effluent			
Unnamed Tribu Receiving Waters River (WWF)	tary of Shenango St	ream Code	35853	
NHD Com ID 130025482	R	ЛI	0.09	
Drainage Area 0.21	Yi	eld (cfs/mi ²)	0.0055	
Q ₇₋₁₀ Flow (cfs) 0.029	Q7	-10 Basis	Default	
Elevation (ft)984	Sl	ope (ft/ft)		
Watershed No. 20-A	Cł	napter 93 Class.	WWF	
Existing Use Statewide	Ex	isting Use Qualifier		
Exceptions to Use	Ex	ceptions to Criteria		
Assessment Status Attaining	Use(s)			
Cause(s) of Impairment				
Source(s) of Impairment				
TMDL Status		Name		
Background/Ambient Data	Data Sc	ource		
pH (SU)7.0	Default			
Temperature (°F) 2.0	Default			
Hardness (mg/L)100	Default			
Other:				
Nearest Downstream Public Water S		erican Water Company,		
PWS Waters Shenango River		at Intake (cfs)	16.2	
PWS RMI 5.1	Dista	nce from Outfall (mi)	5.49	

Changes Since Last Permit Issuance: None.

Other Comments: This discharge should not impact downstream water supplies.

	Tre	eatment Facility Summa	iry	
Treatment Facility N	lame: Twilight MHP			
WQM Permit No.	Issuance Date			
3773412 A-1	December 31, 2009			
3773412 T-3	June 8, 1983			
3773412 T-2	December 23, 1980			
3773412 T-1	October 23, 1980			
377341	December 26, 1973			
367-S-034	February 23, 1968			
	Dograa of			Avg Annual
Waste Type	Degree of Treatment	Process Type	Disinfection	Flow (MGD)
	Secondary With	21		
	Ammonia And			
Sewage	Phosphorus	Activated Sludge	Hypochlorite	0.0175
				Discolisis
Hydraulic Capacity				Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.0175	35.4	Not Overloaded	Aerobic Digestion	

Changes Since Last Permit Issuance: None.

Other Comments: Treatment consists of 3 aeration tank bays, a clarifier tank, a sludge holding tank, a wet well, two accessible sand filters, then a chlorine contact tank w/tablet chlorinator.

Compliance History

DMR Data for Outfall 001 (from December 1, 2019 to November 30, 2020)

Parameter	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20	DEC-19
Flow (MGD)												
Average Monthly	0.0086	0.0014	0.0148	0.0084	0.0086	0.00785	0.0076	0.0084	0.0081	0.0012	0.0093	0.00085
pH (S.U.)												
Minimum	7.2	7.1	6.9	6.7	6.9	6.8	6.7	6.6	6.7	7.2	6.9	7.0
pH (S.U.)												
Maximum	7.6	7.6	7.4	7.3	7.2	7.3	6.9	7.0	7.0	7.4	7.3	7.6
DO (mg/L)												
Minimum	7.96	6.89	6.0	6.3	6.4	6.8	7.2	7.29	7.60	8.81	4.08	7.43
TRC (mg/L)												
Average Monthly	0.28	0.23	0.27	0.21	0.28	0.28	0.23	0.22	0.24	0.23	0.23	0.20
CBOD5 (mg/L)												
Average Monthly	< 2	< 2.04	< 2	< 2	< 2	< 4.52	7.85	< 2	< 2	< 2.37	< 2.19	< 2
TSS (mg/L)												
Average Monthly	< 5	< 5	< 5	< 5	< 5.4	14.4	6.2	< 5	< 5	< 7.5	< 5	< 5
Fecal Coliform (CFU/100 ml)												
Geometric Mean	< 1	< 2	< 1	< 1	< 1	< 1	< 2	< 1	< 1	< 1	< 1	< 2
Total Nitrogen (mg/L)												
Average Monthly	17.6	9.32	< 19.24	6.59	< 7.9	20.8	18.4	24.1	< 39.4	< 25.05	15.75	24.45
Ammonia (mg/L)												
Average Monthly	< 0.5	< 0.5	< 0.5	0.72	5.86	0.82	2.29	< 0.6	< 0.5	< 2.08	< 0.5	< 0.715
Total Phosphorus (mg/L)												
Average Monthly	0.372	0.428	< 0.333	0.470	2.26	4.54	2.49	1.07	0.639	0.608	0.713	0.529

Effluent Violations for Outfall 001, from: January 1, 2020 To: November 30, 2020

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Ammonia	07/31/20	Avg Mo	5.86	mg/L	5.0	mg/L
Total Phosphorus	07/31/20	Avg Mo	2.26	mg/L	1.0	mg/L
Total Phosphorus	06/30/20	Avg Mo	1.07	mg/L	1.0	mg/L
Total Phosphorus	05/31/20	Avg Mo	2.49	mg/L	1.0	mg/L
Total Phosphorus	04/30/20	Avg Mo	4.54	mg/L	1.0	mg/L

Summary of Inspections: None

Other Comments: During previous permit cycle, there have been frequent effluent violations for Total Phosphorus and Ammonia Nitrogen.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.0175
Latitude	41º 2' 54.56"		Longitude	-80º 26' 5.36"
Wastewater De	escription:	Sewage Effluent	-	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: None.

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Ammonia			
Nov 1 - Apr 30	6.0	Avg. Monthly	WQM 7.0, version 1.0b
Ammonia			
May 1 – Oct 31	2.0	Avg. Monthly	WQM 7.0, version 1.0b
Dissolved Oxygen	5.0	Avg. Monthly	WQM 7.0, version 1.0b
TRC	0.02	Avg. Monthly	TRC Spreadsheet
TRC	0.06	Instantaneous Maximum	TRC Spreadsheet

Comments: Based on reporting data, it does not appear the facility can meet the TRC limits, therefore a three-year compliance schedule is included in the draft permit.

Best Professional Judgment (BPJ) Limitations

Comments: None.

Anti-Backsliding

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: April 1, 2024 through Permit Expiration Date.

	Effluent Limitations					Monitoring Requirements		
Parameter	Mass Units (Ibs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾	Required
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
TRC	XXX	XXX	XXX	0.02	XXX	0.06	1/day	Grab

Compliance Sampling Location: Outfall 001, after disinfection.

Other Comments: These TRC limitations will apply <u>after</u> the proposed 3-year compliance schedule period, per the Effective Period dates above.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through March 31, 2024.

			Effluent L	imitations			Monitoring Rec	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab

Compliance Sampling Location: Outfall 001, after disinfection.

Other Comments: These TRC limitations will apply **before** the proposed 3-year compliance schedule period, per the Effective Period dates above.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/week	Measured
рН (S.U.)	ххх	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
DO	XXX	xxx	5.0 Inst Min	xxx	XXX	xxx	1/day	Grab
CBOD5	XXX	xxx	XXX	25	xxx	50	2/month	8-Hr Composite
TSS	XXX	XXX	xxx	30	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	xxx	xxx	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	xxx	xxx	200 Geo Mean	xxx	1000	1/week	Grab
Total Nitrogen	XXX	xxx	xxx	Report	XXX	xxx	2/month	8-Hr Composite
Ammonia Nov 1 - Apr 30	XXX	xxx	xxx	6.0	XXX	12	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	xxx	xxx	2.0	xxx	4	2/month	8-Hr Composite
Total Phosphorus	XXX	xxx	XXX	1.0	xxx	2	2/month	8-Hr Composite

Compliance Sampling Location: Outfall 001, after disinfection.

Other Comments: None.

Twilight MHP TRC Spreadsheet

	ATION									
Input appropria	ate values in A	3:A9 and D3:D9								
0.00	2 = Q stream (cf	s)	0.5	= CV Daily						
0.017	5 = Q discharge	(MGD)	0.5	= CV Hourly						
30	= no. samples		1	= AFC_Partial N	lix Factor					
0.3	3 = Chlorine Der	mand of Stream	1	= CFC_Partial N	lix Factor					
(= Chlorine Der	mand of Discharge	15	= AFC_Criteria	Compliance Time (min)					
0.	5 = BAT/BPJ Val	ue		720 = CFC_Criteria Compliance Time (min)						
(0 = % Factor of	Safety (FOS)		10	cay Coefficient (K)					
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	0.043	1.3.2.iii	WLA cfc = 0.034					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	0.016	5.1d	LTA_cfc = 0.020					
Source		Efflue	nt Limit Calcu	llations						
PENTOXSD TRG			AML MULT =							
PENTOXSD TRG	5.1g		LIMIT (mg/l) =		AFC					
			LIMIT (mg/l) =	0.001						
WLA afc		C_tc)) + [(AFC_Yc*Qs*.019/ Yc*Qs*Xs/Qd)]*(1-FOS/10/	manital conservation at 1954 pers	_tc))						
LTAMULT afc	CARDICITION CONTRACTOR CONTRACTOR CARDIN	vh^2+1))-2.326*LN(cvh^2+								
LTA afc	wla afc*LTAM	ana ang ang ang ang ang ang ang ang ang	1, 0.0,							
Ern_ulo										
WLA_cfc		C_tc) + [(CFC_Yc*Qs*.011/ _Yc*Qs*Xs/Qd)]*(1-FOS/10		_tc))						
	+ Xd + (CFC_	C_tc) + [(CFC_Yc*Qs*.011// _Yc*Qs*Xs/Qd)]*(1-FOS/10 vd^2/no_samples+1))-2.32	0)		.5)					
WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (CFC_	_ Yc*Qs*Xs/Qd)]*(1-FOS/10 vd^2/no_samples+1))-2.32	0)		.5)					
_ LTAMULT_cfc	+ Xd + (CFC_ EXP((0.5*LN(c wla_cfc*LTAM EXP(2.326*LN	_Yc*Qs*Xs/Qd)]*(1-FOS/10 vd^2/no_samples+1))-2.32 ULT_cfc ((cvd^2/no_samples+1)^0.4	0) 6*LN(cvd^2/n 5)-0.5*LN(cvd	io_samples+1)^0						
LTAMULT_cfc L TA_cfc	+ Xd + (CFC_ EXP((0.5*LN(c wla_cfc*LTAM EXP(2.326*LN	_Yc*Qs*Xs/Qd)]*(1-FOS/10 vd^2/no_samples+1))-2.32 ULT_cfc	0) 6*LN(cvd^2/n 5)-0.5*LN(cvd	io_samples+1)^0						

	SWP Basin	Strea Coc		Stre	am Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	20A	358	353 Trib 35	5853 of Sh	nenango Ri	iver	0.26	60	994.00	0.29	0.00000	0.00	~
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Tem	<u>Stream</u> p pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°C)	
27-10	0.008	0.00	0.00	0.000	0.000	0.0	0.00	0.0	00 2	5.00 7.0	00	0.00 0.00	
21-10		0.00	0.00	0.000	0.000								
230-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	scharge D						
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	l Desigi Disc Flow (mgd	Res Fac	erve ⁻ ctor	Disc Femp (°C)	Disc pH
Twilight MHP	PA0101087a	0.0175	0.0175	0.01	75 (0.000	20.00	7.10
	Pa	rameter D	ata					
_		Dis Co			tream Conc	Fate Coef		
ŀ	Parameter Name	(mg	ı/L) (mç	g/L) (mg/L)	(1/days)		
CBOD5		2	5.00	2.00	0.00	1.50)	
Dissolved	Oxygen		4.00	7.54	0.00	0.00)	
NH3-N		2	5.00	0.05	0.00	0.70)	

	SWP Basin	Strea Coc		Stre	am Name		RMI	12-01-01-01	ration ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	20A	358	353 Trib 35	5853 of Sh	ienango Ri	iver	0.16	60	968.00	1.22	0.00000	0.00	~
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip pH	Tem	<u>Stream</u> ip pH	
Conta.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
27-10	0.008	0.00	0.00	0.000	0.000	0.0	0.00	0.00) 2	5.00 7.0	00 0	0.00 0.00	
ຊ1-10 ຊ30-10		0.00 0.00	0.00 0.00	0.000 0.000	0.000 0.000								

Input	Data	WQM	7.0

Name	Permit Number	charge D Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
		0.0000	0.0000	0.000	0.00	0 25.00	7.00
	Pai	rameter D	ata				
Pa	rameter Name	Dis Co				ate Coef	
Fo	rameter Name	(mg	I/L) (mg	/L) (m	g/L) (1/a	days)	
CBOD5		2	5.00 2	2.00	0.00	1.50	
Dissolved O	xygen		3.00 8	3.24	0.00	0.00	
NH3-N		2	5.00 0	0.00	0.00	0.70	

	SWP Basin	Strea Coc		Stre	am Name		RMI		ation ît)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	20A	358	353 Trib 35	5853 of St	ienango Ri	ver	0.00)1	958.00	1.76	0.00000	0.00	✓
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip pH	Tem	<u>Stream</u> p pH	
Conta.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
27-10	0.008	0.00	0.00	0.000	0.000	0.0	0.00	0.00	2	5.00 7.0	00 0	0.00 0.00	
ຊ1-10 ຊ30-10		0.00 0.00	0.00 0.00	0.000 0.000	0.000 0.000								

Input Data WQM 7.0	
--------------------	--

Name	Permit Number	charge Da Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor		Disc pH
-		0.0000	0.0000	0.000	0.00	0 25.00	7.00
	Pa	rameter D	ata				
Da	rameter Name	Dis Cor				ate Coef	
Fo	rameter Name	(mg	/L) (mg	/L) (m	ig/L) (1/	'days)	
CBOD5		2	5.00 2	2.00	0.00	1.50	
Dissolved O	xygen	:	3.00 8	8.24	0.00	0.00	
NH3-N		2	5.00 0	0.00	0.00	0.70	

SW	P Basin	Strea	m Code				Stream	Name			
	20A	3:	5853			Trib 358	53 of Sh	ienango l	River		
Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Tra∨ Time	Analysis Temp	Analysis pH
(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
0 Flow											
0.00	0.00	0.00	.0271	0.04924	.301	2.11	7.03	0.05	0.132	20.39	7.09
0.01	0.00	0.01	.0271	0.01191	.296	3.65	12.34	0.03	0.286	21.32	7.07
0 Flow											
0.00	0.00	0.00	.0271	0.04924	NA	NA	NA	0.05	0.134	20.26	7.09
0.01	0.00	0.01	.0271	0.01191	NA	NA	NA	0.03	0.302	20.94	7.08
10 Flow	1										
0.00	0.00	0.00	.0271	0.04924	NA	NA	NA	0.05	0.130	20.52	7.09
0.01	0.00	0.01	.0271	0.01191	NA	NA	NA	0.04	0.271	21.64	7.06
	Stream Flow (cfs) D Flow 0.00 0.01 D Flow 0.00 0.01 10 Flow 0.00	Stream Flow PWS With (cfs) (cfs) D Flow 0.00 0.01 0.00 D Flow 0.00 0.01 0.00 D Flow 0.00 0.01 0.00 0.02 0.00	20A 3: Stream PWS With Net Stream Flow (cfs) (cfs) 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.01	20A 35853 Stream PWS Flow Net With Disc Stream Analysis Flow (cfs) (cfs) (cfs) Disc Stream Analysis Flow 0 (cfs) (cfs) Disc Stream Analysis Flow 0.00 0.00 0.00 .0271 0.01 0.00 0.01 .0271 0 Flow 0.00 0.01 .0271 0 Flow 0.00 0.01 .0271 0 Flow 0.01 .0271 .0271 0 Flow 0.01 .0271 .0271 0 0.00 0.00 0.01 .0271 0 Flow 0.01 .0271 .0271 0 Flow 0.00 .021 .0271	20A 35853 Stream Flow PWS With (cfs) Net Stream Flow Disc Analysis Flow Reach Analysis Slope Flow (cfs) Disc Flow Reach (nalysis Slope (cfs) Net Slope (cfs) Disc Flow Reach (nalysis Slope (cfs) DFlow 0.00 0.00 0.0271 0.04924 0.01 0.00 0.01 .0271 0.04924 0.01 0.00 0.01 .0271 0.04924 0.01 0.00 0.01 .0271 0.01924 10 Flow 0.00 0.00 .0271 0.04924 0.00 0.00 0.01 .0271 0.04924 0.01 0.00 0.01 .0271 0.04924	Z0A 35853 Stream Flow PWS With Net Stream Flow Disc Analysis Flow Reach Slope Depth Slope 0 Flow (cfs) (cfs) 0.00 0.01 (cfs) (ft/ft) (ft) 0 Flow 0.00 0.00 0.0271 0.04924 .301 0.01 0.00 0.01 .0271 0.01191 .296 0 Flow 0.00 0.00 .0271 0.04924 NA 0.01 0.00 0.01 .0271 0.01191 NA 10 Flow 0.00 0.00 .0271 0.04924 NA 0.00 0.00 0.01 .0271 0.04924 NA	20A 35853 Trib 358 Stream Flow PWS With Net Stream Flow Disc Analysis Flow Reach Slope Flow Depth Width 0 Flow (cfs) (cfs) 0.00 0.00 (ff) (ff) 0 Flow 0.00 0.00 0.0271 0.04924 .301 2.11 0.01 0.00 0.01 .0271 0.01191 .296 3.65 D Flow 0.00 0.00 .0271 0.04924 NA NA 0.00 0.00 0.01 .0271 0.04924 NA NA 0.01 0.00 0.01 .0271 0.04924 NA NA 0.01 0.00 0.01 .0271 0.01191 NA NA 10 Flow 0.00 0.00 0.271 0.04924 NA NA	20A 35853 Trib 35853 of Sh Stream Flow With With Net Stream Flow Disc Analysis Flow Reach Analysis Slope Flow Depth (ft) Width (ft) W/D Ratio O Flow 0.00 0.00 0.00 (cfs) (ft/ft) (ft) 1 7.03 0.01 0.00 0.01 .0271 0.04924 .301 2.11 7.03 0.01 0.00 0.01 .0271 0.01924 NA NA NA O Flow 0.00 0.01 .0271 0.01924 NA NA NA 0.00 0.00 0.01 .0271 0.01924 NA NA NA 0.01 0.00 0.01 .0271 0.01924 NA NA NA 10 Flow 0.00 0.00 .0271 0.04924 NA NA NA	20A 35853 Trib 35853 of Shenango I Stream Flow PWS With (cfs) Net Stream (cfs) Disc Flow (cfs) Reach Analysis Slope (cfs) Depth (ft) Width (ft) W/D Ratio (ft) Velocity Ratio (fps) O Flow 0.00 0.00 0.0271 0.04924 .301 2.11 7.03 0.05 0.01 0.00 0.01 .0271 0.01924 .301 2.11 7.03 0.05 0.01 0.00 0.01 .0271 0.01924 .301 2.11 7.03 0.05 0.01 0.00 0.01 .0271 0.01924 NA NA NA 0.03 O Flow 0.01 .0271 0.04924 NA NA NA 0.03 O Flow 0.00 0.01 .0271 0.04924 NA NA NA 0.03 O Flow 0.00 0.01 .0271 0.0191 NA NA NA 0.03 O Flow 0.00 0.00 .0271 0	ZOA 35853 Trib 35853 of Shenango River Stream Flow (cfs) PWS With (cfs) Net Stream Flow (cfs) Disc Flow (cfs) Reach Analysis Flow (cfs) Depth (ft) Width (ft) W/D Ratio Velocity Reach Trav Time (fps) Reach Trav Time (days) O Flow 0.00 0.00 0.00 0.0271 0.04924 .301 2.11 7.03 0.05 0.132 0.01 0.00 0.01 .0271 0.01191 .296 3.65 12.34 0.03 0.286 O Flow 0.00 0.00 .0271 0.04924 NA NA NA 0.05 0.132 0.01 0.00 .0271 0.04924 NA NA NA 0.03 0.286 O Flow 0.01 0.00 .0271 0.04924 NA NA NA 0.03 0.302 O Flow 0.00 0.00 .0271 0.04924 NA NA NA 0.03 0.302 10 Flow 0.00 0.00 .0271 0.04924 NA NA NA	ZOA 35853 Trib 35853 of Shenango River Stream Flow (cfs) PWS With (cfs) Net Stream Flow (cfs) Disc Analysis Flow (cfs) Reach Analysis Slope Flow (cfs) Depth (ft) Width (ft) W/D Ratio (ft) Velocity Reach (ft) Reach Trav Trav (fps) Analysis Temp (fps) O Flow 0.00 0.00 0.00 0.00 0.01 0.011 0.01 0.01 0.0271 0.04924 .301 2.11 7.03 0.05 0.132 20.39 0.01 0.00 0.01 .0271 0.01914 .296 3.65 12.34 0.03 0.286 21.32 O Flow 0.01 0.00 0.00 .0271 0.04924 NA NA NA 0.03 0.286 21.32 O Flow 0.01 0.00 0.01 .0271 0.04924 NA NA NA 0.03 0.302 20.94 O Flow 0.00 0.00 0.01 .0271 0.0191 NA NA NA 0.05 0.134 20.26 0.01 0.00

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0101087

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

	20A	35853		Trib 3	5853 of S	henango	River		
NH3-N /	Acute Allocatio	ns							
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multipl Criteri (mg/L	on N	ultiple /VLA mg/L)	Critical Reach	Percent Reduction	ı
0.26	0 Twilight MHP	8.86	9.3	4 8	3.86	9.34	0	0	-0
0.16	0	NA	N	A 8	3.53	NA	NA	NA	
NH3-N (Chronic Alloca	tions							
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterior (mg/L)	n W	tiple LA g/L)	Critical Reach	Percent Reduction	
0.26	0 Twilight MHP	1.75	1.9	5 1	.75	1.95	0	0	
0.16	0	NA	N	A 1	1.64	NA	NA	NA	
Dissolve RMI	ed Oxygen Allo Discharge Na				<u>I3-N</u> Multiple (mg/L)	Ener man		Critical	Percent Reductio
0.2	6 Twilight MHP		25 25	5 1.95	1.95	5	5	0	0
0.1	6	1	NA NA	NA NA	NA	NA	NA	NA	NA

SWP Basin St	ream Code			Stream Name	
20A	35853		Trib 35	853 of Shenango Ri	ver
<u>RMI</u> 0.260	Total Discharge Flow (mgd) 0.018		Ana	lysis Temperature (°C 20.395	C) <u>Analysis pH</u> 7.091
Reach Width (ft)	Reach Depth (ft)			Reach WDRatio	Reach Velocity (fps)
2.113	0.301			7.027	0.046
Reach CBOD5 (mg/L)	Reach Kc (1/days)		R	each NH3-N (mg/L)	Reach Kn (1/days)
23.18	1.489			1.80	0.722
Reach DO (mg/L)	<u>Reach Kr (</u>	<u>1/days)</u>		Kr Equation	Reach DO Goal (mg/L
5.200	25.81	6		Owens	5
<u>each Travel Time (days)</u>		Subreach	Results		
0.132	TravTime		NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.012	22.73	1 70	5.67	
	0.013 0.026	22.73	1.78 1.77	6.02	
	0.028	22.27	1.77	6.28	
	0.040	21.65	1.73	6.48	
	0.055	21.40	1.73	6.63	
	0.000	20.56	1.72	6.75	
	0.075	20.30	1.68	6.85	
	0.032	19.75	1.67	6.93	
	0.100	19.75	1.65	6.99	
	0.113	18.98	1.65	7.05	
	0.132	10.50	1.04	1.03	
<u>RMI</u>	Total Discharge	Flow (mgd)	Ana	lysis Temperature (°C	<u>Analysis pH</u>
0.160	0.018	3		21.325	7.071
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
3.655	0.290		_	12.340	0.034
Reach CBOD5 (mg/L)	Reach Kc (R	each NH3-N (mg/L)	Reach Kn (1/days)
15.55	1.436 <u>Reach Kr (1/days)</u>			1.30 <u>Kr Equation</u>	0.775 <u>Reach DO Goal (mg/L</u>
<u>Reach DO (mg/L)</u> 7.292	22.08			Owens	5
<u>each Travel Time (days)</u>		Subreach	Results		
	TravTime	CBOD5	NH3-N	D.O.	
0.286					
0.286	(days)	(mg/L)	(mg/L)	(mg/L)	
0.286			(mg/L) 1.27	(mg/L) 7.23	
0.286	(days)	(mg/L)			
0.286	(days) 	(mg/L) 14.89	1.27	7.23	
0.286	(days) 0.029 0.057	(mg/L) 14.89 14.25	1.27 1.25	7.23 7.23	
0.286	(days) 0.029 0.057 0.086	(mg/L) 14.89 14.25 13.64	1.27 1.25 1.22	7.23 7.23 7.26	
0.286	(days) 0.029 0.057 0.086 0.114	(mg/L) 14.89 14.25 13.64 13.06	1.27 1.25 1.22 1.19	7.23 7.23 7.26 7.31	
0.286	(days) 0.029 0.057 0.086 0.114 0.143	(mg/L) 14.89 14.25 13.64 13.06 12.50	1.27 1.25 1.22 1.19 1.17	7.23 7.23 7.26 7.31 7.36	
0.286	(days) 0.029 0.057 0.086 0.114 0.143 0.171	(mg/L) 14.89 14.25 13.64 13.06 12.50 11.97	1.27 1.25 1.22 1.19 1.17 1.14	7.23 7.23 7.26 7.31 7.36 7.42	
0.286	(days) 0.029 0.057 0.086 0.114 0.143 0.171 0.200	(mg/L) 14.89 14.25 13.64 13.06 12.50 11.97 11.46	1.27 1.25 1.22 1.19 1.17 1.14 1.12	7.23 7.23 7.26 7.31 7.36 7.42 7.48	

WQM 7.0 D.O.Simulation

Monday, January 11, 2021

Page 1 of 1

	<u>SWP Basin</u> S 20A	tream Code 35853	<u>Stream Name</u> Trib 35853 of Shenango River				
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.260	Twilight MHP	PA0101087a	0.018	CBOD5	25		
				NH3-N	1.95	3.9	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits