

Northwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal Facility Type Non-Municipal Major / Minor Minor

NPDES PERMIT FACT SHEET **INDIVIDUAL SEWAGE**

Application No. PA0101320 APS ID 1016828 Authorization ID 1315091

Applicant Name	Titusville Es	tates, LLC	Facility Name	Titusville Estates		
Applicant Address	21321 Campl	•	Facility Address	21427 Campbell Road		
	Titusville, PA	16354		Titusville, PA 16354		
Applicant Contact	Keith DeRose	9	Facility Contact	Keith DeRose (814) 434-9147		
Applicant Phone	(814) 434-914	47	Facility Phone			
Client ID	234772		Site ID	2303		
Ch 94 Load Status	Not Overload	ed	Municipality	Oil Creek Township		
Connection Status	No Limitation	S	County	Crawford County		
Date Application Rece	eived <u>May</u>	12, 2020	EPA Waived?	Yes		
Date Application Acce	epted May	22, 2020	If No, Reason	<u>-</u>		

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to continue to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

SPECIAL CONDITIONS: II. Solids Management

- A. Stormwater into sewers
- B. Right of way
- C. Solids handling
- D. Public sewerage availability
- E. Effluent Chlorine Optimization and Minimization

There are no open violations in efacts associated with the subject Client ID (234772) as of 5/3/2021.

Approve	Deny	Signatures	Date	
X		Stephen A. McCauley	5/3/2021	
		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	3/3/2021	
X		Justin C. Dickey	May 3, 2021	
Α		Justin C. Dickey, P.E. / Environmental Engineer Manager	may 0, 2021	

ischarge, Receiving Waters and Water Supply In	formation					
Outfall No. 001	Design Flow (MGD)	0.0075				
Latitude 41° 38' 8.00"	Longitudo	-79° 38' 41.00"				
Quad Name -	Quad Code	-				
Wastewater Description: Sewage Effluent						
Unnamed Tributary to Receiving Waters the Pine Creek (CWF)	Stream Code	N/A				
NHD Com ID 100472897	RMI	N/A (1.19)				
Drainage Area 0.01	Yield (cfs/mi²)	0.1				
Q ₇₋₁₀ Flow (cfs) 0.001	Q ₇₋₁₀ Basis	calculated				
Elevation (ft) 1450	Slope (ft/ft)	0.042971				
Watershed No. 16-E	Chapter 93 Class.	CWF				
Existing Use -	Eviation Has Ovalifier	-				
Exceptions to Use -	Exceptions to Criteria					
Assessment Status Attaining Use(s)	<u> </u>					
Cause(s) of Impairment -						
Source(s) of Impairment -						
TMDL Status -	Name					
Background/Ambient Data	Data Source					
-11 (011)						
Temperature (°F)	<u>-</u>					
Hardness (mg/L)	-					
Other:	-					
Manuart Danisation and Dull Part Material Control of the	Amus Danna I aria lar. 5	lantan				
Nearest Downstream Public Water Supply Intake	Aqua Pennsylvania, Inc Em					
PWS Waters Allegheny River	Flow at Intake (cfs) 1,376					
PWS RMI 90.0	Distance from Outfall (mi)	60.0				

Sludge use and disposal description and location(s): Sludge is not used, it is disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.0075 MGD of treated sewage from a MHP in Oil Creek Township, Crawford County.

NPDES Permit Fact Sheet Titusville Estates

Treatment permitted under Water Quality Management Permit No. 2071401 consists of the following: Comminution with a manual bar screen with bypass, a 9,000 gallon aeration tank, a 3,000 gallon settling tank, a 4,192 gallon aerated sludge holding tank, and tablet chlorine disinfection with a 375 gallon chlorine contact tank.

1. Streamflow:

Oil Creek at Rouseville, PA (USGS gage 03020500):

Q₇₋₁₀: <u>30.6</u> cfs (USGS StreamStats)
Drainage Area: 300 sq. mi. (USGS StreamStats)

Yieldrate: <u>0.1</u> cfsm calculated

Unnamed Tributary to the Pine Creek at Outfall 001:

Yieldrate: <u>0.1</u> cfsm calculated above
Drainage Area: 0.01 sq. mi. (USGS StreamStats)

 Q_{7-10} : 0.001 cfs calculated

% of stream allocated: 100% Basis: No nearby discharges

2. Wasteflow:

Maximum discharge: 0.065 MGD = 0.100 cfs

Runoff flow period: 16 hours Basis: Runoff flow for a non-municipal STP

24 hour flow: 0.065 MGD x 24/16 = 0.0975 MGD = 0.150 cfs

There is less than 3 parts stream flow (Q7-10) to 1 part effluent (design flow). In accordance with the SOP, since this is an existing discharge, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, need to be evaluated for this facility. Based on eDMR data, the treatment requirements are not attainable with the treatment technology in place so the requirements will not be implemented in this NPDES Permit renewal.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, Total Residual Chlorine, influent Total Suspended Solids, and influent BOD₅. NH₃-N, CBOD₅, and Dissolved Oxygen were evaluated using WQM 7.0 at the discharge point.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits. The measurement frequency was

previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical

Guidance for the Development and Specification of Effluent Limitations"

(362-0400-001), which will be retained.

b. Total Suspended Solids

Limits are 30 mg/l as a monthly average and 60 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits.

NPDES Permit Fact Sheet Titusville Estates

c. Fecal Coliform

05/01 - 09/30: <u>200/100ml</u> (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: <u>2,000/100ml</u> (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP.

e. Phosphorus

Limit necessary due to:

Discharge to lake, pond, or impoundment

Discharge to stream

Basis: N/A

Basis: Chapter 96.5 does not apply. However, the previous monitoring for Total Phosphorus will

be retained in accordance with the SOP, based on Chapter 92a.61.

f. Total Nitrogen

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: 6.9 Standard Units (S.U.)

Basis: eDMR data

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 20°C (default value used for CWF modeling)

Background NH₃-N concentration: <u>0.1</u> mg/l

Basis: Default value.

Calculated NH₃-N Summer limits: <u>25.0</u> mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: 25.0 mg/l (monthly average)

<u>50.0</u> mg/l (instantaneous maximum)

WQ modeling resulted in the summer limits above (see Attachment 1). The winter limits are Result:

calculated as three times the summer limits, but since the technology-based limits would govern, they will be used. The previous permit did not include limits for NH3-N. Based on the SOP, since the limits are technology-based, a year-round monitoring requirement will be added for NH3-N.

h. CBOD₅

Median discharge pH to be used: 6.9 Standard Units (S.U.)

Basis: eDMR data

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

20°C Stream Temperature: (default value used for CWF modeling)

Background CBOD₅ concentration: 2.0 mg/l

> Basis: Default value

CBOD₅ Summer limits: 25.0 mg/l (monthly average)

> mg/l (instantaneous maximum) 50.0

CBOD₅ Winter limits: mg/l (monthly average) 25.0

> mg/l (instantaneous maximum) 50.0

Result: WQ modeling resulted in the summer limits above (see Attachment 1), which are the same as in the previous permit. The winter limits are calculated as three times the summer limits, but since the

technology-based limits would govern, they will be used. Since the summer and winter limits are technology-based, per the SOP, the year-round limit of 25.0 mg/l monthly average and 50.0 mg/l

instantaneous maximum will be retained with this renewal.

i. Dissolved Oxygen (DO)

\boxtimes	4.0	mg/l	- minimum desired in effluent to protect all aquatic life
	<u>5.0</u>	mg/l	- desired in effluent for CWF, WWF, or TSF
	6.0	mg/l	- minimum required due to discharge falling under guidance document 391-2000-014
	8.0	mg/l	- required due to discharge going to a naturally reproducing salmonid stream

Discussion: The Dissolved Oxygen minimum of 4.0 mg/l will be retained with this renewal. The technologybased minimum of 4.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

j. Total Residual Chlorine (TRC)

☐ No limit	necessary
------------	-----------

Basis: N/A

TRC limits: mg/l (monthly average) 0.5

> mg/l (instantaneous maximum) 1.6

Basis: The TRC limits above are technology-based using the TRC Calc Spreadsheet at the first point

of use (see Attachment 2). The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development

and Specification of Effluent Limitations" (362-0400-001), which will be retained.

k. Anti-Backsliding

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices for Outfall 001 since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Reasonable Potential Analysis performed above does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). However, since no data was provided, mass-balance calculations were not able to be performed.

Nearest Dov	wnstream	potable water supply (PWS):	Aqua Pennsylvania, Inc Emlenton					
Distance do	ownstrear	n from the point of discharge:	<u>60.0</u>	miles (approximate)				
	No limits	s necessary eeded						
	Basis:	Significant dilution available.						

6. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from March 1, 2020 to February 28, 2021)

Parameter	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20
Flow (MGD)												
Average Monthly	0.00245	0.00328	0.00300	0.00340	0.00328	0.00340	0.00328	0.00300	0.00340	0.00296	0.00340	0.00360
Flow (MGD)												
Daily Maximum	0.00280	0.00360	0.00360	0.00360	0.00380	0.00360	0.00360	0.00360	0.00360	0.00360	0.00360	0.00360
pH (S.U.)												
Minimum	6.5	6.7	6.3	6.9	6.7	6.6	6.3	6.4	6.7	6.7	6.7	6.7
pH (S.U.)												
Maximum	8.4	8.7	8.5	8.5	8.5	8.3	8.4	8.3	8.2	8.2	8.3	8.1
DO (mg/L)												
Minimum	5.0	4.7	5.0	4.7	4.5	4.8	4.7	4.4	4.7	4.4	4.5	4.4
TRC (mg/L)												
Average Monthly	0.40	0.37	0.34	0.43	0.49	0.44	0.43	0.49	0.42	0.42	0.41	0.40
TRC (mg/L)												
Instantaneous Maximum	0.66	0.67	0.53	0.79	0.70	0.73	0.74	0.85	0.72	0.70	0.67	0.69
CBOD5 (mg/L)												
Average Monthly	4	4	4	4	4	4.5	4	4.5	4	4	4	4
TSS (mg/L)												
Average Monthly	5	5	6.25	6.5	7	4.75	5.75	4.5	6.75	5	6.5	5
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	1	1.4	1.4	1.4	2.82	1.74	1.75	2.45	1	2	3.3	1
Fecal Coliform												
(CFU/100 ml)		_	_	_		_	_	_	_			_
Instantaneous Maximum	1	2	2	2	4	3	3	6	1	4	10	1
Total Nitrogen (mg/L)			4.00	4.00	4.05	4.05				4.00		
Average Monthly	1.3	0.889	1.62	1.62	1.25	1.25	1.34	1.25	2.26	1.26	1.59	1.44
Total Phosphorus (mg/L)												4.00
Average Monthly	0.516	1.25	0.930	0.930	5.19	9.92	3.77	5.16	1.7	1.28	1.46	1.20

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required	
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured	
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab	
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab	
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab	
CBOD5	XXX	XXX	XXX	25.0	XXX	50	2/month	8-Hr Composite	
TSS	XXX	XXX	XXX	30.0	XXX	60	2/month	8-Hr Composite	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab	
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab	
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite	
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Grab	
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/month	Grab	

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limit is technology-based on Chapter 92a.48. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for E. Coli, Ammonia-Nitrogen, Total Nitrogen, and Total Phosphorus is based on Chapter 92a.61.

Attachment 1

WQM 7.0 Effluent Limits (Perennial Reach)

		am Code		Stream Name	-		
	16E 5	54221		PINE CREEK	<u> </u>		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.670	Titusville Est	PA0101320b	0.011	CBOD5	3.9		
				NH3-N	8.79	17.58	
				Dissolved Oxygen			2

Results equal the inputs from the Dry Stream Reach so the inputs from the Dry Stream Reach are protective.

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI		ation ft)	Drainag Area (sq mi)		ope t/ft)	PW: Withdr (mg	awal	Apply FC
	16E	542	221 PINE	CREEK			0.6	70 1	180.00	84	.80 0.0	00000		0.00	~
ā					St	ream Dat	ta								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary	<u>/</u> oH	Temp	Stream o	рН	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)		(°C)			
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00) 2	0.00	7.00	0	.00	0.00	
					Di	scharge	Data								
			Name	Per	mit Number	Disc	Permitt Disc Flow (mgd)	Disc Flov	Res Fa		Disc Temp (°C)	Dis pl			
		Titus	ville Est	PA	0101320b	0.011	3 0.000	0.00	000	0.000	25.00) 1	6.90		
					Pa	rameter	Data								
			1	Paramete	r Name	С	onc C	Conc	Stream Conc (mg/L)	Fate Coef (1/days)				
	-		CBOD5				3.90	2.00	0.00	1.5	0				
			Dissolved	Oxygen			2.00	8.24	0.00	0.0	0				
			NH3-N				8.79	0.00	0.00	0.7	0				

(from Dry Stream Reach)

Input Data WQM 7.0

					aR	ut Duti		581 5 581						
	SWP Basin			Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	App FC
	16E	542	221 PINE	CREEK			0.0	00	1170.00	86.10	0.00000)	0.00	V
5.					St	ream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Ten	<u>Tributary</u> np pH	Tei	<u>Strean</u> mp	<u>p</u> H	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°C	C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	20.00 7.	00	0.00	0.00	
					Di	scharge	Data							
			Name	Per	rmit Numbe	Disc	Permitt Disc Flow (mgd	Di:	sc Res	Dis serve Ter actor (°C	np	Disc pH		
						0.000	0.00	00 0.	0000	0.000 2	25.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				. a. a. i i i		(m	ng/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
16E	54221			PINE CREEK	
<u>RMI</u> 0.670	Total Discharge	1-17	<u>) Ana</u>	lysis Temperature (%	<u>O) Analysis pH</u> 7.000
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
45.295 <u>Reach CBOD5 (mg/L)</u>	Reach Kc (0.750 60.371 h Kc (1/days) Reach NH3-N (mg/L)			0.250 <u>Reach Kn (1/days)</u>
2.00 <u>Reach DO (mg/L)</u> 8.230	Reach Kr (6.71	Tantani P. San			0.701 <u>Reach DO Goal (mg/L)</u> 6
Reach Travel Time (days) 0.164	TravTime	Subreach CBOD5	Results	D.O.	
0.101	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.016	2.00	0.02	8.24	
	0.033 0.049	2.00	0.02	8.24 8.24	
	0.049	2.00	0.02	8.24	
	0.082	2.00	0.02	8.24	
	0.098 0.115	2.00 2.00	0.02	8.24 8.24	
	0.131	2.00	0.02	8.24	
	0.147 0.164	2.00 2.00	0.02 0.02	8.24 8.24	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
16E	54221	PINE CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.67	'0 Titusville Est	16.74	17.58	16.74	17.58	0	0
H3-N	Chronic Allocati	Baseline Criterion	Baseline WLA	Multiple Criterion	Multiple WLA	Critical Reach	Percent Reduction
	′0 Titus∨ille Est	(mg/L) 1.89	(mg/L) 8.79	(mg/L) 1.89	(mg/L) 8.79	0	0

			CBC	DD5	NH.	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
le f	RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
	0.67	Titusville Est	3.9	3.9	8.79	8.79	2	2	0	0

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code				Stream	<u>Name</u>			
		16E	5	4221				PINE CI	REEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	***	Depth	Width	W/D Ratio	Velocity	Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.670	8.48	0.00	8.48	.0175	0.00283	.75	45.3	60.37	0.25	0.164	20.01	7.00
Q1-1	0 Flow											
0.670	5.43	0.00	5.43	.0175	0.00283	NA	NA	NA	0.19	0.210	20.02	7.00
Q30-	10 Flow	,										
0.670	11.53	0.00	11.53	.0175	0.00283	NA	NA	NA	0.30	0.138	20.01	7.00

WQM 7.0 D.O.Simulation (Dry Stream Reach)

SWP Basin St	ream Code			Stream Name	
16E	54221			PINE CREEK	
<u>RMI</u> 1.190	Total Discharge	1.00) <u>Ana</u>	lysis Temperature (<u>PC) Analysis pH</u> 6.905
Reach Width (ft)	Reach De			24.729 Reach WDRatio	8.905 Reach Velocity (fps)
0.704	0.35	 5		1.987	0.074
Reach CBOD5 (mg/L)	Reach Kc (<u>R</u>	each NH3-N (mg/L)	
23.76 Reach DO (mg/L)	1.48 <u>Reach Kr (</u>			23.65 <u>Kr Equation</u>	1.007 <u>Reach DO Goal (mg/L)</u>
3.892	28.89	2		Owens	2
Reach Travel Time (days)		Subreach	n Results		
0.983	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.098	19.83	21.42	2.00	
	0.197	16.55	19.40	2.00	
	0.295	13.81	17.57	2.00	
	0.393	11.53	15.92	2.00	
	0.491	9.62	14.42	2.00	
	0.590	8.03	13.06	2.00	
	0.688	6.70	11.83	2.00	
	0.786	5.59	10.71	2.00	
	0.884	4.67	9.70	2.00	
	0.983	3.90	8.79	2.00	

(Put as Perennial Reach inputs)

Input Data WQM 7.0

					885 60			500 13 13403						
	SWP Basin			Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slop	With	WS drawal ngd)	Appl FC
	16E	542	221 PINE	CREEK			1.19	90	1450.00	0.0	0.00	000	0.00	✓
.					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	ı Ten	<u>Tributary</u> np p		<u>Strea</u> Temp	<u>m</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	()		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00	7.00	0.00	0.00	
					Di	scharge I	Data						7	
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	sc Res	erve T	Disc emp (°C)	Disc pH		
		Dry S	Stream	PA	0101320a	0.0113	3 0.000	0.0	0000	0.000	25.00	6.90		
					Pa	arameter l	Data							
			900	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				10000000000000000000000000000000000000	es gestannouseeptauri	(m	ıg/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50	Ţ			
			Dissolved	Oxygen			4.00	2.00	0.00	0.00	i.			
			NH3-N				25.00	0.00	0.00	0.70				
													_	

Input Data WQM 7.0

					6.5.5			300 10 0000						
	SWP Basin			Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slop (ft/ft	With	NS drawal ngd)	Appl FC
	16E	542	221 PINE	CREEK			0.00	00	1180.00	0.0	2 0.000	000	0.00	V
8					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary	4 :	<u>Strea</u> Temp	<u>m</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	00 2	0.00	7.00	0.00	0.00	
					Di	scharge I	Data						Ì	
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	Di:	sc Res	erve Te	oisc emp °C)	Disc pH		
						0.0000	0.000	00 0.	0000	0.000	25.00	7.00		
					Pa	arameter l	Data							
			31 000	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
	_					(m	ıg/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				
													-	

WQM 7.0 Modeling Specifications

Parameters	D.O.	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	Simulation	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	2		

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>				
		16E	5	4221				PINE CI	REEK				
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH	
	(013)	(013)	(613)	(013)	(11/11)	(11)	(11)		(ipa)	(uays)	(0)		
Q7-10	0 Flow												
1.190	0.00	0.00	0.00	NA	0.04297	.355	.7	1.99	0.07	0.983	24.73	6.90	
Q1-1	0 Flow												
1.190	0.00	0.00	0.00	NA	0.04297	NA	NA	NA	0.00	0.000	0.00	0.00	
Q30-	10 Flow	,											
1.190	0.00	0.00	0.00	NA	0.04297	NA	NA	NA	0.00	0.000	0.00	0.00	

Attachment 2

TRC EVALUA	ATION										
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9									
8.48	= Q stream (cfs)	0.5	= CV Daily							
0.15	= Q discharg	e (MGD)	0.5	= CV Hourly							
	= no. sample	0 5 8	1	1 = AFC_Partial Mix Factor							
0.3	= Chlorine D	emand of Stream		1 = CFC_Partial Mix Factor							
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)						
0.5	= BAT/BPJ V	alue		720 = CFC_Criteria Compliance Time (min)							
0	= % Factor o	of Safety (FOS)	0	=Decay Coeffic	ient (K)						
Source	Reference	AFC Calculations		Reference	CFC Calculations						
TRC	1.3.2.iii	WLA afc =	11.676	1.3.2.iii	WLA cfc = 11.376						
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581						
PENTOXSD TRG	5.1b	LTA_afc=	4.351	5.1d	LTA_cfc = 6.614						
Source		Efflue	nt Limit Calcu	lations							
PENTOXSD TRG	5.1f		AML MULT =	1.231							
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.500	BAT/BPJ						
		INST MAX	LIMIT (mg/l) =	1.635							
WLA afc	(.019/e(-k*Al	FC_tc)) + [(AFC_Yc*Qs*.019	/Qd*e(-k*AFC	;_tc))							
		C_Yc*Qs*Xs/Qd)]*(1-FOS/10									
LTAMULT afc	EXP((0.5*LN)	(cvh^2+1))-2.326*LN(cvh^2+	-1)^0.5)								
LTA_afc	wla_afc*LTA	MULT_afc									
WLA_cfc	+ Xd + (CF	FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)								
LTAMULT_cfc	EXP((0.5*LN)	(cvd^2/no_samples+1))-2.32	6*LN(cvd^2/n	o_samples+1)^0	0.5)						
LTA_cfc	wla_cfc*LTA	MULT_cfc									
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.	5)-0.5*LN(cvd	l^2/no_samples+	-1))						
AVG MON LIMIT	50-00-0-0100 - 0-000 - 0-000 - 0-000 - 0-000 - 0	J,MIN(LTA_afc,LTA_cfc)*AN	ACCOUNT OF THE PROPERTY OF THE								
INST MAX LIMIT	1.5*((av_moi	_limit/AML_MULT)/LTAMUL	.T_afc)								