

Application Type	Renewal
Facility Type	Non-Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0101478
APS ID	1047220
Authorization ID	1368615

Applicant and Facility Information

Applicant Name	SNPJ	Facility Name	SNPJ Recreation Center
Applicant Address	270 Martin Road	Facility Address	270 Martin Road
	Enon Valley, PA 16120-4614		Enon Valley, PA 16120-4614
Applicant Contact		Facility Contact	
Title		Title	Director
Applicant Phone	(724) 336-5180	Facility Phone	(724) 336-5180
Applicant E Mail	djones@snpjrec.com	Facility E Mail	snpj@snpjrec.com
Client ID	74911	Site ID	259369
Municipality	North Beaver Township	County	Lawrence
Ch 94 Load Status	Not Overloaded	Connection Status	No Limitations
Date Application Receiv	ved September 1, 2021	EPA Waived?	Yes
Date Application Accep	ted September 14, 2021	If No, Reason	
Purpose of Application	NPDES treated sanitary sew	vage discharge permit renewal	

Summary of Review

Proposed is a renewal of an NPDES permit for the discharge of treated sewage. The facility has reported six effluent violations: one for TRC, three for ammonia, one for CBOD5 and one for fecal coliform between September 2021 and July 2022. Two open effluent violations are dated December 18, 2020 and April 29, 2022.

A compliance agreement is pending with Operations and Monitoring to resolve the noncompliance. Only permit drafting is proposed. Permit issuance should be withheld until the noncompliance is abated and an agreement with the permittee is reached. (CO&A executed December 22, 2022 cwy)

SNPJ is a borough within North Beaver Township largely consisting of the SNPJ Recreation Center established after initial permitting in 1977. As the SNPJ Recreation Center is a non-municipal enterprise monthly influent monitoring is not proposed.

The parent organization is the National Slovene Benefit Society located in Chicago (national organization). The Pennsylvania DoS registered S.N.P.J. address is Imperial, Pa. SNPJ is an acronym for the Slovenian Slovenska Narodna Podporna Jednota that translates to National Slovene Benefit Society. The Slovenian name is no longer in general use. The site is a borough formed in 1977 with a 2010 U.S. census population of 19 and 60 cabins. The site name and applicant is the SNPJ Recreation Center located in the Borough of SNPJ. The borough is a separate organization with an elected mayor. The sewage facility is operated under contract by J & R Plant Operations.

Approve	Deny	Signatures	Date
\mathbf{V}		William H. Mentzer	
Λ		William H. Mentzer, P.E. Environmental Engineering Specialist	October 4, 2022
X		vacant Environmental Engineer Manager	Okay to Draft JCD 10/17/2022

Summary of Review

The WQM permit design is for a first stage treatment facility rated at 0.040-MGD and 85-PPD based on a weekend population of 1000 people, 12-hour operating day, and no overnight accommodations. For the rest of the week the design population would be 200 people. Based on a summer week the estimated annual average flow is less than 0.01714-MGD.

At the time of design, a second stage was anticipated for 1969 with 3 to 5000 people weekend population and a 300 to 500 base population. NPDES permits for 1982, 1995, and 2005 were evaluated at 0.040-MGD with the 1995 and 2005 permits issued with a 0.014-MGD flow. In 2000 the NPDES permit was renewed at 0.014-MGD. Since 2011 the sewage treatment facility has been rated at 0.040-MGD. Normally half the sewage treatment facility is operated as an activated sludge facility with the idle half used for sludge storage. Whenever sludge is removed the treatment functions alternate.

WQM permit 364-S-42 was issued on April 26, 1965 and predated the current high-quality cold-water fishery classification and allowing the receiving waters to be evaluate as a cold-water fishery.

Sludge use and disposal description and location(s): Sludge is generally stored on site for over a year prior to removal. This may be defined as waste disposal through a default Waste Management definition.

Upstream of the sewage discharge is the Slovene Camp Dam and reservoir (Dam number 80-37-055 with a 1.18-square mile drainage. There are no known conservation release requirements,

The regional hydrogeologist previously cited USGS Station 03109300 at Darlington and North Fork Little Beaver Creek RMI 13.66 for a 0.027-cfs/square-mile low flow yield based on 2.4-cfs per 88.7-square miles for the receiving waters.

Timothy P. Jergel has replaced David Jones as Recreation Center director. The recreation Center treasurer is Sur Krispinsky (skrispinsky@snpjrec.com and the facility operator is Jeff Wisneski.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Information								
Outfall No.	001	Design Flow (MGD)	.04					
Latitude DP	40° 55' 40.80"	Longitude DP	<u>-80° 29' 54.20"</u>					
Latitude NHD	40° 55' 39.00"	Longitude NHD	-80° 29' 53.75"					
Quad Name	Bessemer	Quad Code	1102					
Wastewater Descrip	otion: <u>Recreational camp operation</u>	n						
Receiving Waters	Unnamed Tributary to Sugar Creel	k Stream Code	33436					
NHD Com ID	99674882	RMI	01.75					
Drainage Area	1.36	Yield (cfs/mi ²)	0.02742					
Q ₇₋₁₀ Flow (cfs)		Q ₇₋₁₀ Basis	Hydrogeologist					
Elevation (ft)	080.10	Slope (ft/ft)	0.00045					
Watershed No.	20-B	Chapter 93 Class.	HQ-CWF					
Existing Use	statewide	Existing Use Qualifier	none					
Exceptions to Use	none	Exceptions to Criteria	none					
Comments	The NHD discharge is 0.07 mile al	bove an unnamed tributary.						
Assessment Status	Impaired							
Cause(s) of Impairn	nent METALS and NUTRIENTS							
Source(s) of Impair	ment ACID MINE DRAINAGE an	IN AGRICULTURE						
TMDL Status		Name						
Background/Ambier	nt Data	Data Source						
pH (SU)	7.0	From the 1995 WQPR						
Temperature (°C)	20	default	Jefault					
Hardness (mg/L)								
Other:								
Nearest Downstrea	m Public Water Supply Intake	State of Ohio						
PWS Waters	North Fork Little Beaver Creek	Flow at Intake (cfs)	NA					
PWS RMI 7	7.85	Distance from Outfall (mi)	26					

Changes Since Last Permit Issuance: none

Other Comments: The Ohio Pennsylvania border is at North Fork Little Beaver RMI 7.85 which is reported on eMap as RMI 0.

		atment Facility Summa	iry	
-	me: SNPJ Recreation Cente	9r		
WQM Permit No.	Issuance Date			
364-S-42	26 April 1965			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
	Secondary With			
Sewage	Ammonia Reduction	Activated Sludge	Hypochlorite	0.0171
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·			
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.04	85	Not Overloaded		Other WWTP

Changes Since Last Permit Issuance: None

Other Comments: Treatment is: comminution, two parallel aeration tanks/settlers ad chlorination. Normally only half the facility is used as designed. The idled half is used for sludge storage. Typically, sludge is stored for over a year prior to disposal and thereby could be considered a disposal facility by Waste Management.

The facility design did not provide for sludge treatment and disposal, but the idle aeration tank is operated as an aerated sludge holding tank.

	Mon	Year	Flow	BOD5					
				Min	Mean	Max	Min	Mean	Max
			MGD	PPD mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Annual Average Design			0.00750						
Hydraulic Design Capacity			0.04000						
Organic Design Capacity				85					
Annual Average Flow		2018	0.11013						
		2019	0.00747						
		2020							
Previous Year Highest Monthly Average	Feb	2020							
pH			0.00000				7.0		7.4
TRC								0.14/0.22	
Fecal Coliform							0.12	0.14/0.22	< 1
CBOD5							3.98	20	
								-	
TSS							8.55	30	
Ammonia							<0.5	3.0	
Nitrogen									7.36
Phosphorus									0.542

No problems are indicated,

Chemical use hypochlorite for disinfection

## **Compliance History**

## DMR Data for Outfall 001 (from April 1, 2021 to March 31, 2022)

Parameter	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21
Flow (MGD)												
Average Monthly	0.0031	0.0028	0.0025	0.0025	0.0027	0.0018	0.0032	0.003	0.0052	0.0055	0.0064	0.0031
pH (S.U.)												
Minimum	7.4	7.1	7.2	6.8	7.0	7.1	7.2	7.0	6.9	7.2	7.1	7.3
pH (S.U.)					-							
Maximum	8.1	7.4	7.4	7.8	7.3	7.4	7.6	7.5	7.4	7.4	7.4	7.6
DO (mg/L)												
Minimum	9.7	9.1	8.6	9.2	8.13	8.5	6.91	7.08	5.53	5.2	7.06	8.01
TRC (mg/L)												
Average Monthly	0.11	0.12	0.086	0.09	0.11	0.12	0.09	0.09	0.07	0.11	0.11	0.10
TRC (mg/L)												
Instantaneous												
Maximum	0.19	0.29	0.18	0.14	0.18	0.18	0.13	0.18	0.10	0.17	0.16	0.17
CBOD5 (mg/L)												
Average Monthly	< 2	< 2	< 2	4.24	7.07	9.12	6.14	7.13	7.56	11.13	5.12	5.7
TSS (mg/L)												
Average Monthly	< 5	< 5.0	< 5.0	< 5	< 10	14.4	10.9	12	8.6	12.8	11	7
Fecal Coliform (#/100												
ml) Geometric Mean	< 1	< 3	< 1	< 10	< 25	< 3	7	< 2	27	2	4	3
Fecal Coliform (#100												
ml) Instantaneous												
Maximum	< 1	12	< 1	104	618	8	11	4	74	5	8	8
Total Nitrogen (mg/L)												
Average Monthly	2.1	2.26	7.79	2.57	461.61	12.87	19.2	15	18.39	< 17.7	4.54	5.18
Ammonia (mg/L)												
Average Monthly	< 0.5	< 0.59	< 1.0	< 0.5	< 0.95	9.82	10.89	< 2.12	2.82	< 5.74	1.56	< 1.73
Total Phosphorus												
(mg/L) Average												
Monthly	0.159	0.139	0.224	0.507	1.55	4.59	2.65	1.54	2.082	2.55	0.639	0.384

TRC maximum exceedance in February 2022

### NPDES Permit No. PA0101478

#### NPDES Permit Fact Sheet Snpj Recreation Center

						T		T	[
Parameter	AUG-22	JUL-22	JUN-22	MAY-22	APR-22				
Flow (MGD)									
Average Monthly	0.0034	0.0036	0.0029	0.0027	0.0039				
pH (S.U.)									
Minimum	7.4	7.1	7.2	7.3	7.1				
pH (S.U.)									
Maximum	7.8	7.9	7.7	7.7	7.7				
DO (mg/L)									
Minimum	5.3	5.6	7.1	7.6	7.9				
TRC (mg/L)									
Average Monthly	0.14	0.12	0.12	0.13	0.13				
TRC (mg/L)									
Instantaneous									
Maximum	0.19	0.16	0.18	0.19	0.17				
CBOD5 (mg/L)									
Average Monthly	6.18	73.17	40.7	< 3.47	3.41				
TSS (mg/L)									
Average Monthly	16	30.6	< 8.3	< 5	< 5.1				
Fecal Coliform (#./100									
ml) Geometric Mean	< 36	< 35	< 104	< 2	< 1				
Fecal Coliform (#100									
ml) Instantaneous									
Maximum	2200	1230	10800	5	< 1				
Total Nitrogen (mg/L)									
Average Monthly	11.8	39.79	8.71	5.04	1.89				
Ammonia (mg/L)									
Average Monthly	5.38	26.39	13.3	2.31	< 0.64				
Total Phosphorus									
(mg/L) Average									
Monthly	1.28	4.92	2.09	0.441	0.17				

### DMR Data for Outfall 001 (from September 1, 2021 to August 31, 2022)

High maximum fecal coliforms in June, July and August

Marginal TSS in September

High summer ammonia in

June, September and October

High CBOD5 in June and July

Summer and annual discharge pH is 7.4-SU.

#### **Compliance History** Effluent Violations for Outfall 001, from: October 1, 2021 To: August 31, 2022

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
TRC	02/28/22	IMAX	0.29	mg/L	.22	mg/L
CBOD5	06/30/22	Avg Mo	40.7	mg/L	20	mg/L
CBOD5	07/31/22	Avg Mo	73.17	mg/L	20	mg/L
TSS	07/31/22	Avg Mo	30.6	mg/L	30	mg/L
Fecal Coliform	08/31/22	IMAX	2200	No./100 ml	1000	No./100 ml
Fecal Coliform	06/30/22	IMAX	10800	No./100 ml	1000	No./100 ml
Fecal Coliform	07/31/22	IMAX	1230	No./100 ml	1000	No./100 ml
Ammonia	10/31/21	Avg Mo	9.82	mg/L	3.0	mg/L
Ammonia	08/31/22	Avg Mo	5.38	mg/L	3.0	mg/L
Ammonia	06/30/22	Avg Mo	13.3	mg/L	3.0	mg/L
Ammonia	07/31/22	Avg Mo	26.39	mg/L	3.0	mg/L
Ammonia	09/30/21	Avg Mo	10.89	mg/L	3.0	mg/L
Ammonia	06/30/21	Avg Mo	< 5.74	mg/L	3.0	mg/L

The violations are significant enough so that back sling generally will not provide compliance. .13 violations listed for TRC, CBOD5, TSS, Fecal coliform and ammonia.

	Development of Effluent Limitations								
Outfall No.	001	Design Flow (MGD)	.04						
Latitude	40° 55' 40.80"	Longitude	-80° 29' 54.20"						
Wastewater D	Vastewater Description: Sewage Effluent								

### **Technology-Based Limitations**

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Total Suspended Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean		92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean		92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX		92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
DO	4.0-mg/L	Daily Minimum		BPJ
E Coli	Monitor			BPJ

Comments:

E Coli is a new pollutant.

DO is DOSAG limited

Winter and summer CBOD5 requirements have been retained from previous reviews,

#### Water Quality-Based Limitations

A Sewage Program "Reasonable Potential Analysis" determined CBOD5, ammonia. DO and TRC were candidates for limitations:

The following limitations were determined through water quality modeling (output files attached):

Param	Parameter Limit				(mg/l)			SBC		Model	
			Existing		Proposed						
Name	Period	Minimum	Mean	Maximum	Minimum	Mean	Maximum		Minimum	Mean	Maximum
CBOD5	Summer		20.0	40.0		20.0	40.0			25.0	50.0
	Winter		25.0	50.0		25.0	50.0			25,0	50.040.0
Ammonia	Summer		3.0	6,9		3.0	6.0			3.06	6.14
	Winter		4.5	9.0		4.5	9.0			9.18	12.42
DO		5.0			5.0				5.0		
TRC		1	0.14	0.22		0.14	0.22			0.148	0.484

#### Comments:

Retention of the existing requirements is recommended as the facility is generally in compliance with its effluent requirements.

#### Best Professional Judgment (BPJ) Limitations

Comments: Applies to a 4.0-mg/L DO daily minimum. DOSAG recommends a 5,0-mg/L daily minimum

### Anti-Backsliding

Not proposed for the TRC instantaneous maximum as the sole violation was for 0.29-mg/L in February 2022. All other values were below the 0.220-mg/L current daily maximum. Also the current maximum is based on a 1.57 multiplier.

## **Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

## Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	ххх	XXX	XXX	XXX	ххх	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	xxx	9.0	1/day	Grab
DO	ххх	xxx	5.0 Daily Min	xxx	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.14	xxx	0.22	1/day	Grab
CBOD5 Nov 1 - Apr 30	ххх	XXX	xxx	25	xxx	50	2/month	8-Hr Composite
CBOD5 May 1 - Oct 31	ххх	XXX	xxx	20	xxx	40	2/month	8-Hr Composite
TSS	ххх	XXX	ххх	30	XXX	60	2/month	8-Hr Composite
E. Coli	ххх	xxx	ххх	XXX	XXX	Report	1/year	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ххх	xxx	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	xxx	xxx	200 Geo Mean	XXX	1000	2/month	Grab
Total Nitrogen	ххх	xxx	ххх	Report	XXX	xxx	2/month	8-Hr Composite
Ammonia Nov 1 - Apr 30	ххх	xxx	ххх	4.5	XXX	9.0	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	xxx	xxx	xxx	3.0	xxx	6.0	2/month	8-Hr Composite
Total Phosphorus	xxx	xxx	xxx	Report	XXX	XXX	2/month	8-Hr Composite

Compliance Sampling Location: Outfall 001 after disinfection

## Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	Elev: (f		Drainage Area (sq mi)			PWS ithdrawal (mgd)	Apply FC
	20B	334	36 Trib 3	3436 to S	ugar Creek		1.7	5 <b>0</b> 10	076.16	1.3	6 0.0	0000	0.00	✓
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pl	H	<u>Str</u> Temp	<u>eam</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	)		(°C)		
Q7-10 Q1-10 Q30-10	0.027	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	0.00	7.00	0.00	0.00	9999 9
	Ĩ				Di	scharge l	Data							
			Name	Per	mit Number	Existing Disc		Disc Flow	Res Fa	erve T ctor	Disc emp °C)	Disc pH		
		SNP	I)	PA	010478	0.040	0.040	0 0.04	00 (	0.000	20.00	) 7.4	0	
					Pa	arameter	Data							
			,	Paramete	r Name				tream Conc	Fate Coef				
			8	01.00400.00	0.00000	(m	g/L) (r	ng/L) (	mg/L)	(1/days)				
		CBOD5			:	25.00	2.00	0.00	1.50					
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N			i	25.00	0.10	0.00	0.70				

	SWP Basin	Strea Coo		Stre	eam Name		RMI	Eleva (ft		Drainage Area (sq mi)		lope t/ft)	PW Withdr (mg	awal	Apply FC
	20B	334	136 Trib 3	3436 to S	ugar Creek		0.00	<b>)0</b> 10	07.93	7.	63 0.0	00000		0.00	V
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p	·Η	Tem	<u>Stream</u> p	<u>р</u> Н	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	)		(°C	)		
Q7-10 Q1-10 Q30-10	0.027	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	0.00	7.00	(	0.00	0.00	
					Di	scharge l	Data								
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitt d Disc Flow (mgd)	Flow	Res Fa	erve 1 ctor	Disc ⁻ emp (°C)	Di: P	sc H		
						0.000	0 0.000	0 0.000	00	0.000	25.00	0	7.00		
					Pa	rameter	Data								
				Paramete	r Name	C	onc C		tream Conc	Fate Coef					
	_		2			(m	ig/L) (n	ng/L) (r	mg/L)	(1/days)					
			CBOD5			:	25.00	2.00	0.00	1.50	)				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00	)				
			NH3-N			:	25.00	0.00	0.00	0.70	)				

# Input Data WQM 7.0

SWP Basin St	ream Code			Stream Name	
20B	33436		Trib	33436 to Sugar Creek	
RMI	Total Discharge	Flow (mgd	<u>) Ana</u>	lysis Temperature (°C)	<u>Analysis pH</u>
1.750	0.040	D		20.000	7.206
Reach Width (ft)	Reach Dep	<u>oth (ft)</u>		Reach WDRatio	Reach Velocity (fps)
5.102	0.349	Э		14.627	0.055
Reach CBOD5 (mg/L)	Reach Kc (	1/days)	<u>R</u>	<u>each NH3-N (mg/L)</u>	Reach Kn (1/days)
16.42	1.093	Station and		1.96	0.700
Reach DO (mg/L)	<u>Reach Kr (</u>			Kr Equation	Reach DO Goal (mg/L)
6.209	21.92	9		Owens	6
<u>Reach Travel Time (days)</u>		Subreach	Results		
1.929	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.193	13.30	1.72	7.83	
	0.386	10.78	1.50	8.09	
	0.579	8.73	1.31	8.24	
	0.772	7.07	1.14	8.24	
	0.964	5.73	1.00	8.24	
	1.157	4.64	0.87	8.24	
	1.350	3.76	0.76	8.24	
	1.543	3.05	0.67	8.24	
	1.736	2.47	0.58	8.24	
	1.929	2.00	0.51	8.24	

## WQM 7.0 D.O.Simulation

Version 1.1

Page 1 of 1

	SWP Basin	Stream Code					
	20B	33436		Trib 33436 to Suga	r Creek		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.750	SNPJ	PA010478	0.040	CBOD5	25		
				NH3-N	3.07	6.14	
				Dissolved Oxygen			5

## WQM 7.0 Effluent Limits

Wednesday, August 24, 2022

Version 1.1

Page 1 of 1

## WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	95.00%	Use Balanced Technology	✓
D.O. Goal	6		

Wednesday, August 24, 2022

Version 1.1

Page 1 of 1

NH3-N	Acute Allocatio	ns						
RMI	Discharge Name	Baseline	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
1.75	50 SNPJ	12.96	17.86	12.96	17.86	0	0	
NH3-N RMI	Chronic Allocat	<b>ions</b> Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
1.75	50 SNPJ	1.74	3.07	1.74	3.07	0	0	
Discoly	ed Oxygen Allo	cations						

25

25

3.07

3.07

5

5

0

0

## WQM 7.0 Wasteload Allocations

1.75 SNPJ

Version 1.1

TRC EVALUATION       TRC EVALUATION       TRC EVALUATION       Indutry propriet values (ref)       Indutry propriet values (ref	C	scharger Site nicipality County ES Permit 0.5	SNPJ Recrea SNPJ Recrea North Beaver Lawrence PA0101478	ation Center S r Township	F TP	G	H	Revised	J K L Monday, July 25, 2022 Wednesday, August 24, 2022	M
Image: State in the intermediate of the int		0.0				TRC EVA	LUATION			
TRC     13.2.iii     W.A.dr.= 0.33     13.2.iii     W.A.dr.= 0.33       PENTOXED TRC     5.14     LTA_uttr = 0.123     5.14     LTA_uttr = 0.53       PENTOXED TRC     5.11     LTA_uttr = 0.123     5.14     LTA_uttr = 0.53       PENTOXED TRC     5.10     AUL MUX = 0.123     5.14     LTA_utr = 0.53       PENTOXED TRC     5.10     AUL MUX = 0.123     Filture 1.1mit Calculations       PENTOXED TRC     5.10     AUL MUX = 0.123     Filture 1.1mit Calculations       PENTOXED TRC     5.10     AUL MUX = 0.123     Filture 1.1mit Calculations       PENTOXED TRC     5.10     AUL MUX = 0.133     Filture 1.1mit Calculations       PENTOXED TRC     5.10     AUL MUX = 0.133     Filture 1.1mit Calculations       Intauxit Trc    X14 + ARC_+YCG Y 400 AUT (4XFC_50) X44 + PC YCG Y 400 AUT (4YFC_50) X44 + PC YCG Y 400 AUT (4YFC_50) X40	C	0.0368 0.0250 30 0.3 0	= Q stream (c = Q discharge = no. samples = Chlorine De = Chlorine De = BAT/BPJ V:	fs) e (MGD) s emand of Strea emand of Disch alue		0.5 1 1 15	= CV Hourly = AFC_Partial Mix = CFC_Partial Mix = AFC_Criteria Co = CFC_Criteria Co	Factor mpliance Time mpliance Time		
PENTOXED TRO 5.10 LTA_ute = 0.373 5.14 LTA_ute = 0.			Reference				Referen	се		
DENTODED TRO     5.1f     AML MULT = 1.31       PENTOXED TRO     5.1g     ILUMIT (reg)t = 0.148     AFC       VLA atc     (018/44/376_1-b)) = ((MFC, Y*0-24/39/36*/44/376_2-b)) 	PENTOXSD	TRG	5.1a		LTAMULT afc = 0.	.373	5.1c	i	LTAMULT cfc = 0.581	
PENTOXISD TRB     5.1g     LLMT(reg) = 0.484 (LMT(reg)) = 0.484     AFC       WLA.ric	Source						Effluent	Limit Calculati	ons	
					4 L	_IMIT (mg/l) =	0.148	A	FC	
LTA_ofc wis_cfc1TAMULT_dc: AAL.MULT EXP(2.32FLV)((cvf2/2nc_samples+1)0.5)-0.5fL)(cvf2/2nc_samples+1)) AVG MOULUMT MIN(RGT_F2FLVMICTA_sfc1TA_dc1pt_dc7AML_VULT) INST MAXLENIT 1.5f(av_mon_limitAML_MULT)ILTAMULT_sfc) 	LTAMULT afc LTA_afc WLA_cfc		+ Xd + (AFC EXP((0.5*LN(d wla_afc*LTAW (.011/e(-k*CFd + Xd + (CFC EXP((0.5*LN(d	C_Yc*Qs*Xs/Qd cvh*2+1))-2.326 IULT_afc C_tc) + [(CFC_' C_Yc*Qs*Xs/Qd cvd*2/no_samp	)]*(1-FOS/100) *LN(cvh*2+1)*0.5) Yc*Qs*.011/Qd*e(-k* )]*(1-FOS/100)	*CFC_tc) )	2s+1)^0.5)			
Stream   React/Node   1   1     Stream   Flow   Conditions   perennial     Stream   Code   33436     Function   30     reach   outfall   RMI   1.75     Reach End   RMI   0     reach   feet   9240     drainage   sq miles   1.36     TRC   imaximum   mg/L   0.418     maximum   mg/L   0.418     elevation   modelled   feet   1076.16     elevation   modelled   feet   1007.93     slope   modelled   feet   1007.93     slope   mgd   0.0250     Runoff   Period   hours   24.000     The existing requirements are 0.14-mg/L monthly average and 0.22-mgL daily maximum.   stream     stream   flow   cfs   0.03680     stream   flow   total   MGD   0.048783     stream   flow   total   MGD   0.3     discharge   demand   mg/L   0.3     discharge	AML MULT AVG MON LIM INST MAX LIM (0.011/EXP(-	11T -K*CFC_tc/1440))	EXP(2.326*LN MIN(BAT_BP, 1.5*((av_mon +(((CFC_Yc*Qs	l((cvd^2/no_sar J,MIN(LTA_afc,L _limit/AML_MU **0.011)/(1.547*	_TA_cfc)*AML_MULT LT)/LTAMULT_afc) Qd)	T)	mples+1))			
Samples 30   reach outfall RMI 1.75   Reach End RMI 0   reach feet 9240   drainage sq miles 1.36   TRC Imitation average mg/L 0.148   maximum mg/L 0.494   elevation modelled feet 107.93   slope modelled feet 0.027   low flow cfs/sq mi 0.0250   Runoff Period hours 24.000   The existing requirements are 0.14-mg/L monthly average and 0.22-mgL daily maximum.										
reach feel 9240 drainage sq miles 1.36 TRC limitation average mg/L 0.148 maximum mg/L 0.484 elevation modelled feel 1076.16 elevation modelled feet 1007.93 slope modelled foot/foot 0.007 low flow cfs/sq mi 0.027 discharge mg/L 0.0250 Runoff Period hours 24.000 The existing requirements are 0.14-mg/L monthly average and 0.22-mgL daily maximum. stream flow cfs 0.03680 stream flow total MGD 0.023783 stream flow total MGD 0.024783 stream flow total MGD 0.048783 stream flow total MGD 0.048783 stream flow total MGD 0.048783 stream flow total MGD 0.048783 stream Total Stream/Waste ratio 2.0	Stream	Chlorine Requi Reach/Node Flow	red	=	perennial 1 perennial	Chlorine	Dem and	+ C	hlorine Residual	
elevation modelled feet 1007.93 slope modelled foot/foot 0.007 discharge mgd 0.027 discharge mgd 0.0250 Runoff Period hours 24.000 The existing requirements are 0.14-mg/L monthly average and 0.22-mgL daily maximum. stream flow Cfs 0.03680 stream flow MGD 0.023783 stream flow total MGD 0.024783 stream chlorine demand mg/L 0.3 discharge discharge demand mg/L stream Total Stream/Waste ratio 2.0 BAT TRC mean BAT 0.5	Stream Stream Samples	Chlorine Requi Reach/Node Flow Code Function outfall	red	= 1 RMI	perennial 1 perennial 33436 30 1.75	Chlorine	Dem and	+ c	hlorine Residual	
The existing requirements are 0.14-mg/L monthly average and 0.22-mgL daily maximum. stream flow cfs 0.03680 stream flow MGD 0.023783 stream flow total MGD 0.048783 stream chlorine demand mg/L 0.3 discharge discharge demand mg/L stream Total Stream/Waste ratio 2.0 BAT TRC mean BAT 0.5	Stream Stream Samples reach reach drainage TRC	Chlorine Requii Reach/Node Flow Code Function outfall Reach End	Conditions Conditions average maximum	= 1 RMI RMI feet sq miles mg/L mg/L	perennial 1 perennial 33436 30 1.75 0 9240 1.36 0.148 0.484	Chlorine	Dem and	+ C	hlorine Residual	
stream flow MGD 0.023783 stream flow total MGD 0.048783 stream chlorine demand mg/L 0.3 discharge discharge demand mg/L stream Total Stream/Waste ratio 2.0 BAT TRC mean BAT 0.5	Stream Stream Samples reach drainage TRC elevation elevation slope low flow discharge	Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation	average maximum modelled modelled	= 1 RMI RMI feet sq miles mg/L feet feet feet foot/foot cfs/sq mi mgd	perennial 1 perennial 33436 30 1.75 0 9240 1.36 0.148 0.484 1076.16 1007.93 0.007 0.027 0.0250	Chlorine	Demand	+ C	hlorine Residual	
	Stream Stream Samples reach drainage TRC elevation elevation slope low flow discharge Runoff	Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation	average maximum modelled modelled	= 1 RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mg/d hours	perennial 1 perennial 33436 30 1.75 0 9240 1.36 0.148 0.484 1076.16 1007.93 0.007 0.027 0.0250 24.000			+ C	hlorine Residual	
	Stream Stream Samples reach reach drainage TRC elevation slope lewation slope lewation slope Runoff The existing stream stream stream stream	Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation limitation Period grequirements a flow flow flow chlorine discharge	average maximum modelled modelled re 0.14-mg/L n total demand demand	= 1 RMI RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mg/L hours nonthly averag	perennial 1 perennial 33436 30 1.75 0 9240 1.36 0.148 0.484 1076.16 1007.93 0.007 0.027 0.027 0.0250 24.000 re and 0.22-mgL da 0.03680 0.023783 0.048783 0.3			+ C	hlorine Residual	
	Stream Stream Samples reach drainage TRC elevation elevation slope low flow discharge stream stream stream discharge stream discharge stream	Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation Period grequirements a flow flow flow flow chlorine discharge Total Stream.	average maximum modelled modelled re 0.14-mg/L n total demand demand Wvaste mean	= 1 RMI RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mg/L hours nonthily averag	perennial 1 perennial 33436 30 1.75 0 9240 1.36 0.148 0.484 1007.93 0.007 0.0250 24.000 re and 0.22-mgL da 0.03680 0.023783 0.3 2.0 0.5			+ C	hlorine Residual	

0.04

Stroom Cl Domond (n		0.3			0.3	
Stream CI Demand (r Discharge CI Demand		0.3			0.3	
Effluent TRC (mg.L)	(iiig/L)	0.14	0.15		0.148	
Effluent Max TRC (mg	a/L)	0.22	0.30		0.484	
Effluent CBOD5 (mg/		-	25	25		
Effluent Ammonia (mg	,		3.0	3.0		
Effluent Am Max (mg/	L) 6.98		4.5	6.1		
Efflunt DO (mg/L)	5.0		5.0	5.0		
Receiving Waters				Site		
Stream Code						
Discharge RMI				0.04		
Elevation (feet)				1080.10		
Slope (ft/ft)				0.00045		
Drainage (Sq Mi)			0.107	0.003		
Yield (cfs/sq-mi)	0.027	0.027	0.127	0.027		
Discharge pH	7.1					
Tributary pH	7.0 Sugar Crack	Sugar Crack	up pomod Tributory	up pomod Tributory		
Secondary Waters Stream Code	Sugar Creek 33433	Sugar Creek 3433	un-named Tributary 33436	un-named Tributary 33436		
Stream Flow (cfs)	0.043	0.04	0.04	55450		
RMI	1.515	0.04	1.77	1.75		
Elevation (feet)	1104.00		1059.99	1076.16		
Slope (ft/ft)	0.01	0/01	0.0265	0.00728		
Drainage (Sq Mi)	1.56	1.46	1.459	1.3		1.36
Stream Name	Sugar Creek	Sugar Creek	Sugar Creek	Sugar Creek		1100
Stream Code	33433	3343	33433	33433		
Stream RMI	1.315		1.3517	1.35		
Stream Reach (feet)	6890	8000	7137	7128		
Elevation (feet)	1104.00			1007.93		
Slope (foot/foot)	0.01			0.00301		
Drainage (Sq Mi)	2.86		7.84	7.84		7.63
Stream Name	Sugar Creek			Honey Creek		
Stream Code	33433			33434		
Stream RMI	0.01`			3.62		
Elevation (feet)	1025.00			980.99		
Slope (foot/foot)				0.00014		50.0
Drainage (Sq Mi)			New			53.0
Stream Name Stream Code			NOF	th Fork Little Beaver Cr	еек	
Stream RMI				33323 26.59		
Elevation (feet)				957.36		
Slope (foot/foot)				0.00132		
Drainage (Sq Mi)				0.00102		
Ohio Border RMI				7.85		
Elevation				827.02		
Slope				0.00132		
Drainage (Sq Mi)				105.76		106.0
Stream Name				Little Beaver Creek		Little Beaver Creek
Stream Code				33296		
Stream RMI						7.86
Elevation (feet)				723.55		
Slope (foot/foot)				0.00045		
Drainage (Sq Mi)						
Stream Name			Ohio River	Ohio River	Ohio River	Ohio River
Stream Code			32317	32317		
Stream RMI			941.22	941.22 676.42		
Elevation (feet) Slope (foot/foot)			676.42 0.43914	676.42 0.43914		
Drainage (Sq Mi)			23504.19	23504.19		
DO Goal (mg/L)	6.0		20004.18	20004.10		
Water Intake	Ohio		Ohio	Ohio		Ohio
Water intake RMI	0110		01110	0		0
Water Intake Distance	e (mi) 10		25.96	26.0		-
Water Intake Drainag			105.766	105.76		106
5						