

Northwest Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Amendment, Major

Non-Municipal

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0101664 A-1

APS ID 1076846

Authorization ID 1419599

Applicant Name	Fred	C. Berlin, LLC	Facility Name	Orchard Park Estates		
Applicant Address 610		Park Road	Facility Address	135 Apricot Drive		
	Berwi	ick, PA 18603-5713		Franklin, PA 16323-8115		
Applicant Contact		Berlin r <u>lin305@gmail.com</u>)	Facility Contact	Andrew Narlee, WWTP Operator (andy@self-storage-buildings.com)		
Applicant Phone	(570)	204-2531	Facility Phone	(724) 301-1042		
Client ID	29076	62	Site ID	239243		
Ch 94 Load Status	Not C	verloaded	Municipality	Cranberry Township		
Connection Status	No Li	mitations	County	Venango		
Date Application Received		November 29, 2022	EPA Waived?	Yes		
Date Application Accepted		December 7, 2022	If No, Reason	-		

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

There are no open violations in efacts associated with the subject Client ID (290762) as of 7/3/2023. 8/14/2023 CWY

I. OTHER REQUIREMENTS:

SPECIAL CONDITIONS:

II. Solids Management

- A. Stormwater into Sewers
- A. Stormwater into Sewers
- B. Right of Way
- C. Solids Handling
- D. Public Sewerage Availability
- E. Effluent Chlorine Optimization and Minimization
- F. Little or no Assimilative Capacity

Ap	prove	Return	Deny	Signatures	Date
	V			Stephen A. McCauley	7/3/2023
	^			Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	1/3/2023
	V			Chad W. Yurisic	8/14/2023
	X			Chad W. Yurisic, P.E. / Environmental Engineer Manager	6/14/2023

Discharge, Receiving	Water	s and Water Supply Info	rmation					
Outfall No. 001			Design Flow (MGD)	0.018				
	3' 8.2"		Longitudo	-79° 48' 9.4"				
Quad Name -	0.2		_ Quad Code					
Wastewater Descrip	ntion:	Sewage Effluent	_ Quad Oode	<u> </u>				
Wastewater Descrip	, tioi i.	Ocwage Emach		_				
		med Tributary to the						
Receiving Waters	Lowe	Twomile Run (CWF)	Stream Code	N/A				
NHD Com ID	10047	77203	RMI	N/A				
Drainage Area	166 (f	irst point of use)	Yield (cfs/mi²)	0.1				
Q ₇₋₁₀ Flow (cfs)	16.6		Q ₇₋₁₀ Basis	calculated				
Elevation (ft)	988		Slope (ft/ft)	0.01578				
Watershed No.	16-G		Chapter 93 Class.	CWF				
Existing Use	-		Existing Use Qualifier					
Exceptions to Use	-		Exceptions to Criteria					
Assessment Status		Attaining Use(s)						
Cause(s) of Impairm	nent	-						
Source(s) of Impairr	ment	-						
TMDL Status		-	Name -					
Background/Ambier	nt Data		Data Source					
pH (SU)								
Temperature (°F)								
Hardness (mg/L)		<u>-</u>						
Other:			-					
Nooroot Downstrass	n Dubli	c Water Supply Intake	Agua Pannaylyania Ina - E	lonton				
		,	Aqua Pennsylvania, Inc Emlenton					
		ny River	Flow at Intake (cfs) 1,376					
rvorivii <u>9</u>	0.0		Distance from Outfall (mi)	32.9				

Sludge use and disposal description and location(s): Sludge is disposed of at an approved STP, or at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of NPDES Amendment permit limits for an existing discharge of 0.018 MGD of treated sewage from an existing non-municipal STP in Cranberry Township, Venango County.

Permitted treatment consists of: (WQM Permit no. 6172412)

A three cell lagoon system with an influent flow splitter, two parallel (1,237,000 gallon and 2,178,000 gallon) primary cells and one (1,820,000 gallon) secondary cell, calcium hypochlorite chlorinator with a 1,320 gallon contact tank, and an effluent cascade aerator.

WQM Permit 6172412 will be amended concurrently to add an influent bar screen, and install chlorination and dechlorination to supplement the current UV disinfection.

Disinfection:

□ Ultraviolet (UV) light monitoring

Basis: 1/day UV Transmittance (%) monitoring will be retained.

 \square TRC limits: <u>0.5</u> mg/l (monthly average)

1.6 mg/l (instantaneous maximum)

Basis: The TRC limits above were calculated using the Department's TRC Calculation Spreadsheet

(see Attachment 1).

The measurement frequency will be set to 1/day as recommended in the SOP, based on Table 6-3

in the "Technical Guidance for the Development and Specification of Effluent Limitations"

(362-0400-001).

Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

Attachment List:

Attachment 1 - TRC Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from May 1, 2022 to April 30, 2023)

Parameter	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	JUL-22	JUN-22	MAY-22
Flow (MGD)											
Average Monthly	0.08	0.007	0.007	0.0115	0.007	0.012	0.006	0.014	0.007	0.002	0.005
Flow (MGD)											
Daily Maximum	0.0216	0.0288	0.0144	0.022	0.021	0.022	0.0144	0.014	0.029	0.007	0.001
pH (S.U.)											
Daily Minimum	7.2	7.0	7.5	7.2	7.2	7.6	7.2	6.7	6.0		
pH (S.U.)											
Instantaneous Maximum	8.8	8.2	8.1	8.0	7.9	7.9	8.0	7.9	7.9		
DO (mg/L)											
Daily Minimum	5.2	7.0	10.0	9.4	6.0	8.7	6.0	6.1	6.0	6.7	6.5
CBOD5 (mg/L)											
Average Monthly	5.9	23.0	62.05	> 24.0	20.6	11.7	8.7	< 5.0	< 35.1	30.4	< 48.2
CBOD5 (mg/L)											
Instantaneous Maximum	5.9	23.0	71.7	> 25.5	20.6	11.7	8.7	< 5.0	< 47.7	30.4	< 48.2
TSS (mg/L)											
Average Monthly	6.0	23.0	26.5	19.0	45.0	12.0	26.0	21.0	20.5	50.0	22.0
TSS (mg/L)											
Instantaneous Maximum	6.0	23.0	42.0	19.0	45.0	12.0	26.0	21.0	29.0	50.0	22.0
Fecal Coliform (CFU/100 ml)											
Geometric Mean	< 1	1	< 1	< 1	< 1	24	< 1	< 1.0	478	65	< 1
Fecal Coliform (No./100 ml)											
Geometric Mean	< 1	1	< 1	< 1	< 1	24	< 1	< 1.0	478	65	< 1
Fecal Coliform (CFU/100 ml)											
Instantaneous Maximum	< 1	1	1	< 1	< 1	24	< 1	< 1.0	580	65	< 1
Fecal Coliform (No./100 ml)											
Instantaneous Maximum	< 1	1	1	< 1	< 1	24	< 1	< 1.0	580	65	< 1
E. Coli (No./100 ml)											
Instantaneous Maximum					< 1						
UV Transmittance (%)											
Average Monthly	0.0000001	0.000001	0.0000001	0.0	0.0000001	0.0	0.0	0.0	0.0	75.6	91
Total Nitrogen (mg/L)											
Average Monthly	6.05	11.6	6.66	3.07	3.05	16.4	5.51	4.73	6.39	11.1	7.23
Ammonia (mg/L)											
Average Monthly	3.05	8.39	4.97	0.14	0.62	10.2	0.64	< 0.1	2.7	3.0	3.29
Total Phosphorus (mg/L)											
Average Monthly	0.9	1.58	1.485	2.26	1.45	2.43	2.25	1.50	0.76	0.9	0.73

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requiremen						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
r al ameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/month	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	6.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	20.0	XXX	40.0	1/month	Grab
TSS	XXX	XXX	XXX	20.0	XXX	40.0	1/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
UV Transmittance (%)	XXX	XXX	XXX	Report	XXX	XXX	1/day	Measured
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Grab
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/month	Grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001, after disinfection.

Attachment 1

TRC EVALUATION										
Input appropriate values in A3:A9 and D3:D9										
1.18 = Q stream (cfs) 0.5 = CV Daily										
0.018	= Q discharg	je (MGD)	0.5	= CV Hourly						
30	= no. sample	8	= AFC_Partial Mix Factor							
0.3	= Chlorine D	emand of Stream	= CFC_Partial Mix Factor							
0	= Chlorine D	emand of Discharge	= AFC_Criteria Compliance Time (min)							
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)					
0	= % Factor of	of Safety (FOS)	0	=Decay Coeffic	cient (K)					
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	13.537	1.3.2.iii	WLA cfc = 13.190					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	5.044	5.1d	LTA_cfc = 7.668					
		FC								
Source	F 45	Επιμει	nt Limit Calcul							
PENTOXSD TRG	5.1f	AVO MONI	AML MULT =		DAT/DD I					
PENTOXSD TRG	5.1g		_IMIT (mg/l) = _IMIT (mg/l) =		BAT/BPJ					
		INST WIAX	-11 v 111 (111g/1) -	1.005						
WLA afc	(.019/e(-k*Al	FC_tc)) + [(AFC_Yc*Qs*.019	/Qd*e(-k*AFC	:_tc))						
Contract and a second	+ Xd + (AF	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)							
LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(cvh^2+	1)^0.5)							
LTA_afc	wla_afc*LTA	MULT_afc								
WLA_cfc	570	FC_tc) + [(CFC_Yc*Qs*.011/		_tc))						
I TAMUUT OF		C_Yc*Qs*Xs/Qd)]*(1-FOS/10	AND SECTION AND DESCRIPTION OF THE PARTY NAMED IN COLUMN TWO PARTY NAM		2.5					
LTAMULT_cfc	ACTORDOROUS PROPERTY AND AND AND	(cvd^2/no_samples+1))-2.32	6°LN(cva*2/n	o_samples+1)^(J. 5)					
LTA_cfc	wla_cfc*LTA	WIULI_CTC								
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.	5)-0.5*LN(cvd	^2/no_samples-	+1))					
AVG MON LIMIT	3.5	J,MIN(LTA_afc,LTA_cfc)*AN		_ ,	***					
INST MAX LIMIT	1.5*((av_moi	n_limit/AML_MULT)/LTAMUL	.T_afc)							
	#####	5	157							