

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Renewal

Non
Facility Type

Maior / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. **PA0101737**APS ID **1056818**

Authorization ID 1385262

	Applicant and Facility Information									
Applicant Name	Wilderness MHP, LLC	Facility Name	Wilderness MHP							
Applicant Address	100 Mountain Laurel Village	Facility Address	213 Wilderness Drive							
	Spring Brook Township, PA 18444-6373		Clarendon, PA 16313							
Applicant Contact	Tia Martini-Spangenberg	Facility Contact	Tim Bunta (Operator)							
Applicant Phone	(570) 702-6171	Facility Phone	(724) 859-3920							
Client ID	368204	Site ID	244126							
Ch 94 Load Status	Not Overloaded	Municipality	Pleasant Township							
Connection Status	No Exceptions Allowed	County	Warren							
Date Application Rece	eived April 2, 2021	EPA Waived?	Yes							
Date Application Acce	pted April 10, 2021d	If No, Reason								

Summary of Review

This STP services a privately owned mobile home park. The MHP was sold/transferred in February 2022.

The NPDES and WQM Permit will be transferred concurrently with the renewal of this NPDES Permit.

There are currently open violations for ammonia nitrogen limit exceedances that need to be addressed prior to final issuance of this permit. There are also open violations with the Safe Drinking Water Program that need to be addressed prior to final issuance of this permit. CWY

The facility has had three ownership changes in the last three years.

Sludge use and disposal description and location(s): Liquid Sludge is hauled offsite by a contractor for disposal.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Adam J. Pesek Adam J. Pesek, E.I.T. / Project Manager	June 13, 2023
Х		Chad W. Yurisic Chad W. Yurisic, P.E. / Environmental Engineer Manager	6/14/2023

ischarge, Receiving W	aters and Water Supply Info	rmation					
Outfall No. 001		_ Design Flow (MGD)	0.02				
Latitude 41° 48' 4	5"	_ Longitude	79° 9' 30"				
Quad Name Warrer		_ Quad Code	0412				
Wastewater Description	n: Sewage Effluent						
Receiving Waters U	nnamed tributary to Morrison I	Run Stream Code					
	12377307	RMI	0.5				
Drainage Area 0.	15 mi ²	Yield (cfs/mi²)	0.04346				
Q ₇₋₁₀ Flow (cfs) 0.	006519	Q ₇₋₁₀ Basis	USGS Streamstats				
Elevation (ft) 17	766	Slope (ft/ft)	0.1072				
Watershed No. 16	S-B	Chapter 93 Class.	EV				
Existing Use		Existing Use Qualifier					
Exceptions to Use		Exceptions to Criteria	-				
Assessment Status	Attaining Use(s)						
Cause(s) of Impairment	t						
Source(s) of Impairmen	nt						
TMDL Status		Name					
Background/Ambient D	ata	Data Source					
pH (SU)	6.3	4/18/02 sample 100 feet abov	e Outfall 001				
Temperature (°C)	20	Default					
Ammonia Nitrogen (mg	/L) 0.02	4/18/02 sample 100 feet abov	e Outfall 001				
CBOD ₅ (mg/L)	1.1	4/18/02 sample 100 feet above Outfall 001					
Nearest Downstream P	Public Water Supply Intake	Aqua Pennsylvania, Inc. – Em	nlenton				
PWS Waters Alleg	gheny River	Flow at Intake (cfs)	Flow at Intake (cfs) 1450				
PWS RMI 90.0		Distance from Outfall (mi)	Distance from Outfall (mi) 103				

Changes Since Last Permit Issuance:

Other Comments:

	Tr	eatment Facility Summar	у	
Treatment Facility Na	me: Wilderness MHP			
WQM Permit No.	Issuance Date			
6274403-T-2	8/27/2018			
		T	1	
· · · ·	Degree of		5	Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Causage	Casandani	Extended Aeration w/	l li un a ala la vita	0.00
Sewage	Secondary	Sand Filter	Hypochlorite	0.02
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.04	129.2	Not Overloaded		Other WWTP

Changes Since Last Permit Issuance:

Other Comments: Treatment consists of a package extended aeration sewage treatment plant, sludge holding tank, dosing tank with two alternating submersible pumps, intermittent sand filtration, disinfection, flow measuring device, and outfall sewer.

Treatment plant was designed for two phases, each phase to be rated to treat 0.02 MGD. Only phase one has been constructed to date.

This WQM Permit will be transferred concurrently with the NPDES Permit renewal.

	Compliance History
Summary of DMRs:	An NOV was sent on 2/7/2023 for effluent violations that occurred in 2022 (5 for ammonia nitrogen – 1 for TRC). One additional ammonia exceedance was reported in April 2023.
Summary of Inspections:	Last site inspection was on 6/02/2023. The inspection noted numerous violations mostly related to record keeping and reporting, as well as instrument calibration and not maintaining treatment units in operable condition.

Other Comments:

Compliance History

DMR Data for Outfall 001 (from May 1, 2022 to April 30, 2023)

Parameter	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22
Flow (MGD)	0.00480	0.00784	0.00491	0.01021	0.03753	0.00902	0.00622	0.00809	0.00466	0.00458	0.00612	0.00565
Average Monthly	6	7	5	8	4	3	4	1	9	5	9	5
Flow (MGD)	0.00880											0.00880
Daily Maximum	6	0.0105	0.0105	0.08806	0.0105	0.0105	0.0105	0.0105	0.0105	0.0105	0.0105	6
pH (S.U.)												
Daily Minimum	6.75	6.82	6.86	6.82	6.91	7.19	7.41	7.53	6.74	7.78	7.8	7.76
pH (S.U.)												
Daily Maximum	6.82	6.87	6.9	6.91	7.18	7.63	7.54	7.55	7.77	7.85	7.85	7.81
DO (mg/L)												
Daily Minimum	7.13	7.13	7.12	7.13	7.02	6.93	6.81	6.75	6.73	7.63	7.68	7.77
TRC (mg/L)												
Average Monthly	0.01	0.01	0.01	0.02	0.01	< 0.01	0.01	< 0.02	0.03	< 0.01	0.01	< 0.01
TRC (mg/L)												
Instantaneous												
Maximum	0.020	0.0200	0.0200	0.100	0.1000	0.0200	0.0200	0.020	0.140	0.021	0.0200	0.020
CBOD5 (mg/L)	00.4	0.0	0.0	0.0		0.0	0.0		0.0	0.0	04.0	40.0
Average Monthly	20.4	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	21.0	16.0
TSS (mg/L)	40.0		. 0. 0			. 0. 0			. 0. 0		20.0	20.0
Average Monthly	19.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	29.0	20.0
Fecal Coliform												
(No./100 ml) Geometric Mean	4.0	< 1614	< 67.0	< 1.0	< 461	< 867.0	12.32	< 144.00	< 1.0	75.0	18.0	10.0
Fecal Coliform	4.0	< 1014	< 67.0	< 1.0	< 401	< 607.0	12.32	< 144.00	< 1.0	75.0	16.0	10.0
(No./100 ml)												
Instantaneous												
Maximum	5.0	2420	132.0	< 1.0	921	1733	120.0	286	< 1.0	147.0	18.0	10.0
Total Nitrogen (mg/L)	0.0	2.20	102.0	11.0	021	1700	120.0	200	11.0	111.0	10.0	10.0
Annual Average					< 1.0							
Ammonia (mg/L)												
Average Monthly	16.93	1.37	0.31	< 0.1	0.62	< 0.33	< 4.37	4.5	< 2.43	1.06	19.01	4.25
Total Phosphorus												
(mg/L)												
Annual Average					3.68							

	Development of Effluent Limitations							
Outfall No.	001		Design Flow (MGD)	.02				
Latitude	41º 48' 6.00"		Longitude	-79° 9' 30.00"				
Wastewater D	escription:	Sewage Effluent						

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45 A		133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
E. Coli	Report (No./100 ml)	IMAX	-	92a.61

Comments: Monitoring for E. Coli is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Ammonia Nitrogen	2.5	Average Monthly	WQM 7.0 Version 1.0b
Dissolved Oxygen 6.0		Minimum	WQM 7.0 Version 1.0b
Total Residual Chlorine	0.040	Average Monthly	TRC Evaluation Spreadsheet
Total Residual Chlorine	0.129	IMAX	TRC Evaluation Spreadsheet

Comments: A seasonal multiplier of "3" will be applied to ammonia nitrogen in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Best Professional Judgment (BPJ) Limitations

Comments: Monitoring for total nitrogen and total phosphorus were added in this permit renewal in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Anti-Backsliding

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
raiailletei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	6.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.04	XXX	0.129	1/day	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30.0	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	7.5	XXX	15	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	2.5	XXX	5	2/month	8-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Monitoring Red	nent Sample cy Type 8-Hr					
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required			
Parameter	Average Average			Average		Instant.	Measurement	•	
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре	
				Report				8-Hr	
Total Phosphorus	XXX	XXX	XXX	Annl Avg	XXX	XXX	1/year	Composite	

Compliance Sampling Location: Outfall 001 (after disinfection)

Other Comments:

Input Data WQM 7.0

		SWP Stream Basin Code			Stream Name				evation (ft)	Drainag Area (sq mi		ope t/ft)	PW Withdr (mg	awal	Apply FC
	16B	564	498 MORR	ISON RU	JN		3.60	00	1766.00	0	.15 0.0	00000		0.00	~
					St	ream Data	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributar</u> np	¥ pH	Tem	<u>Stream</u> p	<u>n</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)			
Q7-10 Q1-10 Q30-10	0.043	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00	6.30	С	0.00	0.00	
		Discharge Data													
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res	erve ctor	Disc Temp (°C)	Dis pl			
		Wilde	erness MHF	PA	0101737	0.0200	0.000	0.0	0000	0.000	20.0	0	8.30		
					Pa	arameter [Data								
			J	Paramete	r Name		onc C	Conc	Stream	Fate Coef	v				
	-					(m	g/L) (n	ng/L)	(mg/L)	(1/days					
			CBOD5			2	25.00	1.10	0.00	1.5	0				
			Dissolved	Oxygen			4.00	8.24	0.00	0.0	0				
			NH3-N			2	25.00	0.02	0.00	0.7	0				

Input Data WQM 7.0

	SWP Basin	Strea Coo		Stre	eam Name		RMI	El	levation (ft)	Drainag Area (sq mi)		fl/ft)	PW Withd (mg	rawal	Apply FC
	16B	564	198 MORF	RISON RU	JN		3.1	00	1483.00	0	.29 0.	00000		0.00	~
					St	ream Dat	a								
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Deptl		Tributary	⊻ pH	Tem	<u>Strean</u> p	<u>1</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C))		
ଇ7-10 ଇ1-10 ଇ30-10	0.043	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	.00 2	0.00	6.30	(0.00	0.00	
					Di	scharge l	Data								
			Name	Per	mit Number	Disc	Permitt Disc Flow (mgd	Di FI	isc Res	serve ictor	Disc Temp (°C)	Dis pl			
		*				0.000	0.000	00 0.	.0000	0.000	25.0	0	7.00		
					Pa	rameter l	Data								
			1	Paramete	r Name	С	onc (Trib Conc	Stream	Fate Coef	·				
	_					(m	ıg/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.5	0				
			Dissolved	Oxygen			3.00	8.24	0.00	0.0	0				
			NH3-N				25.00	0.00	0.00	0.7	0				

WQM 7.0 Hydrodynamic Outputs

	SWP Basin 16B		Stream Code 56498			<u>Stream Name</u> MORRISON RUN								
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH		
07-1	0 Flow	(0.0)	(0.0)	(0.0)	XIII.II)	()	4.37		(.ps)	(41)0)	(2)			
3.600	0.01	0.00	0.01	.0309	0.10720	.35	1.64	4.69	0.07	0.468	20.00	7.04		
Q1-1	0 Flow													
3.600	0.00	0.00	0.00	.0309	0.10720	NA	NA	NA	0.06	0.485	20.00	7.20		
Q30-	10 Flow	,												
3.600	0.01	0.00	0.01	.0309	0.10720	NA	NA	NA	0.07	0.452	20.00	6.94		

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Monday, June 12, 2023 Version 1.1 Page 1 of 1

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
16B	56498	MORRISON RUN

3.60 Wilderness MHP

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Criterion WLA		Percent Reductio	
3.60	0 Wilderness MHP	13.75	15.58	13.75	15.58	0	0	
NH3-N	Chronic Allocati	ons						
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
3.60	0 Wilderness MHP	1.93	2.47	1.93	2.47	0	0	-
)issolve	ed Oxygen Alloc		CBOD5	<u>NH3-N</u>	Dissol	ved Oxygen	Ouitiaal	Davasat
RMI	Discharge Nar	ne Baselii	ne Multiple	Baseline Mu (mg/L) (m	ıltiple Baselir g/L) (mg/L	e Multiple	Critical Reach	Percent

25 25 2.47 2.47 6 6 0

WQM 7.0 D.O.Simulation

**************************************	66498 Total Discharge	F1 /	Í	MORRISON RUN	
DMI	AR VOLUME	Fl /			
<u>RMI</u>		Flow (mga	<u>Ana</u>	lysis Temperature (º୯	<u>O)</u> <u>Analysis pH</u>
3.600	0.020	1		20.000	7.043
Reach Width (ft)	Reach Dep	th (ft)		Reach WDRatio	Reach Velocity (fps)
1.638	0.350	1		4.688	0.065
Reach CBOD5 (mg/L)	Reach Kc (*	I/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
20.88	1.480			2.05	0.700
Reach DO (mg/L)	Reach Kr (1			Kr Equation	Reach DO Goal (mg/L)
6.387	24.38:	2		Owens	6
Reach Travel Time (days)		Subreach	Results		
0.468	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.047	19.48	1.98	6.85	
	0.094	18.18	1.92	7.09	
	0.140	16.96	1.85	7.25	
	0.187	15.82	1.79	7.38	
	0.234	14.77	1.74	7.49	
	0.281	13.78	1.68	7.60	
	0.328	12.86	1.63	7.69	
	0.374	12.00	1.57	7.78	
	0.421	11.19	1.52	7.87	
	0.468	10.44	1.47	7.95	

Monday, June 12, 2023 Version 1.1 Page 1 of 1

WQM 7.0 Effluent Limits

	SWP Basin Stream 16B 564			<u>Stream Nam</u> MORRISON R			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
3.600	Wilderness MHP	PA0101737	0.020	CBOD5	25		
				NH3-N	2.47	4.94	
				Dissolved Oxygen			6

1A	В	С	D	Е	F	G			
2	TRC EVALUATION V			Wilder	ness MHP				
3	Input appropri	ate values in	B4:B8 and E4:E7						
4	0.006519	= Q stream (cfs)		= CV Daily				
5	PALC-DAMPE	= Q discharg	2000 (C. C. C		= CV Hourly				
6		= no. sample			= AFC_Partial N				
7	00000000	ACCUSATION OF THE PROPERTY OF	emand of Stream		= CFC_Partial Mix Factor				
8			emand of Discharge			Compliance Time (min)			
9		= BAT/BPJ V	0.000, 20,000,000			Compliance Time (min)			
	300		of Safety (FOS)	0	=Decay Coefficient (K)				
10	Source	Reference	AFC Calculations		Reference	CFC Calculations			
11	TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 0.077			
	PENTOXSD TRG PENTOXSD TRG	to the same and th	LTAMULT afc = LTA afc=	172 C C C C C C C C C C C C C C C C C C C	5.1c 5.1d	LTAMULT cfc = 0.581 LTA cfc = 0.044			
14	PENTOX3D TRG	3.1b	LTA_alc-	0.032	5. TG	LTA_CIC = 0.044			
15									
10222000	PENTOXSD TRG	5.1f	AM	L MULT =	1.231				
17	PENTOXSD TRG	5.1g	AVG MON LIMI	T (mg/l) =	0.040	AFC			
18			INST MAX LIMI	T (mg/l) =	0.129				
	WLA afc	(.019/e(-k*A	FC_tc)) + [(AFC_Yc*Q	s*.019/Q	d*e(-k*AFC_tc)).	**1			
		+ Xd + (AF	C_Yc*Qs*Xs/Qd)]*(1-F	OS/100)					
	LTAMULT afc	INDICENT CAR DESCRIPTION AS ASSESSED.	(cvh^2+1))-2.326*LN(cvh^2+1)	^0.5)				
	LTA_afc	wla_afc*LTA	MULT_afc						
	WLA_cfc	(011/e(-k*C	FC_tc) + [(CFC_Yc*Q:	* 011 <i>1</i> 0d	*e/-k*CEC tc)				
	WEN_OIG	PROPER PRODUCTION TO 1000	C_Yc*Qs*Xs/Qd)]*(1-l		. o(
	LTAMULT_cfc	20	(cvd^2/no_samples+1		_N(cvd^2/no_sar	mples+1)^0.5)			
	LTA_cfc	wla_cfc*LTA	Parameter 1 (20)	500	<i>y</i>	5 6 05			
	roman narawanan					MENTEROPARTINE MANAGEMENT AND			
	AML MULT		N((cvd^2/no_samples			_samples+1))			
	AVG MON LIMIT	The second secon	J,MIN(LTA_afc,LTA_c		- OA - 1940 - 1950				
	INST MAX LIMIT	1.5^((av_mo	n_limit/AML_MULT)/L	I AMULT_	атсј				

Wilderness MHP

Pleasant Township, Warren County

PA0101737 Discharge pH

Outfall 001

<u>Date</u>	<u>pH min</u>	pH max	10^ -pH min 10^ -pH max
Jul-20	8.29	8.4	5.13E-09 3.98E-09 4.55E-09 8.3
Aug-20	8.3	8.38	5.01E-09 4.17E-09 4.59E-09 8.3
Sep-20	8.28	8.36	5.25E-09 4.37E-09 4.81E-09 8.3
Jul-21	8.0	8.04	1E-08 9.12E-09 9.56E-09 8.0
Aug-21	8.01	8.3	9.77E-09 5.01E-09 7.39E-09 8.1
Sep-21	8.18	8.25	6.61E-09 5.62E-09 6.12E-09 8.2
Jul-22	7.78	7.85	1.66E-08 1.41E-08 1.54E-08 7.8
Aug-22	6.74	7.77	1.82E-07 1.7E-08 9.95E-08 7.0
Sep-22	7.53	7.55	2.95E-08 2.82E-08 2.88E-08 7.5
			Median: 8.3