

Northwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal Non-Municipal Facility Type Major / Minor Minor

NPDES PERMIT FACT SHEET **INDIVIDUAL SEWAGE**

PA0101826 Application No. APS ID 1051080 1375198 Authorization ID

Applicant and Facility Information									
Applicant Name	Jone	s Estates Woodland Meadows PA, LLC	Facility Name	Woodland Meadows MHP					
Applicant Address	2310	South Miami Boulevard, Suite 238	Facility Address	102 Double Road					
	Durha	am, NC 27703		Renfrew, PA 16053					
Applicant Contact	Keller	n Buss	Facility Contact	John Foris, Operator					
Applicant Phone	(419)	357-9091	Facility Phone	(412) 445-9145					
Client ID	36660	06	Site ID	447247					
Ch 94 Load Status	Not C	Overloaded	Municipality	Connoquenessing Township					
Connection Status	No Li	mitations	County	Butler County					
Date Application Rece	eived	June 3, 2021 / October 29, 2021	EPA Waived?	Yes					
Date Application Acce	Date Application Accepted June 10, 2021 / November 5, 2021		If No, Reason	_ <u>-</u>					
Purpose of Application	n	Renewal of an NPDES Permit for an exist application also transfers ownership from MHP to the Jones Estates Woodland Mea	Sherri L. & Thomas R						

Summary of Review

Act 14 - Proof of Notification was submitted and received.

Water Quality Management permit no. 1073412 A-1, T-3 will be transferred with the final NPDES Permit issuance.

The Permittee should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

SPECIAL CONDITIONS:

II. Solids Management

- A. Stormwater into sewers
- B. Right of way
- C. Solids handling
- D. Public sewerage availability
- E. Effluent Chlorine Optimization and Minimization
- F. Little or no assimilative capacity or dilution

There are no open violations in efacts associated with the subject Client ID (366606) as of 4/11/2022.

Approve	Deny	Signatures	Date	
		Stephen A. McCauley	4/44/2022	
X		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	4/11/2022	
		Justin C. Dickey	4/20/2022	
^		Justin C. Dickey, P.E. / Environmental Engineer Manager	4/20/2022	

		Discharge, Receiving Waters and Water Supply Information									
Outfall No. 001		Design Flow (MGD)	0.02								
	60' 50.00"	Longitude	-79° 59' 50.00"								
Quad Name -		Quad Code	-								
Wastewater Descri	ption: Sewage Effluent										
Receiving Waters NHD Com ID Drainage Area Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use Exceptions to Use Assessment Status	Unnamed Tributary to Little Connoquenessing Creek (CWF) 126217465 0.0 (dry), 1.64 (perennial) 0.0 (dry), 0.07 (perennial) 1285 20-C	Exceptions to Criteria									
Cause(s) of Impairr	-										
Source(s) of Impair											
TMDL Status	Final, 1/8/2009	Name Little Connoquenessing Creek Watershed*									
Background/Ambie pH (SU) Temperature (°F) Hardness (mg/L) Other:	nt Data	Data Source									
Nearest Downstrea	m Public Water Supply Intake	Harmony Borough Water Auth	nority								
PWS Waters _I	Little Connoquenessing Creek	Flow at Intake (cfs) 2.0									
PWS RMI	1.3	Distance from Outfall (mi) 10.8									

^{* -} The Little Connoquenessing Creek Watershed TMDL (AMD) does not address Tributaries 34990 and 34992, so additional monitoring will not be added due to the TMDL for this discharge at this time.

Sludge use and disposal description and location(s): All sludge is hauled by Cousins Sanitary to a larger, approved STP where it is ultimately disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be

NPDES Permit Fact Sheet Woodland Meadows MHP

published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.02 MGD of treated sewage from a non-municipal STP in Connoquenessing Township, Butler County.

Permitted treatment consists of: Grinding, extended aeration, settling/clarification, sand filtration, alum addition, and sodium (WQM Permit No. 1073412) hypochlorite disinfection.

1. Streamflow:

Buffalo Creek at Freeport, PA (1976-1996) - used for most Connoquenessing Creek discharges:

Drainage Area: 137 sq. mi. (USGS StreamStats)
Q₇₋₁₀: 6.37 cfs (USGS StreamStats)

Yieldrate: 0.047 cfsm calculated

Unnamed Tributary to the Little Connoquenessing Creek at Outfall 001:

Yieldrate: <u>0.047</u> cfsm calculated above
Drainage Area: <u>1.12</u> sq. mi. (USGS StreamStats)

Q₇₋₁₀: <u>0.05</u> cfs calculated

% of stream allocated: 100% Basis: No nearby discharges

2. Wasteflow:

Maximum discharge: 0.02 MGD = 0.03 cfs

Runoff flow period: 16 hours Basis: Runoff flow for MHPs

24 hour flow: 0.02 MGD x 24/16 = 0.03 MGD = 0.046 cfs

In accordance with the SOP, since there is less than 3 parts stream flow (Q7-10) to 1 part effluent (design flow), the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, were evaluated for this NPDES Permit renewal. Based on the eDMR data, this facility would not be able to meet all of the treatment requirements in document number 391-2000-014, and the receiving stream is not impaired by the discharge, so the additional requirements will not be added with this renewal.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Total Residual Chlorine.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency was previously set to 4/week, which will be retained.

NPDES Permit Fact Sheet Woodland Meadows MHP

b. <u>Total Suspended Solids</u>

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits.

c. Fecal Coliform

05/01 - 09/30: 200/100ml (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: <u>2,000/100ml</u> (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows between 0.002 MGD and

0.05 MGD.

e. Total Phosphorus

☐ Discharge to lake, pond, or impoundment

□ Discharge to stream

Basis: The previous 2.0 mg/l limit based on Chapter 96.5 due to the discharge flowing to the

Connoquenessing Creek, which is impaired for nutrients, will be retained.

Limit not necessary

Basis: N/A

f. Total Nitrogen

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: 6.9 Standard Units (S.U.)

Basis: <u>eDMR data</u>

Discharge temperature: <u>25°C</u> (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: <u>default value used in the absence of data</u>

Stream Temperature: <u>20°C</u> (default value used for CWF modeling)

Background NH₃-N concentration: <u>0.1</u> mg/l

Basis: Default value

Calculated NH₃-N Summer limits: <u>10.6</u> mg/l (monthly average)

21.2 mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: <u>25.0</u> mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer limits above (see Attachment 1). The winter limits are

calculated as three times the summer limits, but since the technology-based limits would govern, they will be used. However, since the previous NH3-N limits of 5.0 mg/l monthly average and 10.0

mg/l instantaneous maximum are attainable, they will be retained with this renewal.

h. CBOD₅

Median discharge pH to be used: 6.9 Standard Units (S.U.)

Basis: <u>eDMR data</u>

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: <u>default value used in the absence of data</u>

Stream Temperature: 20°C (default value used for CWF modeling)

Background CBOD₅ concentration: 2.0 mg/l

Basis: Default value

Calculated CBOD₅ Summer limits: <u>25.0</u> mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Calculated CBOD₅ Winter limits: 25.0 mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer limits above (see Attachment 1). The winter limits are calculated as three times the summer limits, but since the technology-based limits would govern, they will be used. Since the calculated limits are the same as in the previous permit, they will be retained. Since the summer and winter limits are technology-based, the year-round limit of 25.0 mg/l monthly average and 50.0 mg/l instantaneous maximum will be retained with this renewal.

i. <u>Dissolved Oxygen (DO)</u>

 \boxtimes 4.0 mg/l - minimum desired in effluent to protect all aquatic life

5.0 mg/l - desired in effluent for CWF, WWF, or TSF

6.0 mg/l - minimum required due to discharge falling under guidance document 391-2000-014

8.0 mg/l - required due to discharge going to a naturally reproducing salmonid stream

Discussion: The Dissolved Oxygen minimum of 4.0 mg/l will be retained with this renewal. The technology-

based minimum of 4.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP

based on Chapter 93.7, under the authority of Chapter 92a.61.

The measurement frequency was previously set to 4/week, which will be retained.

 j. <u>Total Residual Chlorine (</u> 	(TRC)
---	-------

No limit necessary

Basis: N/A

 \boxtimes TRC limits: <u>0.5</u> mg/l (monthly average)

<u>1.6</u> mg/l (instantaneous maximum)

Basis: The TRC limits above are technology-based using the TRC_Calc Spreadsheet at the first

point of aquatic use (see Attachment 2).

The measurement frequency was previously set to 4/week, which will be retained.

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices using the Department's Toxics Management Spreadsheet since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). However, since no sample data was provided, mass-balance calculations were not performed.

Nearest Downstream potable water supply (PWS): <u>Harmony Borough Water Authority</u>

Distance downstream from the point of discharge: 10.8 miles

Limits needed

Basis: Significant dilution available

6. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

7. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from March 1, 2021 to February 28, 2022)

Parameter	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21
Flow (MGD)												
Average Monthly						0.003	0.003	0.007	0.001	0.001	0.005	0.002
Flow (MGD)												
Daily Maximum						0.003	0.003	0.007	0.001	0.001	0.005	0.002
pH (S.U.)												
Minimum						6.70	6.49	6.92	6.89	6.80	7.05	6.91
pH (S.U.)												
Maximum						7.0	6.89	7.18	7.18	7.19	7.23	7.23
DO (mg/L)												
Minimum						6.70	6.69	6.72	6.12	8.30	4.0	6.52
TRC (mg/L)												
Average Monthly						0.37	0.25	0.25	0.20	0.15	0.31	0.50
TRC (mg/L)												
Instantaneous Maximum						0.50	0.50	0.3	0.30	0.40	0.80	1.3
CBOD5 (mg/L)												
Average Monthly						3.0	3.0	3.0	3.0	3.0	3.0	3.0
TSS (mg/L)												
Average Monthly						3.0	3.0	5.0	4.0	3.0	7.0	3.0
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean						1.0	4.0	121	185.00	2193	1.0	1.0
Fecal Coliform												
(CFU/100 ml)												
Instantaneous Maximum						1.0	11	2420	2420	2420	1.0	1.0
Ammonia (mg/L)												
Average Monthly						0.20	0.32	0.33	0.50	0.24	0.20	0.11
Total Phosphorus (mg/L)												
Average Monthly						1.22	1.14	1.05	1.13	1.48	0.71	0.57

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	4/week	Grab
DO	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX	4/week	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	4/week	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30.0	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	15.0	XXX	30	2/month	8-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	XXX	XXX	XXX	5.0	XXX	10	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	2.0	XXX	4	2/month	8-Hr Composite

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are technology-based on Chapter 92a.48. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliform are technology-based on Chapter 92a.47. Monitoring for E. Coli and Total Nitrogen is based on Chapter 92a.61.

Attachment 1

WQM 7.0 Effluent Limits (Perennial Reach)

	SWP Basin Stream	Code		Stream Name	<u>e</u> .		
	20C 349	90	Trib	34990 to Ltl Connoc	luenes'ng Cr		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.550	Woodland - Wet	PA0101826w	0.020	CBOD5	10.45		
				NH3-N	7.69	15.38	
				Dissolved Oxygen			2

The results for CBOD5 and DO are the same as the inputs from the Dry Reach Model, so the Dry Reach Model inputs are protective.

For NH3-N, the limit can be back calculated using the equation: Ct = (Co)e-(kt), where

Ct = 7.69 mg/l

k = 0.7 days-1 = constant for NH3-N

t = 0.462 days = Dry Reach Model travel time

Therefore, 7.69 mg/l = (Ct)e-(0.7 days-1)(0.462 days)

Ct = 10.62

NH3-N = 10.6 mg/l

WQM 7.0 D.O.Simulation

SWP Basin S	tream Code			Stream Name					
20C	34990	5-	Trib 34990	ib 34990 to Ltl Connoquenes'ng Cr					
<u>RMI</u> 0.550 <u>Reach Width (ft)</u> 5.250	Total Discharge 0.02 Reach De 0.35	0 pth (ft)) <u>Ana</u>	ysis Temperature 21.432 Reach WDRatio 14.875		Analysis pH 7.000 ach Velocity (fps) 0.058			
Reach CBOD5 (mg/L) 4.42 Reach DO (mg/L) 6.455	Reach Kc (0.85; Reach Kr (22.95	<u>1/days)</u> 2 <u>1/days)</u>	R	each NH3-N (mg 2.20 Kr Equation Owens		ach Kn (1/days) 0.782 h DO Goal (mg/L) 6			
Reach Travel Time (days) 0.577	7ravTime (days) 0.058 0.115 0.173 0.231	Subreach CBOD5 (mg/L) 4.20 3.98 3.78 3.58	NH3-N (mg/L) 2.11 2.01 1.93 1.84	D.O. (mg/L) 7.83 8.03 8.03 8.03					
	0.288 0.346 0.404 0.461 0.519	3.40 3.23 3.06 2.91 2.76 2.62	1.76 1.68 1.61 1.54 1.47	8.03 8.03 8.03 8.03 8.03					

Thursday, April 7, 2022 Version 1.1 Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Thursday, April 7, 2022 Version 1.1 Page 1 of 1

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI	Eleva (ft)		Drainage Area (sq mi)	Slo (ft/	· V	PWS Vithdrawal (mgd)	Apply FC
	20C	349	990 Trib 34	1990 to Lt	l Connoque	nes'ng Cr	0.55	5 0 10	15.00	1.6	4 0.00	0000	0.00	✓
\$6	Stream Data													
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p⊦	ł	<u>Si</u> Temp	t <u>ream</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)			(°C)		
Q7-10 Q1-10 Q30-10	0.047	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20).00 7	7.00	0.0	0.00)
Q30-10		0.00	0.00	0.000	236.408.48878.6		-0.0							
					Di	ischarge l		0 10 00		OLD STATE	9	990-1		
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Disc Flow	Rese	erve Te ctor	isc emp °C)	Disc pH		
		Butte	rcup - Wet	PA	010182b	0.020	0.000	0 0.000	10 C	0.000	25.00	7.	.00	
					Pa	arameter	Data							
			,	Paramete	r Name				ream Conc	Fate Coef				
				aramete	I Name	(m	ıg/L) (m	ng/L) (n	ng/L)	(1/days)				
	_		CBOD5				10.45	2.00	0.00	1.50				
			Dissolved	Oxygen			2.00	8.24	0.00	0.00				
			NH3-N				15.54	0.00	0.00	0.70				

(From Dry Reach Model)

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name		RMI	Eleva		Drainage Area (sq mi)	Slo (ft/	Wi	PWS thdrawal (mgd)	Apply FC
	20C	349	990 Trib 34	1990 to Lt	l Connoque	nes'ng Cr	0.00	00 9	980.00	1.7	9 0.00	0000	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pł	Н	<u>Str</u> Temp	<u>eam</u> pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)			(°C)		
Q7-10 Q1-10 Q30-10	0.047	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	0.00	7.00	0.00	0.00	00 mg/s
					Di	scharge l	Data							
			Name	Per	mit Number	Existing Disc	Permitte Disc Flow (mgd)	Disc Flow	Res	erve To	Disc emp °C)	Disc pH		
						0.000	0.000	0.00	00 (0.000	25.00	7.0	0	
					Pa	arameter								
			1	Paramete	r Name				tream Conc	Fate Coef				
						(m	g/L) (n	ng/L) (mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50	Ī			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
20C	34990	Trib 34990 to Ltl Connoquenes'ng Cr

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reductio	n
0.55	0 Buttercup - Wet	14.29	31.08	14.29	31.08	0	0	—n —n
ИН3-N (Chronic Allocati	ons						
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
0.55	0 Buttercup - Wet	1.75	7.69	1.75	7.69	0	0	===
issolve	ed Oxygen Alloc	ations						
		CBOD5 NH3-N Dissolved Oxyget		Critical	Percent			
RMI	Discharge Nar	ne Baselii (mg/L			ultiple Basel ng/L) (mg/		Reach	Reduction
		,	, (3/		3 , , 3	-/ (3/		

WQM 7.0 Hydrodynamic Outputs

	sw	<u>'P Basin</u>	Strea	m Code				Stream	<u>Name</u>			
		20C	3	4990		Tri	b 34990 t	o Ltl Co	nnoquen	es'ng Cr		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.550	0.08	0.00	0.08	.0309	0.01205	.353	5.25	14.88	0.06	0.577	21.43	7.00
Q1-1	0 Flow											
0.550	0.05	0.00	0.05	.0309	0.01205	NA	NA	NA	0.05	0.681	21.93	7.00
Q30-	10 Flow	,										
0.550	0.10	0.00	0.10	.0309	0.01205	NA	NA	NA	0.07	0.507	21.14	7.00

WQM 7.0 D.O.Simulation (Dry Reach)

SWP Basin Si	tream Code		Stream Name						
20C	34992		rib 34992 to Ltl Connoquenes'ng Cr						
<u>RMI</u>	Total Discharge	Flow (mgd	<u>) Ana</u>	ysis Temperature (°C	Analysis pH				
0.829	0.030	0		25.000	6.900				
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)				
1.072	0.39	5		2.713	0.110				
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)				
25.00	1.500			25.00	1.029				
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)				
4.000	30.93	8		Owens	NA				
Reach Travel Time (days)		Subreach	Results						
0.462	TravTime	avTime CBOD5		D.O.					
	(days)	(mg/L)	(mg/L)	(mg/L)					
	0.046	22.91	23.84	2.00					
	0.092	21.00	22.73	2.00					
	0.139	19.24	21.68	2.00					
	0.185	17.63	20.67	2.00					
	0.231	16.16	19.71	2.00					
	0.277	14.81	18.79	2.00					
	0.324	13.57	17.92	2.00					
	0.370	12.44	17.09	2.00					
	0.416	11.40	16.29	2.00					
	0.462	10.45	15.54	2.00					

Input into Perennial Reach Model

Thursday, April 7, 2022 Version 1.1 Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	D.O.	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	Simulation	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	2		

Thursday, April 7, 2022 Version 1.1 Page 1 of 1

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	Eleva		Drainage Area		Wit	PWS	Apply FC
	20C	34	992 Trib 34	1992 to Lt	l Connoque	nes'ng Cr	0.82	(fi 2 9 12	285.00	(sq mi) 0.0		/ft) ((mgd) 0.00	
in the second se					St	ream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p	Н	<u>Stre</u> Temp	<u>am</u> pH	
Corra.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.000	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	0.00	7.00	0.00	0.00	
					Di	scharge	Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res Fa	erve T ctor	Disc emp (°C)	Disc pH		
		Woo	dland - Dry	PA	0101826d	0.030	0.000	0.00	00 (0.000	25.00	6.90	_ 	
					Pa	rameter	Data							
			J	Paramete	r Name	С	onc C	Conc	tream Conc mg/L)	Fate Coef (1/days)				
	-		CBOD5				25.00	0.00	0.00	1.50				
			Dissolved	Oxygen			4.00	2.00	0.00	0.00	ĺ.			
			NH3-N				25.00	0.00	0.00	0.70	E.			

Input Data WQM 7.0

	SWP Basin			Stre	eam Name	RMI			ration ft)	Drainage Area (sq mi)	Slo (ft/	Wit	PWS hdrawal mgd)	Apply FC
	20C	349	992 Trib 34	1992 to Lt	l Connoque	nes'ng Cr	0.00	00 1	018.00	0.0	0.00	0000	0.00	~
ē.					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p	Н	<u>Stre</u> Temp	<u>am</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.000	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00) 2	0.00	7.00	0.00	0.00	
					Di	scharge I	Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flov	Res Fa	erve T ctor	Disc emp (°C)	Disc pH		
		-				0.0000	0.000	0.00	000	0.000	25.00	7.00)	
					Pa	rameter l	Data							
			1					Stream Conc	Fate Coef					
			15			(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			į	25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>			
		20C	3	4992		Tri	b 34992 t	o Ltl Co	nnoquen	es'ng Cr		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	- 51	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.829	0.00	0.00	0.00	NA	0.06100	.395	1.07	2.71	0.11	0.462	25.00	6.90
Q1-1	0 Flow											
0.829	0.00	0.00	0.00	NA	0.06100	NA	NA	NA	0.00	0.000	0.00	0.00
Q30-	10 Flow	,										
0.829	0.00	0.00	0.00	NA	0.06100	NA	NA	NA	0.00	0.000	0.00	0.00

Attachment 2

TRC EVALUATION										
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9								
0.8977	= Q stream (cfs) - First point of use	0.5	= CV Daily						
0.03	= Q discharg	je (MGD)	0.5	= CV Hourly						
30	= no. sample	8	1	= AFC_Partial I	Mix Factor					
0.3	= Chlorine D	emand of Stream	= CFC_Partial (Mix Factor						
C	= Chlorine D	emand of Discharge	= AFC_Criteria	Compliance Time (min)						
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)					
C	= % Factor o	of Safety (FOS)	0	=Decay Coeffic	cient (K)					
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	6.189	1.3.2.iii	WLA cfc = 6.027					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	2.306	5.1d	$LTA_cfc = 3.504$					
Source		Effluer	nt Limit Calcul	ACCURACION NAVA PROPERTIES						
PENTOXSD TRG	5.1f		AML MULT =							
PENTOXSD TRG	5.1g		LIMIT (mg/l) =		BAT/BPJ					
		INSI MAX	LIMIT (mg/l) =	1.635						
WLA afc	(.019/e(-k*Al	FC tc)) + [(AFC Yc*Qs*.019	/Qd*e(-k*AFC	tc))						
	PROBLEM PRINCIPLES NO. 20 AN	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	AND RESERVED TO SERVED TO	//						
LTAMULT afc		_ (cvh^2+1))-2.326*LN(cvh^2+								
LTA_afc	wla_afc*LTA		n 20							
WLA_cfc	(.011/e(-k*C	FC_tc) + [(CFC_Yc*Qs*.011/	Qd*e(-k*CFC	_tc))						
		C_Yc*Qs*Xs/Qd)]*(1-FOS/10								
LTAMULT_cfc		(cvd^2/no_samples+1))-2.32	6*LN(cvd^2/n	o_samples+1)^(0.5)					
LTA_cfc	wla_cfc*LTA	MULT_cfc								
	EVD/0.000+1	N//IAO/	E) 0 E#LN/	AO/	.400					
AML MULT	20-13	N((cvd^2/no_samples+1)^0.	71	r∙∠ino_samples-	+1))					
AVG MON LIMIT	SENSONER PROPERTY OF THE SENSON	J,MIN(LTA_afc,LTA_cfc)*AN	ALCOHOLOGICAL PROPERTY AND ADDRESS OF THE PARTY OF THE PA							
INST MAX LIMIT	i.o"((av_moi	n_limit/AML_MULT)/LTAMUL	.ı_arc)							