

Northwest Regional Office CLEAN WATER PROGRAM

 Application Type
 Renewal

 Facility Type
 Non-Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0102580

 APS ID
 1063772

 Authorization ID
 1396867

Applicant and Facility Information

Applicant Name	Jones	Estates Baxter's PA, LLC	Facility Name	Baxter MHP
Applicant Address	2310 \$	South Miami Boulevard	Facility Address	457 Jamisonville Road
	Durha	n, NC 27703		Butler, PA 16001
Applicant Contact		Buss, Director @rentstackhouse.com)	Facility Contact	Kellen Buss, Director (kbuss@rentstackhouse.com)
Applicant Phone	(419) 3	357-9091	Facility Phone	(419) 357-9091
Client ID	37013	5	Site ID	244069
Ch 94 Load Status	Not Ov	verloaded	Municipality	Center Township
Connection Status	No Lin	itations	County	Butler County
Date Application Rec	eived	January 31, 2022 / May 9, 2022	EPA Waived?	Yes
Date Application Acce	epted	February 1, 2022 / May 19, 2022	If No, Reason	-

Renewal of an NPDES Permit for an existing discharge of treated sanitary wastewater. This application also transfers ownership from Ernest J. Baxter to the Jones Estates Baxters PA, LLC.

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

- A. Stormwater into Sewers
- B. Right of Way

Purpose of Application

- C. Solids Handling
- D. Public Sewerage Availability
- E. Effluent Chlorine Optimization and Minimization
- F. Little or No Assimilative Capacity

SPECIAL CONDITIONS:

- II. Solids Management
- III. Requirements for Total Residual Chlorine (TRC)

There are no open violations in EFACTS associated with the subject Client ID (370135) as of 9/26/2022.

Approve	Deny	Signatures	Date	
V		Stephen A. McCauley	9/26/2022	
×		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist		
v		Adam J. Pesek (Lead Reviewer) for	0/07/0000	
×		Vacant / Environmental Engineer Manager	9/27/2022	

		Discharge, Receiving Wa	aters and Water Supply Informa	tion
				0.005
Outfall No. 001			Design Flow (MGD)	0.025
	6' 28.44	1"	Longitude	-79º 56' 59.33"
Quad Name			_ Quad Code	-
Wastewater Descrip	otion:	Sewage Effluent		
		med Tributary to		
Receiving Waters	the S	tony Run (WWF)	Stream Code	N/A
NHD Com ID	12622	21000	RMI	N/A
Drainage Area	-		Yield (cfs/mi ²)	-
Q ₇₋₁₀ Flow (cfs)	-		Q ₇₋₁₀ Basis	-
Elevation (ft)	-		Slope (ft/ft)	-
Watershed No.	20-C		Chapter 93 Class.	WWF
Existing Use			Eviating Llas Qualifier	
Exceptions to Use	-		Exceptions to Criteria	-
Assessment Status		Impaired*		
Cause(s) of Impairn	nent	Metals		
Source(s) of Impairr	nent	Acid Mine Drainage		
TMDL Status		-	Name -	
Background/Ambier	nt Data		Data Source	
pH (SU)		-	-	
Temperature (°F)		-		
Hardness (mg/L)		-		
Other:		-	_	
Nearest Downstream	m Publi	c Water Supply Intake	Beaver Falls Municipal Author	rity - Eastvale
PWS Waters	Beaver	River	Flow at Intake (cfs)	561
PWS RMI	3.5		Distance from Outfall (mi)	62.0

* The aquatic life in the Unnamed Tributary to the Stony Run is impaired due to metals from Abandoned Mine Drainage (AMD). This STP only treats sanitary sewage with no industrial users. As a result, 1/year monitoring for Aluminum, Iron, and Manganese has been added to provided data in the event a TMDL is developed.

Sludge use and disposal description and location(s): All sludge is disposed of at an approved STP and ultimately disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.025 MGD of treated sewage from a non-municipal STP in Center Township, Butler County.

Treatment permitted under WQM Permit 1086406 consists of: A Hydro-Aerobics package extended aeration unit containing a comminutor and bar screen, a 25,000 gallon aeration tank, alum addition for Phosphorus control, a clarifier, a clearwell for holding filter backwash, an aerated sludge holding tank, and tablet chlorine disinfection with a contact tank. Following the package STP are two 8.68 square foot rapid sand/anthracite filters.

1. Streamflow:

Unnamed Tributary to the Stony Run at Outfall 001:

Yieldrate:	<u>0.1</u>	cfsm	(default - no nearby stream gages)
Drainage Area:	<u>0.0466</u>	sq. mi.	(from USGS StreamStats)
% of stream allocated:	<u>100%</u>	Basis:	No nearby discharges
Q7-10:	<u>0.0046</u>	cfs	(calculated)

2. Wasteflow:

Maximum discharge:	<u>0.025</u> MGD =	<u>0.038</u> cfs			
Runoff flow period:	<u>16</u> hours	Basis: Runof	f flow for a	<u>a MHP</u>	
24 hour flow:	<u>0.025</u> MGD x	24/16 = <u>0.037</u>	MGD =	<u>0.057</u>	cfs

There is less than 3 parts stream flow (Q7-10) to 1 part effluent (design flow). However, since this is an existing discharge, the more stringent treatment requirements cannot be achieved, and the receiving stream is not impaired by the discharge, the standards in DEP guidance (391-2000-014) will not be applied.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Total Residual Chlorine.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

<u>The measurement frequency will remain as 1/day as recommended in the SOP, based on</u> <u>Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent</u> <u>Limitations" (362-0400-001).</u>

b. Total Suspended Solids

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

Basis: <u>Application of Chapter 92a47 technology-based limits</u>. Since the previous limits are more restrictive and are being attained, the previous limits that were based on the old dry streams guidance will be retained. Per DEP policy, the TSS limits were changed from seasonal to year round.

c. Fecal Coliform

05/01 - 09/30:	<u>200/100ml</u> <u>1,000/100ml</u>	(monthly average geometric mean) (instantaneous maximum)
10/01 - 04/30:	<u>2,000/100ml</u> <u>10,000/100ml</u>	(monthly average geometric mean) (instantaneous maximum)

- Basis: Application of Chapter 92a47 technology-based limits
- d. <u>E. Coli</u>

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows greater than 0.002 MGD and less than 0.05 MGD.

e. Phosphorus

- Limit necessary
 - Basis: <u>Phosphorus limits of 2.0 mg/l monthly average and 4.0 instantaneous maximum are from</u> the Connoquenessing Creek implementation plan.
- Limit not necessary

Basis: <u>N/A</u>

f. Total Nitrogen

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used:	7.0 Standard Units (S.U.)				
	Ba	asis: eDMR data from previous 12 months			
Discharge temperature:	<u>25°C</u>	(default value used in the absence of data)			
Median stream pH to be used:	<u>7.0</u>	Standard Units (S.U.)			
	B	asis: default value used in the absence of data			
Stream Temperature:	<u>25°C</u>	(default value used for WWF modeling)			
Background NH ₃ -N concentration:	<u>0.0</u>	mg/l			
	B	asis: <u>Default value</u>			
Calculated NH ₃ -N Summer limits:	<u>5.4</u>	mg/l (monthly average)			
	<u>10.8</u>	mg/I (instantaneous maximum)			
Calculated NH ₃ -N Winter limits:	<u>16.2</u>	mg/l (monthly average)			
	<u>32.4</u>	mg/l (instantaneous maximum)			

Result: <u>WQ modeling resulted in the calculated NH3-N limits above (see Attachment 1). The winter limits are calculated as three times the summer limits, per the SOP. Since the previous limits are more restrictive and are being attained, the previous limits will be retained.</u>

h. <u>CBOD</u>₅

Median discharge pH to be used:	<u>7.0</u>	Standard Units (S.U.)			
	Ba	asis: eDMR data from previous 12 months			
Discharge temperature:	<u>25°C</u>	(default value used in the absence of data)			
Median stream pH to be used:	<u>7.0</u>	Standard Units (S.U.)			
	Ba	asis: default value used in the absence of data			
Stream Temperature:	<u>25°C</u>	(default value used for WWF modeling)			
Background CBOD5 concentration:	<u>2.0</u>	mg/l			
	Ba	asis: <u>Default value</u>			
Calculated CBOD ₅ limits:	<u>25.0</u>	mg/l (monthly average)			
	<u>50.0</u>	mg/I (instantaneous maximum)			

- Result: WQ modeling resulted in the calculated limits above (see Attachment 1). Since the previous limits are more restrictive and are being attained, the previous limits that were based on the old dry streams guidance will be retained. Per DEP policy, the CBOD5 limits were changed from seasonal to year round.
- i. Dissolved Oxygen (DO)

The technology-based minimum of 4.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61.

The measurement frequency will remain as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

- j. <u>Total Residual Chlorine (TRC)</u>
 - \boxtimes TRC limits: <u>0.28</u> mg/l (monthly average)
 - 0.91 mg/l (instantaneous maximum)
 - Basis: The TRC limits above were calculated using the Department's TRC Calculation Spreadsheet (see Attachment 3). The limits are water quality-based on the first point of use, per the SOP. Since the calculated limits are more restrictive than in the previous permit, and may not be attainable, a 3 year compliance schedule and special condition will be added.

The measurement frequency will remain as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices using the Department's Toxics Management Spreadsheet since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). However, since no sample data was provided, mass-balance calculations were not performed.

Nearest Downstream potable water supply (PWS):	Beaver Falls Municipal Authority - Eastvale
Distance downstream from the point of discharge:	62.0 miles (approximate)

No limits necessary

Limits needed

Basis: Significant dilution available

6. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, antibacksliding is not applicable.

7. Attachment List:

Attachment 1 - WQ Modeling Printouts - Perennial Reach

- Attachment 2 WQ Modeling Printouts Dry Reach
- Attachment 3 TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from August 1, 2021 to July 31, 2022)

Parameter	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21
Flow (MGD)												
Average Monthly	0.008	0.005	0.005	0.006	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Flow (MGD)												
Daily Maximum	0.010	0.006	0.005	0.008	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
pH (S.U.)												
Minimum	6.3	6.8	6.6	6.8	7.0	6.6	6.8	6.8	7.0	7.3	7.0	7.0
pH (S.U.)												
Maximum	7.6	7.5	7.3	7.5	7.2	6.8	6.8	7.0	7.0	7.3	7.4	7.3
DO (mg/L)												
Minimum	4.5	4.4	4.2	6.2	7.5	7.5	7.3	7.5	7.3	7.5	7.5	7.0
TRC (mg/L)												
Average Monthly	0.08	0.09	0.10	0.07	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
TRC (mg/L)												
Instantaneous Maximum	0.20	0.50	0.4	0.2	1.5	1.5	1.5	1.5	1.5	1.5	1.4	1.5
CBOD5 (mg/L)												
Average Monthly	3.0	5.6	3.0	3.0	2.0	3.5	4.1	2.6	2.0	2.1	2.1	2.1
TSS (mg/L)												
Average Monthly	3.0	3.0	8.0	6.5	5.0	5.0	5.5	5.0	5.0	14.4	8.1	6.1
Fecal Coliform (No./100 ml)												
Geometric Mean	1	1	1	49	1	1	1	1	2.2	1	1	1
Fecal Coliform (No./100 ml)												
Instantaneous Maximum	1	1	1	2420	1	1	1	1	5	1	1	1
Total Nitrogen (mg/L)												
Average Monthly	6.5	4.9	8.1	8.3	6.6	12.8	14.4	7.5	11.1	5.0	17.9	1.5
Ammonia (mg/L)												
Average Monthly	0.2	1.3	0.9	0.2	1.8	0.5	0.5	0.5	0.7	0.5	0.5	0.5
Total Phosphorus (mg/L)												
Average Monthly	2.2	0.4	1.6	1.4	0.6	0.5	0.3	0.2	0.9	2.2	2.7	0.8
Total Aluminum (mg/L)												
Annual Average								0.29				
Total Iron (mg/L)												
Annual Average								0.08				
Total Manganese (mg/L)												
Annual Average								0.05				

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through December 31, 2025.

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	XXX	XXX	xxx	1/week	Measured
pH (S.U.)	ххх	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	ххх	xxx	4.0 Inst Min	xxx	XXX	xxx	1/day	Grab
TRC	ххх	xxx	xxx	0.5	xxx	1.6	1/day	Grab
CBOD5	ххх	xxx	xxx	10.0	XXX	20	2/month	8-Hr Composite
TSS	ххх	XXX	xxx	10.0	XXX	20	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	xxx	xxx	2000 Geo Mean	xxx	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ХХХ	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	ХХХ	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	ххх	XXX	xxx	Report	XXX	XXX	2/month	8-Hr Composite
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	4.5	XXX	9	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	ххх	XXX	xxx	1.5	XXX	3	2/month	8-Hr Composite
Total Phosphorus	ххх	xxx	xxx	2.0	XXX	4	2/month	8-Hr Composite

NPDES Permit Fact Sheet Baxter MHP

Outfall 001, Continued (from Permit Effective Date through December 31, 2025)

		Effluent Limitations							
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required			
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
				Report					
Total Aluminum	XXX	XXX	XXX	Annl Avg	XXX	XXX	1/year	Grab	
				Report					
Total Iron	XXX	XXX	XXX	Anni Avg	XXX	XXX	1/year	Grab	
				Report					
Total Manganese	XXX	XXX	XXX	Annl Avg	XXX	XXX	1/year	Grab	

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are technology-based on Chapter 92a.48. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for Total Nitrogen is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. The limits for Total Phosphorus are technology-based on Chapter 96.5. Aluminum, Iron, and Manganese are monitor only based on Chapter 92a.61.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: January 1, 2026 through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat		Minimum ⁽²⁾	Required	
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	XXX	1/week	Measured
pH (S.U.)	ххх	XXX	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
DO	ХХХ	xxx	4.0 Inst Min	XXX	XXX	xxx	1/day	Grab
TRC	XXX	xxx	xxx	0.28	xxx	0.91	1/day	Grab
CBOD5	ххх	xxx	xxx	10.0	xxx	20	2/month	8-Hr Composite
TSS	ХХХ	xxx	xxx	10.0	XXX	20	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	xxx	xxx	2000 Geo Mean	xxx	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	XXX	XXX	200 Geo Mean	xxx	1000	2/month	Grab
E. Coli (No./100 ml)	ХХХ	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	xxx	XXX	xxx	Report	xxx	xxx	2/month	8-Hr Composite
Ammonia Nov 1 - Apr 30	ххх	xxx	xxx	4.5	xxx	9	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	ххх	xxx	xxx	1.5	xxx	3	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	xxx	2.0	XXX	4	2/month	8-Hr Composite
Total Aluminum	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	Grab

NPDES Permit Fact Sheet Baxter MHP

Outfall 001, Continued (from January 1, 2026 through Permit Expiration Date)

		Effluent Limitations									
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required					
Falameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type			
				Report							
Total Iron	XXX	XXX	XXX	Annl Avg	XXX	XXX	1/year	Grab			
				Report							
Total Manganese	XXX	XXX	XXX	Annl Avg	XXX	XXX	1/year	Grab			

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are water quality-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for Total Nitrogen is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. The limits for Total Phosphorus are technology-based on Chapter 96.5. Aluminum, Iron, and Manganese are monitor only based on Chapter 92a.61.

Attachment 1

<u>SWP Basin</u>	Stream Code		<u>Stream Name</u>			
20C	35275		STONY RUN			
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
Perennial Read	h PA0102580b	0.037	CBOD5	18.27		
			NH3-N	4.81	9.62	
			Dissolved Oxygen			.63
	20C Name	SWP Basin Stream Code 20C 35275 Name Permit Number	SWP Basin Stream Code 20C 35275 Name Permit Number	SWP Basin Stream Code Stream Name 20C 35275 STONY RUN Name Permit Number Disc Flow (mgd) Parameter Perennial Reach PA0102580b 0.037 CBOD5 NH3-N	SWP Basin 20C Stream Code 35275 Stream Name Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Perennial Reach PA0102580b 0.037 CBOD5 18.27 NH3-N 4.81	SWP Basin 20C Stream Code 35275 Stream Name Name Permit Number Disc Flow mgd) Parameter Stfl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Perennial Reach PA0102580b 0.037 CBOD5 18.27 NH3-N 4.81 9.62

WQM 7.0 Effluent Limits

The results for CBOD5 and DO are the same as the inputs from the Dry Reach Model, so the Dry Reach Model inputs for those parameters are protective.

For NH3-N, the limit can be back-calculated using the equation: Ct = (Co)e-(kt), where

Ct = 4.81 mg/l k = 0.7 days-1 = constant for NH3-N t = 0.166 days = Dry Reach Model travel time

Therefore, 4.81 mg/l = (Ct)e-(0.7 days-1)(0.166 days)

Ct = 5.4

NH3-N = 5.4 mg/l

Version 1.1

			<u>Stream Name</u>	
35275			STONY RUN	
Total Discharge	Flow (mgd) <u>Ana</u>	lysis Temperature (°	C) <u>Analysis pH</u>
0.03	7		25.000	7.000
<u>Reach De</u>	pth (ft)		Reach WDRatio	Reach Velocity (fps)
0.38	1		14.854	0.076
		<u>R</u>	each NH3-N (mg/L)	
			1.69	1.029
10 million (10 mil			and the second s	<u>Reach DO Goal (mg/L)</u>
25.88	19		Owens	5
	Subreach	n Results		
		NH3-N	D.O.	
(days)	(mg/L)	(mg/L)	(mg/L)	
0.091	6.87	1.54	7.34	
0.182	6.13	1.40	7.54	
0.273	5.46	1.27	7.54	
0.364	4.87	1.16	7.54	
0.456	4.34	1.06	7.54	
0.547	3.87	0.96	7.54	
0.638	3.45	0.88	7.54	
0.729				
THE REPORT OF TH				
	Total Discharge 0.03 Reach De 0.38 Reach Kc (1.00 Reach Kr (25.88 TravTime (days) 0.091 0.182 0.273 0.364 0.456 0.547 0.638	Total Discharge Flow (mgd 0.037 Reach Depth (ft) 0.381 Reach Kc (1/days) 1.001 Reach Kr (1/days) 25.889 Subreach TravTime (days) Subreach 0.091 6.87 0.182 6.13 0.273 5.46 0.364 4.87 0.456 4.34 0.547 3.87 0.638 3.45 0.729 3.08 0.820 2.74	Total Discharge Flow (mgd) 0.037 Ana 0.037 Reach Deoth (ff) 0.381 Reach Kc (1/days) Reach Kc (1/days) 1.001 Reach Kc (1/days) 25.889 TravTime (days) Subreach CBOD5 NH3-N (mg/L) 0.091 6.87 1.54 0.182 6.13 1.40 0.273 5.46 1.27 0.364 4.87 1.16 0.456 4.34 1.06 0.547 3.87 0.96 0.638 3.45 0.88 0.729 3.08 0.80 0.820 2.74 0.73	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

WQM 7.0 D.O.Simulation

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	5		

Monday, September 26, 2022

Version 1.1

Input Data	WQM 7.0
------------	---------

	SWP Basin			Stre	eam Name		RMI	Eleva (ft)		Drainage Area (sq mi)	Slop (ft/f	Witho	VS Irawal gd)	Apply FC
	20C	352	275 STON	Y RUN			4.26	50 110	64.00	1.0	0.00	000	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Tra∨ Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Temp	ributary p	Н	<u>Strear</u> Temp	n pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)			(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	25.	.00	7.00	0.00	0.00	
					Di	scharge l	Data						1	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Rese Fac	rve T tor	Disc emp (°C)	Disc pH		
		Perer	nnial React	ו PA	0102580b	0.037	0.000	00 0.000	0 0.	.000	25.00	7.00		
					Pa	rameter	Data							
				Paramete	r Name				ream Conc	Fate Coef				
	_			aramete	Nume	(m	g/L) (n	ng/L) (n	ng/L)	(1/days)				
			CBOD5				18.27	2.00	0.00	1.50				
			Dissolved	Oxygen			0.63	7.54	0.00	0.00				

21.07

(from Dry Reach model)

0.00

0.00

0.70

NH3-N

Input D	ata WG	QM 7.0
---------	--------	--------

	SWP Basin			Stre	eam Name		RMI	Eleva (ft)		Drainage Area (sq mi)	Slo (ft/	Witho	VS Irawal gd)	Apply FC
	20C	352	275 STON	Y RUN			3.13	30 11	31.00	2.73	3 0.00	0000	0.00	✓
					St	ream Dat	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Temp	<u>Tributary</u> o pH	I	<u>Strear</u> Temp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)			(°C)		
Q7-10	0.100	0.00		0.000	0.000	0.0	0.00	0.00	25	.00 7	.00	0.00	0.00	
Q1-10 Q30-10		0.00 0.00		0.000 0.000	0.000 0.000									
					Di	scharge	Data]	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Rese Fac	erve Te stor	isc mp C)	Disc pH		
		-				0.000	0 0.000	00 0.000	0 0	.000	25.00	7.00		
					Pa	arameter	Data							
				⊃aramete	r Nama				ream Conc	Fate Coef				
				aramete	INdifie	(m	ng/L) (n	ng/L) (r	ng/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

		<u>W</u>	QM 7.	0 Wast	eload A	llocatio	ns		
	SWP Basin	Stream (Code		St	ream Name			
	20C	3527	5		S	TONY RUN			
NH3-N	Acute Alloca	ations							
RMI	Discharge I	Name C	aseline riterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reductio	n
4.2	60 Perennial Re	ach	11.07	24.2	11.07	24.2	0	0	
NH3-N	Chronic Allo	ocations	5						
RMI	Discharge Na	me Cri	seline terion ng/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
4.2	60 Perennial Rea	ach	1.37	4.81	1.37	4.81	0	0	
Dissolv	ed Oxygen /	Allocatio	ons						_
RMI	Discharg	e Name	<u>CI</u> Baselin	<u>BOD5</u> e Multiple	<u>NH3-N</u> Baseline Mu	<u>Dissolv</u> Iltiple Baselin	<u>ved Oxygen</u> ie Multiple	Critical	Percent Reductio

	4.26 Perennial Reach	18.27	18.27	4.81	4.81	.63	.63	0	0
--	----------------------	-------	-------	------	------	-----	-----	---	---

Monday, September 26, 2022

Version 1.1

	<u>sw</u>	/ <u>P Basin</u> 20C		<u>im Code</u> 5275		<u>Stream Name</u> STONY RUN						
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
4.260	0.11	0.00	0.11	.0572	0.00553	.381	5.66	14.85	0.08	0.911	25.00	7.00
Q1-1	0 Flow											
4.260	0.07	0.00	0.07	.0572	0.00553	NA	NA	NA	0.07	1.058	25.00	7.00
Q30-	10 Flov	/										
4.260	0.14	0.00	0.14	.0572	0.00553	NA	NA	NA	0.09	0.810	25.00	7.00

WQM 7.0 Hydrodynamic Outputs

Monday, September 26, 2022

Version 1.1

Attachment 2

<u>SWP Basin</u> S 20C	tream Code 35293		Trib	<u>Stream Name</u> 35293 to Stony Run	
<u>RMI</u>	Total Discharge	Flow (mgd	<u>) Anal</u>	lysis Temperature (ºC)	<u>Analysis pH</u>
0.620	0.03	7		25.000	7.000
Reach Width (ft)	<u>Reach De</u>	pth (ft)		Reach WDRatio	Reach Velocity (fps)
0.389	0.64	7		0.601	0.228
Reach CBOD5 (mg/L)	Reach Kc (<u>1/days)</u>	<u>R</u>	<u>each NH3-N (mg/L)</u>	Reach Kn (1/days)
25.00	1.50			25.00	1.029
Reach DO (mg/L)	<u>Reach Kr (</u>	The second se		Kr Equation	Reach DO Goal (mg/L)
4.000	20.31	6		Owens	2
<u>Reach Travel Time (days)</u>		Subreach	n Results		
0.166	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.017	24.23	24.58	2.00	
	0.033	23.48	24.16	1.71	
	0.050	22.75	23.75	1.11	
	0.067 22.		23.35	0.74	
	0.083	21.37	22.95	0.53	
	0.100	20.71	22.56	0.43	
	0.116	20.07	22.18	0.41	
	0.133	19.45	21.80	0.45	
	0.150	18.85	21.43	0.52	
	0.166	18.27	21.07	0.63	

WQM 7.0 D.O.Simulation

- Input into Perennial Reach Model

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	D.O.	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	Simulation	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	2		

Monday, September 26, 2022

Version 1.1

Input Data	WQM 7.0
------------	---------

	SWP Basin			Stre	eam Name		RMI	Eleva (ft		Drainage Area (sq mi)		Slope ft/ft)	PW Withd (mi	rawal	Apply FC
	20C	352	293 Trib 3	5293 to SI	ony Run		0.62	20 12	84.00	0.	.00 0.	.00000		0.00	✓
					St	ream Dat	ta								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p	<u>с</u> бН	Tem	<u>Strear</u> p	n pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))		(°C)		
Q7-10 Q1-10 Q30-10	0.001	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	5.00	7.00	1	0.00	0.00	
400-10		0.00	0.00	0.000										1	
					Di	scharge					D :				
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	ed Desigr Disc Flow (mgd)	Res Fa	erve ⁻ ctor	Disc Temp (°C)	Di p	sc H		
		Dry F	Reach	PA	0102580a	0.037	0 0.000	0 0.000	00 (0.000	25.0	0	7.00		
					Pa	rameter	Data								
				Parameter Name					ream Conc	Fate Coef					
				raramete	INdifie	(m	ng/L) (n	ng/L) (r	ng/L)	(1/days))				
			CBOD5				25.00	0.00	0.00	1.50	0				
			Dissolved	Oxygen			4.00	2.00	0.00	0.00	C				
			NH3-N				25.00	0.00	0.00	0.70	0				

Input Dat	ta WQM 7.0
-----------	------------

	SWP Basin			Stre	eam Name		RMI	Eleva (ft)		Drainage Area (sq mi)	Slope (ft/ft)	Withd	VS drawal gd)	Apply FC
	20C	352	293 Trib 35	5293 to SI	ony Run		0.00)0 11	37.00	0.75	0.000	00	0.00	✓
					St	ream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth] Temp	<u>Fributary</u> p pH	Т	<u>Strear</u> emp	<u>т</u> рН	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)			(°C)		
Q7-10	0.001	0.00	0.00	0.000	0.000	0.0	0.00	0.00	25	.00 7.	00	0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									
					Di	scharge	Data						1	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Rese Fac		mp	Disc pH		
		-				0.000	0 0.000	00 0.000	0 0	.000	25.00	7.00		
					Pa	rameter	Data							
		Parameter Name							ream Conc	Fate Coef				
	_			aramete	IName	(m	ng/L) (n	ng/L) (r	ng/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

	<u>SW</u>	<u>/P Basin</u> 20C		a <u>m Code</u> 5293	<u>Stream Name</u> Trib 35293 to Stony Run							
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.620	0.00	0.00	0.00	NA	0.03574	.647	.39	.6	0.23	0.166	25.00	7.00
Q1-1	0 Flow											
0.620	0.00	0.00	0.00	NA	0.03574	NA	NA	NA	0.00	0.000	0.00	0.00
Q30-	10 Flov	v										
0.620	0.00	0.00	0.00	NA	0.03574	NA	NA	NA	0.00	0.000	0.00	0.00

WQM 7.0 Hydrodynamic Outputs

Monday, September 26, 2022

Version 1.1

Attachment 3

TRC EVALU	ATION								
Input appropria	ate values in A	A3:A9 and D3:D9							
0.106	= Q stream (c	ofs)	0.5 = CV Daily						
0.037	= Q discharg	e (MGD)	0.5	= CV Hourly					
30	= no. sample:	8	1	= AFC_Partial M	lix Factor				
0.3	= Chlorine De	emand of Stream	1	= CFC_Partial M	lix Factor				
() = Chlorine De	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)				
0.5	= BAT/BPJ V	alue			Compliance Time (min)				
(= % Factor o	f Safety (FOS)	0	=Decay Coeffic	ient (K)				
Source	Reference	AFC Calculations		Reference	CFC Calculations				
TRC	1.3.2.iii	WLA afc =	0.610	1.3.2.iii	WLA cfc = 0.587				
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581				
PENTOXSD TRG	5.1b	LTA_afc=	0.227	5.1d	LTA_cfc = 0.341				
Source		Efflue	nt Limit Calcu	lations					
PENTOXSD TRG	5.1f		AML MULT =						
PENTOXSD TRG	5.1g		LIMIT (mg/l) =		AFC				
			LI M IT (mg/l) =	0.010					
WLA afc	A TOLDARY ANALYSIAN ANAL AN ALSO	C_tc)) + [(AFC_Yc*Qs*.019	Realizable realization of the second	⊱tc))					
TABLUT		C_Yc*Qs*Xs/Qd)]*(1-FOS/10							
LTAMULT afc LTA afc	wla afc*LTA	cvh^2+1))-2.326*LN(cvh^2+ MULT_afe	-1) 0.5)						
LTA_aic	wia_aic LIAI								
WLA_cfc		⁻ C_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10		_tc))					
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)								
LTA_cfc	wla_cfc*LTAMULT_cfc								
AML MULT		N((cvd^2/no_samples+1)^0.		^2/no_samples+	1))				
AVG MON LIMIT		J,MIN(LTA_afc,LTA_cfc)*AN							
INST MAX LIMIT	A EX//au man	_limit/AML_MULT)/LTAMUL	T of al						