

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Renewal

Non
Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. **PA0103209**APS ID **1079958**

1425232

Authorization ID

Applicant Name	Wattsburg Area School District	Facility Name	Wattsburg Area School District Campus
Applicant Address	10782 Wattsburg Road	Facility Address	10782 Wattsburg Road
	Erie, PA 16509-6422		Erie, PA 16509-6422
Applicant Contact	Eric Schultz	Facility Contact	Eric Schultz
Applicant Phone	(814) 824-3400	Facility Phone	(814) 824-3400
Client ID	58287	Site ID	236741
Ch 94 Load Status	Not Overloaded	Municipality	Greene Township
Connection Status	No Limitations	County	Erie
Date Application Rece	eived January 30, 2023	EPA Waived?	Yes
Date Application Accepted		If No, Reason	

Summary of Review

This is an existing discharge for a minor sewage treatment facility.

Act 14 - Proof of Notification was submitted and received.

Existing treatment consists of (WQM Permit No. 2596408): a grit chamber, an equalization/comminutor tank, an additional equalization tank, two aeration tanks in series, a clarifier, two digesters, a dosing tank, two upflow filters in parallel, a chlorine contact tank, a dechlorination tank, and outfall pipe.

There are no open violations in WMS for the subject Client ID (58287) as of 1/10/2023. CWY 1/10/2024

Annual monitoring for E. Coli, Total Nitrogen and Total Phosphorus has been added per Department SOP for new and reissued NPDES permits with design flows exceeding 2000 GPD.

Sludge is hauled offsite by Don Green Sanitation as-needed.

The EPA Waiver is in effect.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania*

Approve	Deny	Signatures	Date
Х		Jordan A. Frey, E.I.T. Jordan A. Frey, E.I.T. / Project Manager	January 10, 2024
Х		Chad W. Yurisic Chad W. Yurisic, P.E. / Environmental Engineer Manager	1/10/2024

Summary of Review
Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

scharge, Receiving	g Water	s and Water Supply Infor	mation		
Outfall No. 001			Design Flow (MCD)	0206	
			Design Flow (MGD)	.0296	
Latitude 42° 3' 14.40"		Longitude	-79° 54' 29.37"		
· ——	Quad Name Hammett		Quad Code	42079A8	
Wastewater Descrip	otion:	Sewage Effluent			
Receiving Waters		ned Tributary of East Brander ouf Creek (TSF)	ch Stream Code	53537	
NHD Com ID	12734	,	RMI	89.02 mi	
Drainage Area	0.98 n		Yield (cfs/mi²)	0.0826	
Dialilage Alea	0.96 11	<u>II-</u>		French Ck near Union City	
Q ₇₋₁₀ Flow (cfs)	0.081		Q ₇₋₁₀ Basis	gage	
Elevation (ft)	1327		Slope (ft/ft)	0.0072	
Watershed No.	16-A		Chapter 93 Class.	TSF	
Existing Use			Existing Use Qualifier		
Exceptions to Use	None		Exceptions to Criteria	None	
Assessment Status		Attaining Use(s)	<u> </u>		
Cause(s) of Impairr	nent	3 , ,			
Source(s) of Impair					
TMDL Status			Name		
Background/Ambie	nt Data		Data Source		
pH (SU)	nt Data	7.6		rvevs (same as previous eval	
Temperature (°F)		25	Median value from stream surveys (same as previous eval.) Default temp for a TSF stream		
Hardness (mg/L)		2.0	Default temp for a 1SF stream Default value		
Other: 0.1		Default value			
Outer.		0.1	Doladit value		
Nearest Downstrea	m Public	c Water Supply Intake	Cambridge Springs Waterwor	·ks	
PWS WatersI	rench C	Creek	Flow at Intake (cfs)	49	
PWS RMI			Distance from Outfall +/- 20 mi		

Changes Since Last Permit Issuance: None

Other Comments: None.

Treatment Facility Summary

Treatment Facility Name: Wattsburg Area School District Campus - STP

WQM Permit No.	Issuance Date
2571403	4/2/71
2592417	3/18/93
2596408-A1	1/22/15

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary With Ammonia Reduction	Extended Aeration	Chlorine With Dechlorination	

Hydraulic Capacity (MGD)	. , , , ,		Biosolids Treatment	Biosolids Use/Disposal
0.0296	91	Not Overloaded	Holding Tank	Other WWTP

Changes Since Last Permit Issuance: None.

Other Comments: None.

Development of Effluent Limitations							
Outfall No.	001	Design Flow (MGD)	.0296				
Latitude	42° 3' 14.51"	Longitude	-79° 54' 29.11"				
Wastewater D	Nastewater Description: Sewage Effluent						

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
СВОО5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform	· · · · · · · · · · · · · · · · · · ·			
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: None.

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
NH ₃ -N (5/1-10/31)	2.5	Average Monthly	WQM 7.0 v1.0b
NH ₃ -N (11/1-4/30)	7.5	Average Monthly	WQM 7.0 v1.0b
Dissolved Oxygen	5.0	Min	WQM 7.0 v1.0b
Total Residual Chlorine	0.21	Average Monthly	TRC Spreadsheet
Total Residual Chlorine	0.87	IMAX	TRC Spreadsheet

Comments: Ammonia-Nitrogen and Dissolved Oxygen limits are carried over from previous permit cycles and verified by WQM 7.0 modeling. The Instantaneous Maximum limit for Total Residual Chlorine has been changed to 0.87mg/l from 1.2 mg/l in accordance with modeling results from the Department's TRC Spreadsheet. A review of the facility's DMRs suggest the facility can meet the new IMAX TRC limit. The calculated average monthly limits for DO, TRC, and Ammonia are less stringent than the previous permit, but the previous limits are attainable and will be retained. CWY 1/10/2024

Best Professional Judgment (BPJ) Limitations

Comments: Total Phosphorus, Total Nitrogen, and E. Coli monitoring were added as BPJ limits per Department policy.

Anti-Backsliding

TRC modeling gave an average monthly limit of 0.26 mg/l but the previous limit of 0.21 mg/l will be retained in accordance with the Department's Anti-Backsliding policy.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.21	XXX	0.87	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/6 months	8-Hr Composite
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	7.5	XXX	15	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	2.5	XXX	5	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/6 months	8-Hr Composite

Compliance Sampling Location: Outfall 001, after disinfection and dechlorination.

Other Comments: None.

TRC Spreadsheet

TRC EVALUA	ATION						
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9					
0.081	= Q stream (cfs)	0.5	= CV Daily			
0.0296	= Q discharg	je (MGD)	0.5	= CV Hourly			
30 = no. samples			1	1 = AFC_Partial Mix Factor			
0.3	0.3 = Chlorine Demand of Stream			1 = CFC_Partial Mix Factor			
C	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)		
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)		
C	= % Factor o	of Safety (FOS)		=Decay Coeffic	ient (K)		
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =	0.583	1.3.2.iii	WLA cfc = 0.561		
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRG	5.1b	LTA_afc=	0.217	5.1d	$LTA_cfc = 0.326$		
Source		Efflue	nt Limit Calcu	lations			
PENTOXSD TRG	5.1f		AML MULT =	1.231			
PENTOXSD TRG	5.1g		LI M IT (mg/l) =		AFC		
		INST MAX	LIMIT (mg/l) =	0.875			
	(0/0////						
WLA afc	the party of the p	FC_tc)) + [(AFC_Yc*Qs*.019	SELECTION TO DESCRIPTION OF	;_tc))			
LTAMULT afc		C_Yc*Qs*Xs/Qd)]*(1-FOS/10					
LTA afc	wla afc*LTA	(cvh^2+1))-2.326*LN(cvh^2-	-1)-0.5)				
LTA_aic	WIA_AIC LIA	WOLI_aic					
WLA_cfc	1940	(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)					
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no samples+1))-2.326*LN(cvd^2/no samples+1)^0.5)						
LTA_cfc	STREET, AND STREET, PARTY CA	wla_cfc*LTAMULT_cfc					
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.	5)-0.5*LN(cvd	l^2/no_samples+	1))		
AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfc)*AN	IL_MULT)				
INST MAX LIMIT	1.5*((av_mo	n_limit/AML_MULT)/LTAMUI	_T_afc)				

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name		RMI		ation ft)	Drainag Area (sq mi		ft/ft)	PW: Withdr (mg	awal	Apply FC
	16A	535	570 Trib 53	8570 of E	Branch Le I	Boeuf Cr	89.0	20 1	327.00	0	.98 0.	00000		0.00	✓
<u> </u>					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributar</u> p	¥ pH	Tem	Stream np	pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	:)		
Q7-10 Q1-10	0.083	0.00	0.00	0.000	0.000	0.0	0.00	0.00) 2	5.00	7.60	183	0.00	0.00	
Q30-10		0.00	0.00	0.000	0.000										
		Discharge Data													
			Name	Per	mit Numbe	Disc	Permitt Disc Flow (mgd)	Disc Flov	Res	erve ctor	Disc Temp (°C)		sc hH		
		Watts	burg Area	PA	0103209	0.0180	0.018	30 0.0	180 (0.000	20.0	10	6.90		
					Pa	arameter I	Data								
			ı	Paramete	r Name	Di Ce		Trib S Conc	Stream Conc	Fate Coef					
				didirioto	ramo	(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.5	0				
			Dissolved	Oxygen			4.00	7.54	0.00	0.0	0				
			NH3-N			i	25.00	0.10	0.00	0.7	0				

Input Data WQM 7.0

	SWP Basin	Strea Coo		Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)		ope V /ft)	PWS Vithdrawal (mgd)		oply FC
	16A	535	570 Trib 53	570 of E	Branch Le l	Boeuf Cr	87.9	80	1291.00	1.	74 0.0	0000	0.0	0	✓
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p	Н	<u>S</u> Temp	<u>tream</u> pH		
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))		(°C)			
Q7-10 Q1-10	0.100	0.00	0.00 0.00	0.000	0.000 0.000	0.0	0.00	0.0	0 25	5.00	7.60	0.0	00 0.0	00	
Q30-10		0.00	0.00	0.000	0.000										
		Discharge Data													
			Name	Per	mit Numbei	Disc	Permitt Disc Flow (mgd	Dis Flo	c Reso w Fac	erve T ctor	Disc emp (°C)	Disc pH			
						0.0000	0.000	0.0	000 (0.000	25.00	7	.00		
					Pa	arameter [Data								
			1	Paramete	- Name	Di Co		Trib Conc	Stream Conc	Fate Coef					
				didiffete	Nume	(m	g/L) (r	mg/L)	(mg/L)	(1/days)					
	-		CBOD5				25.00	2.00	0.00	1.50)				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)				
			NH3-N			1	25.00	0.00	0.00	0.70)				

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
16A	53570	Trib 53570 of E Branch Le Boeuf Cr

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
89.02	0 Wattsburg Area	6.4	18.17	6.4	18.17	0	0
H3-N (Chronic Allocati	ions					
I H3-N (Chronic Allocati	ions Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBC	DD5	<u>NH</u>	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
89.02 V	Vattsburg Area	25	25	5.47	5.47	4	4	0	0	

WQM 7.0 D.O.Simulation

	ream Code			Stream Name	
16A	53570		Trib 53570	of E Branch Le B	oeuf Cr
<u>RMI</u>	Total Discharge	Flow (mgd	<u>) Ana</u>	lysis Temperature (°C) <u>Analysis pH</u>
89.020	0.01	8		23.725	7.294
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
4.914	0.35	6		13.808	0.062
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
7.87	0.93			1.47	0.932
Reach DO (mg/L)	<u>Reach Kr (</u>			Kr Equation	Reach DO Goal (mg/L)
6.637	25.00	00		Owens	6
Reach Travel Time (days)		Subreach Res			
1.018	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.102	7.02	1.34	7.54	
	0.204	6.27	1.22	7.54	
	0.305	5.60	1.11	7.54	
	0.407	5.00	1.00	7.54	
	0.509	4.46	0.91	7.54	
	0.611	3.98	0.83	7.54	
	0.712	3.56	0.76	7.54	
	0.814	3.18	0.69	7.54	
	0.916	2.84	0.63	7.54	
	1.018	2.53	0.57	7.54	

RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
89.020	Wattsburg Area	PA0103209	0.018	CBOD5	25		
				NH3-N	5.47	10.94	
				Dissolved Oxygen			4

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code				<u>Stream</u>	<u>Name</u>			
		16A	5	3570		Tr	ib 53570	of E Bra	nch Le B	oeuf Cr		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
89.020	0.08	0.00	0.08	.0278	0.00656	.356	4.91	13.81	0.06	1.018	23.72	7.29
Q1-1	0 Flow											
89.020	0.05	0.00	0.05	.0278	0.00656	NA	NA	NA	0.05	1.212	23.26	7.22
Q30-	10 Flow	,										
89.020	0.11	0.00	0.11	.0278	0.00656	NA	NA	NA	0.07	0.891	23.99	7.34