

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0103292

 APS ID
 1074844

 Authorization ID
 1416114

Applicant Name	Hamilton Township	Facility Name	Hamilton Township Ludlow STP				
Applicant Address	2 Curtis Road	Facility Address	275 State Highway 6				
	Ludlow, PA 16333		Ludlow, PA 16333				
Applicant Contact	Brian Bastow, Chairman hamiltontwp@westpa.net	Facility Contact	Brian Bastow, Chairman hamiltontwp@westpa.net				
Applicant Phone	(814) 945-6913	Facility Phone	(814) 945-6913				
Client ID	135991	Site ID	457570				
Ch 94 Load Status	Not Overloaded	Municipality	Hamilton Township				
Connection Status	No Limitations	County	McKean				
Date Application Rece	eived October 31, 2022	EPA Waived?	Yes				
Date Application Acce	pted November 2, 2022	If No, Reason	-				

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

SPECIAL CONDITIONS:

- A. Stormwater into Sewers
- B. Right of Way
- C. Solids Handling
- D. Effluent Chlorine Optimization and Minimization

II. Solids Management

There are no open violations in efacts associated with the subject Client ID (135991) as of 8/16/2023. 8/31/2023 CWY

Approve	Deny	Signatures	Date
		Stephen A. McCauley	0/4.0/2022
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	8/16/2023
V		Chad W. Yurisic	8/31/2023
, A		Chad W. Yurisic, P.E. / Environmental Engineer Manager	0/31/2023

Discharge, Receiving Waters and Water Supply Infor	mation	
Outfall No. 001 Latitude 41° 44' 0.00" Quad Name -	Design Flow (MGD) Longitude Quad Code	0.07 -78° 57' 7.00" -
Wastewater Description: Sewage Effluent		
Receiving Waters NHD Com ID 100467307 Twomile Run (HQ-CWF)	Stream Code RMI	55425 0.38
Drainage Area 16.1	O Boois	0.069
Q ₇₋₁₀ Flow (cfs) 0.761 Elevation (ft) 1511	Slope (ft/ft)	calculated 0.0054
Watershed No. 16-F		HQ-CWF*
Existing Use - Exceptions to Use -	Existing Use Qualifier Exceptions to Criteria	<u>-</u>
Assessment Status Attaining Use(s)	Name -	
Background/Ambient Data pH (SU) Temperature (°F) Hardness (mg/L) Other:	Data Source	
Nearest Downstream Public Water Supply Intake PWS Waters Allegheny River PWS RMI 90.0	Aqua Pennsylvania, Inc Em Flow at Intake (cfs) Distance from Outfall (mi)	

Sludge use and disposal description and location(s):

All sludge is hauled off site by J&J Honey Dipping, Inc. and is disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

^{* -} This discharge predates the High Quality stream designation and is grandfathered at the permitted flow.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.07 MGD of treated sewage from a municipal STP in Hamilton Township, McKean County.

Treatment permitted under WQM Permit 4287401 A-1 consists of the following: A comminutor w/ bypass bar screen, soda ash for pH adjustment, three aeration tanks, one clarifying/settling tank, tablet chlorine disinfection, and aerated sludge holding.

1. Streamflow:

Tionesta Creek at Lynch, PA from 1939-1979 (USGS Gage No. 03017500):

Q₇₋₁₀: <u>16.3</u> cfs (USGS StreamStats)

Drainage Area: 233 sq. mi. (USGS StreamStats)

Yieldrate: <u>0.069</u> cfsm (Calculated)

Twomile Run at Outfall 001:

Yieldrate: <u>0.069</u> cfsm (Calculated above)

Drainage Area: 16.1 sq. mi. (USGS StreamStats)

% of stream allocated: 100% Basis: No nearby discharges

 Q_{7-10} : <u>1.11</u> cfs (Calculated)

2. Wasteflow:

Maximum discharge: 0.07 MGD = 0.10 cfs

Runoff flow period: 24 hours Basis: Runoff flow for municipal STPs

The calculated stream flow (Q7-10) is greater than 3 times the permitted discharge flow. In accordance with the SOP, since this is an existing discharge, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, were not evaluated for this facility.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Disinfection.

a. pH

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency was set as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), and will be retained.

b. Total Suspended Solids

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

NPDES Permit Fact Sheet Hamilton Township Ludlow STP

The previous mass loading limit was rounded to the higher whole number. The mass loading limit was rounded to the nearest tenth with this renewal.

Basis: Application of Chapter 92a47 technology-based limits.

c. Fecal Coliform

05/01 - 09/30: 200/100ml (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: <u>2,000/100ml</u> (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/quarter.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows greater than 0.05 MGD

and less than 1.0 MGD.

e. Phosphorus

Chapter 96.5 does not apply. However, the previous monitoring for Total Phosphorus will be retained in accordance with the SOP, based on Chapter 92a.61.

f. Total Nitrogen

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: 6.8 Standard Units (S.U.)

Basis: <u>eDMR data from previous 12 months</u>

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: <u>default value used in the absence of data</u>

Stream Temperature: 20°C (default value used for CWF modeling)

Background NH₃-N concentration: <u>0.0</u> mg/l

Basis: Default value

Calculated NH₃-N Summer limits: 25.0 mg/l (monthly average)

<u>50.0</u> mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: 25.0 mg/l (monthly average)

<u>50.0</u> mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer NH3-N limits above (see Attachment 1). The winter limits are calculated as three times the summer limits, but since the technology-based limits are more

protective, they will be used. These limits are less restrictive than in the previous permit. Based

on the eDMR data, the more restrictive limits are attainable so they will be retained.

The previous mass loading limit was rounded to the higher whole number. The mass loading limit was rounded to the nearest tenth with this renewal.

h. CBOD₅

Median discharge pH to be used: 6.8 Standard Units (S.U.)

Basis: <u>eDMR data from previous 12 months</u>

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: <u>default value used in the absence of data</u>

Stream Temperature: 20°C (default value used for CWF modeling)

Background CBOD₅ concentration: <u>2.0</u> mg/l

Basis: <u>Default value</u>

Calculated CBOD₅ limits: <u>25.0</u> mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated CBOD5 limits above (see Attachment 1). These limits are the

same as in the previous permit and will be retained.

The previous mass loading limit was rounded to the higher whole number. The mass loading limit was rounded to the nearest tenth with this renewal.

i. Influent Total Suspended Solids and BOD₅

Monitoring for these two parameters will be retained as recommended in the SOP for POTWs, as authorized under Chapter 92a.61.

j. <u>Dissolved Oxygen (DO)</u>

The technology-based minimum of 4.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61.

The measurement frequency was set as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), and will be retained.

k. <u>Disinfection</u>

Ultraviolet (UV) light monitoring

☐ Total Residual Chlorine (TRC) limits: 0.5 mg/l (monthly average)

1.6 mg/l (instantaneous maximum)

Basis: The TRC limits above were calculated using the Department's TRC Calculation Spreadsheet

(see Attachment 2). They are the same as in the previous permit and will be retained.

The measurement frequency was set as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations"

(362-0400-001), and will be retained.

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices using the Department's Toxics Management Spreadsheet since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

Result: N/A

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). However, since no sample data was provided, mass-balance calculations were not performed.

Nearest Downstream potable water supply (PWS): Aqua Pennsylvania, Inc. - Emlenton

Distance downstream from the point of discharge: <u>110</u> miles (approximate)

Result: No limits are necessary as significant dilution is available

6. Flow Information:

All flow comes from the Village of Ludlow which consists of all separate sewers.

7. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

8. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from July 1, 2022 to June 30, 2023)

Parameter	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22
Flow (MGD)												
Average Monthly	22438	0.02935	0.02973	0.04167	0.03544	0.04323	0.04173	0.03361	0.02338	0.02561	0.03273	0.02395
Flow (MGD)												
Weekly Average	0.04330	0.07218	0.03390	0.04679	0.04171	0.05859	0.05225	0.04543	0.02773	0.03127	0.09089	0.04325
pH (S.U.)												
Instantaneous Minimum	7.0	7.0	6.8	6.4	6.5	6.7	6.5	6.7	6.6	6.6	6.7	6.6
pH (S.U.)												
Instantaneous Maximum	7.5	7.2	7.1	6.9	7.0	7.1	7.1	7.2	7.0	7.0	7.0	7.0
DO (mg/L)												
Instantanéous Minimum	4.05	4.18	4.11	5.09	5.11	4.46	4.1	4.24	4.1	4.09	4.11	4.1
TRC (mg/L)												
Average Monthly	0.6	0.4	0.3	0.4	0.4	0.4	0.3	0.3	0.4	0.6	0.5	0.3
TRC (mg/L)												
Instantaneous Maximum	1.0	0.9	0.7	0.9	0.89	0.8	0.9	0.6	0.9	1.2	1.0	0.5
CBOD5 (lbs/day)												
Average Monthly	0.7	< 0.3	1	1	1	2	2	< 0.7	< 0.5	< 1	< 4	< 0.3
CBOD5 (mg/L)												
Average Monthly	5.3	< 2.2	4.7	3.8	5.3	4.5	4.8	< 3.0	< 3.0	< 3.8	< 2.6	< 3.0
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	23	24	49	55	32	55	49	43	31	42	19	26
BOD5 (mg/L)												
Raw Sewage Influent												
Average Monthly	183	172	201	175	138	130	142.3	206	179.1	162	137	223
TSS (lbs/day)												
Average Monthly	3	2	4	5	7	12	6	3	2	8	1	2
TSS (lbs/day)												
Raw Sewage Influent												
Average Monthly	11	21	39	30	28	56	48	35	26	29	14	64
TSS (mg/L)												
Average Monthly	25.3	13.8	4.7	17.0	27.3	26.0	17.5	12.3	12.8	29.5	10.0	15.8
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	86	150	162	100	122	122	144	158	144	110	104	538
Fecal Coliform (No./100 ml)												
Geometric Mean	29	6	5	< 2	5	> 144	> 1939	37	216	5	6	4
Fecal Coliform (No./100 ml)												
Instantaneous Maximum	75.4	18.3	23.1	3.1	21.8	> 2419.6	> 2419.6	435.2	261.3	6.3	16.9	6.1

NPDES Permit No. PA0103292

NPDES Permit Fact Sheet Hamilton Township Ludlow STP

Total Nitrogen (mg/L)												
Average Quarterly	2.97			5.79			1.53			4.79		1
Ammonia (lbs/day)												
Average Monthly	4	2	0.2	0.07	0.05	0.1	0.3	0.3	0.09	< 0.2	0.1	0.1
Ammonia (mg/L)												
Average Monthly	33	15	1	1	1	0.5	1	1	1	< 1	1	1
Total Phosphorus (mg/L)												
Average Quarterly	0.75			1.0			1.70			3.90		

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
		Report						
Flow (MGD)	Report	Wkly Avg	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	14.5	XXX	XXX	25.0	XXX	50	2/month	24-Hr Composite
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite
TSS	17.5	XXX	XXX	30.0	XXX	60	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Total Nitrogen	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	2/quarter	24-Hr Composite
Ammonia Nov 1 - Apr 30	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite
Ammonia May 1 - Oct 31	11.6	XXX	XXX	20.0	XXX	40	2/month	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Requirement						
Parameter Total Phosphorus	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required		
	Average Aver			Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Type
				Report				24-Hr
Total Phosphorus	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	2/quarter	Composite

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The limits for CBOD5, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for influent BOD5 and influent TSS is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. Monitoring for Total Nitrogen and Total Phosphorus is based on Chapter 92a.61.

Attachment 1

WQM 7.0 Effluent Limits

	SWP Basin Strea	m Code		Stream Name	<u> </u>		
	16F 5	5425		TWOMILE RU	N		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
6.200	Ludlow STP	PA0103292a	0.070	CBOD5	25		*
				NH3-N	25	50	
				Dissolved Oxygen			4

WQM 7.0 D.O.Simulation

			Stream Name	
55425			TWOMILE RUN	
20 AMERICAN	4.0	<u>) Ana</u>	lysis Temperature (°C) 20.444	Analysis pH 6.978
Reach Dep	oth (ft)		Reach WDRatio	Reach Velocity (fps)
			32.607	0.129
		<u>R</u>		Reach Kn (1/days)
				0.724
S				Reach DO Goal (mg/L)
1.218	S.		i sivogiou	6
	Subreach	Results		
TravTime	CBOD5	NH3-N	D.O.	
(days)	(mg/L)	(mg/L)	(mg/L)	
0.047	3.91	2.15	7.76	
0.095	3.78	2.07	7.71	
0.142	3.66	2.00	7.68	
0.189	3.54	1.94	7.68	
0.237	3.42	1.87	7.69	
0.284	3.31	1.81	7.71	
0.331	3.20	1.75	7.74	
0.379	3.10	1.69	7.77	
0.426	3.00	1.63	7.80	
0.473	2.90	1.58	7.84	
	Total Discharge	Total Discharge Flow (mgd 0.070 Reach Depth (ft) 0.538 Reach Kc (1/days) 0.689 Reach Kr (1/days) 7.278 TravTime (days) Subreach (days) 0.095 3.78 0.142 3.66 0.189 3.54 0.237 3.42 0.284 3.31 0.331 3.20 0.379 3.10 0.426 3.00	Total Discharge Flow (mgd) 0.070 Reach Depth (ft) 0.538 Reach Kc (1/days) 0.689 Reach Kr (1/days) 7.278 TravTime (days) Subreach Results (BOD5 (mg/L)) My3-N (mg/L) 0.047 3.91 2.15 (0.095 (mg/L)) 2.15 (0.095 (mg/L)) 3.66 (0.00 (0.189 (mg/L)) 3.54 (mg/L) 1.87 (0.284 (mg/L)) 3.20 (mg/L) 1.87 (0.331 (mg/L)) 3.20 (mg/L) 1.81 (mg/L) 3.31	Total Discharge Flow (mgd) Analysis Temperature (°C) 0.070 20.444 Reach Depth (ft) Reach WDRatio 0.538 32.607 Reach Kc (1/days) Reach NH3-N (mg/L) 0.689 2.22 Reach Kr (1/days) Kr Equation 7.278 Tsivoglou TravTime (days) CBOD5 NH3-N (mg/L) D.O. (mg/L) 0.047 3.91 2.15 7.76 0.095 3.78 2.07 7.71 0.142 3.66 2.00 7.68 0.189 3.54 1.94 7.68 0.237 3.42 1.87 7.69 0.284 3.31 1.81 7.71 0.331 3.20 1.75 7.74 0.379 3.10 1.69 7.77 0.426 3.00 1.63 7.80

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Input Data WQM 7.0

					IIIÞ	ut Dat	a www.	VI 7.U						
	SWP Basin	1000000000		Stre	eam Name		RMI	El	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	16F	55-	425 TWON	IILE RUN	ĺ		6.2	00	1509.00	16.10	0.00000)	0.00	✓
					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> np pH	Ter	<u>Strean</u> mp	<u>p</u> H	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(%	C)		
27-10 21-10 230-10	0.069	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.	00 2	0.00 7.	00	0.00	0.00	
					D	ischarge	Data							
			Name	Per	rmit Numbe	Disc	g Permitt Disc Flow (mgd	Di Fl	sc Res	Dis serve Ter actor (°C	np	Disc pH		
		Ludio	w STP	PA	0103292a	0.070	0.00	00 0.	0000	0.000 2	25.00	6.80		
					P	arameter	Data							
			1	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				raiamete	i ivallic	(n	ng/L) (I	mg/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

					шр	ut Dat	a vv Ge	VI 7.0						
	SWP Basin			Str	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	App FC
	16F	55-	425 TWO	IILE RUN	ı		5.2	00	1478.00	19.30	0.00000)	0.00	✓
					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Ter	<u>Strean</u> mp	<u>p</u> H	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°0	C)		
Q7-10 Q1-10 Q30-10	0.069	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	0 2	0.00 7.0	00	0.00	0.00	
					D	ischarge	Data							
			Name	Pe	rmit Numbe	Existing Disc	Permitt Disc Flow	Dis Flo	c Res w Fa	Dis erve Ten ctor	np)isc pH		
		-				0.000	0.00	0.0	000	0.000 2	:5.00	7.00		
		Parameter Data												
		Parameter Name					Trib Conc	Stream Conc	Fate Coef					
			â	raiamete	i ivallic	(n	ng/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

		<u>P Basin</u> 16F	-	<u>m Code</u> 5425				Stream WOMIL				
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-1 6.200	0 Flow 1.11	0.00	1.11	.1083	0.00587	.538	17.55	32.61	0.13	0.473	20.44	6.98
Q1-1 6.200	0 Flow 0.71	0.00	0.71	.1083	0.00587	NA	NA	NA	0.10	0.591	20.66	6.97
Q30-	10 Flow 1.51	0.00	1.51	.1083	0.00587	NA	NA	NA	0.15	0.404	20.33	6.98

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
16F	55425	TWOMILE RUN

0
Percent
F ₹€

Dissolved Oxygen Allocations

		CBOD5		<u>NH3-N</u>		Dissolved	d Oxygen	Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
6.20	6.20 Ludlow STP		25	25	25	4	4	0	0	

Attachment 2

TRC EVALUATION										
Input appropriate values in A3:A9 and D3:D9										
1.11	= Q stream (cfs)	0.5	= CV Daily						
0.07	= Q discharg	je (MGD)	0.5	= CV Hourly						
30	= no. sample	8	1	= AFC_Partial Mix Factor						
0.3	= Chlorine D	emand of Stream	= CFC_Partial Mix Factor							
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria Compliance Time (min)						
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)						
0	= % Factor o	of Safety (FOS)	0	=Decay Coefficient (K)						
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	3.289	1.3.2.iii	WLA cfc = 3.199					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	1.225	5.1d	LTA_cfc = 1.860					
	Source Effluent Limit Calculations									
PENTOXSD TRG										
PENTOXSD TRG	5.1g		_IMIT (mg/l) =		BAT/BPJ					
		INST MAX	_IMIT (mg/l) =	1.635						
WLA afc	(.019/e(-k*Al	FC tc)) + [(AFC Yc*Qs*.019	/Qd*e(-k*AFC	tc))						
	STATES OF STREET, STREET, ST. AU	C_Yc*Qs*Xs/Qd)]*(1-FOS/10		//						
LTAMULT afc		(cvh^2+1))-2.326*LN(cvh^2+								
LTA_afc	wla_afc*LTA		1 100							
WLA_cfc	(.011/e(-k*Cl	FC_tc) + [(CFC_Yc*Qs*.011/	Qd*e(-k*CFC	_tc))						
	and the second s	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	AND SECTION AND DESCRIPTION OF THE PARTY NAMED IN COLUMN TWO PARTY NAM		NY 402					
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)									
LTA_cfc	wla_cfc*LTA	MULT_cfc								
AML MULT	EVD(2 326*1	N((cvd^2/no_samples+1)^0.	5) 0 5*I N/ava	A2/no comples	L41)					
AML MULI AVG MON LIMIT	0.60	N((cvd^2/no_samples+1)^0. J,MIN(LTA afc,LTA cfc)*AN	5) (65)	Zino_samples	- 1))					
INST MAX LIMIT		ɔ,wiin(LTA_aic,LTA_cic)"Aiv ı_limit/AML_MULT)/LTAMUL								
ING! WAX LIMI!	1.5 ((AV_IIIO		.ı_aioj							