

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0103641

APS ID 1046876

Authorization ID 1368024

Applicant Name	Wilm	ington Township Sewer Authority	Facility Name	Wilmington Township Sewer Authority Orchard Terrace STP
Applicant Address 669 Wilson Mill Road		Vilson Mill Road	Facility Address	204 Orchard Terrace
	New	Castle, PA 16105		New Castle, PA 16105
Applicant Contact		ey Deal, Secretary ngtontwp@comcast.net	Facility Contact	Jim Schneider, Chairman wilmingtontwp@comcast.net
Applicant Phone	(724)	946-2560	Facility Phone	(724) 946-2560
Client ID	36348	3	Site ID	262274
Ch 94 Load Status	Not C	verloaded	Municipality	Wilmington Township
Connection Status	No Li	mitations	County	Lawrence County
Date Application Rece	eived	August 30, 2021	EPA Waived?	Yes
Date Application Acce	epted	September 2, 2021	If No, Reason	-

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

SPECIAL CONDITIONS:

II. Solids Management

- A. Stormwater into sewers
- a. Otomiwater into sewe
- B. Right of way
- C. Solids handling
- D. Effluent Chlorine Optimization and Minimization

There is 1 open violation in EFACTS associated with the subject Client ID (36348) as of 8/2/2022 (see Attachment 1).

Approve	Deny	Signatures	Date
V		Stephen A. McCauley	8/2/2022
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	AJP 8/2/2022
V			Okay to Draft
^		Vacant / Environmental Engineer Manager	JCD 8/8/2022

Discharge, Receiving Waters and Water Supply Information	mation	
Outfall No. 001	Design Flow (MGD)	0.042
Latitude 40° 05′ 53.00″	Longitude	-80° 20' 56.00"
Quad Name -	Quad Code	-
Wastewater Description: Sewage Effluent		
Unnamed Tributary to the Little Receiving Waters Neshannock Creek (TSF)	Stream Code	UNT to 35515
NHD Com ID 130032044	 RMI	1.53
Drainage Area 0.75 mi ²	Yield (cfs/mi²)	0.032
Q ₇₋₁₀ Flow (cfs) 0.024	Q ₇₋₁₀ Basis	previously calculated
Elevation (ft) 1140	Slope (ft/ft)	0.0251
Watershed No. 20-A	Chapter 93 Class.	TSF
Existing Use -	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Attaining Use(s)		
Cause(s) of Impairment		
Source(s) of Impairment		
TMDL Status	Name	
Background/Ambient Data	Data Source	
pH (SU)		
Temperature (°F)	-	
Hardness (mg/L)	-	
Other: -	-	
Nearest Downstream Public Water Supply Intake	Beaver Falls Municipal Author	rity - Eastvale
PWS Waters Beaver River	Flow at Intake (cfs)	561
PWS RMI 5.0	Distance from Outfall (mi)	30.0

Sludge use and disposal description and location(s): Sludge is hauled to the Mahoning Township WWTP (PA0240095), where it ends up at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.042 MGD of treated sewage from an existing Publicly Owned Treatment Works (POTW) in Wilmington Township, Lawrence County.

Permitted treatment consists of: Two extended aeration tanks, two final clarifiers, two aerobic digesters, gas chlorine (WQM Permit no. 3790401) disinfection with two contact tanks, tablet sodium sulfite dechlorination, and post aeration.

1. Streamflow:

Unnamed Tributary to the Little Neshannock Creek at Outfall 001:

Yieldrate: <u>0.032</u> cfsm previous WQPRs

Drainage Area: <u>0.75</u> sq. mi. previous WQPRs

% of stream allocated: 100% Basis: No nearby discharges

 Q_{7-10} : 0.024 cfs calculated

2. Wasteflow:

Maximum discharge: 0.042 MGD = 0.065 cfs

Runoff flow period: 24 hours Basis: Runoff flow for a Municipal STP

There is less than 3 parts stream flow (Q7-10) to 1 part effluent (design flow) at the discharge point. However, since this is an existing discharge, the more stringent treatment requirements cannot be achieved, and the receiving stream is not impaired by the discharge, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, will not be implemented in this NPDES Permit renewal.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, Phosphorus, NH₃-N, CBOD₅, Dissolved Oxygen, and Total Residual Chlorine.

a. pH

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits

The measurement frequency was previously set to 3/day. It will be set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

b. Total Suspended Solids

Limits are 30.0 mg/l as a monthly average and 60.0 mg/l as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits.

c. Fecal Coliform

05/01 - 09/30: <u>200/100ml</u> (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: 2.000/100ml (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows between 0.002 MGD and 0.05 MGD.

e. <u>Total Phosphorus</u>

Basis: Chapter 96.5 does not apply. However, the previous monitoring for Total
Phosphorus will be retained in accordance with the SOP, based on Chapter 92a.61.

Limit necessary due to:

Discharge to lake, pond, or impoundment

Discharge to stream

Basis N/A

f. Total Nitrogen

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: 7.2 Standard Units (S.U.)

Basis: Average pH value from DMR summary

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: <u>25°C</u> (default value used for TSF modeling)

Background NH₃-N concentration: <u>0.1</u> mg/l

Basis: Default value.

Calculated NH₃-N Summer limits: 1.9 mg/l (monthly average)

3.8 mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: <u>5.7</u> mg/l (monthly average)

<u>11.4</u> mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated summer limits above (see Attachment 2), which are less restrictive than the limits calculated in the previous NPDES Permit. The winter limits are calculated as three times the summer limits. The newly calculated limits are still less restrictive than the previous limits, which are attainable, so they will be retained.

h. CBOD₅

Median discharge pH to be used: 7.2 Standard Units (S.U.)

Basis: Average pH value from DMR summary

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 25°C (default value used for TSF modeling)

Background CBOD₅ concentration: 2.0 mg/l

Basis: Default value

Calculated CBOD₅ limits: 25.0 mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated summer limits above (see Attachment 1), which are the same

as the previous NPDES Permit and will be retained.

i. Influent Total Suspended Solids and BOD₅

Monitoring for these two parameters will be retained as recommended in the SOP for POTWs, as authorized under Chapter 92a.61.

j. <u>Dissolved Oxygen (DO)</u>

4.0 mg/l - minimum desired in effluent to protect all aquatic life.

6.0 mg/l - minimum required due to discharge going to a drainage swale or ditch.

☐ 8.0 mg/l - required due to discharge going to a naturally reproducing salmonid stream.

Discussion: A Dissolved Oxygen technology-based minimum of 5.0 mg/l is recommended by the WQ

Model (see Attachment 2), and the SOP, based on Chapter 93.7, under the authority of Chapter 92a.61. The Dissolved Oxygen minimum of 5.0 mg/l is the same as in the

previous permit so it will be retained with this renewal.

The measurement frequency was previously set to 3/day. It will be set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

k. Total Residual Chlorine (TRC)

TRC limits: 0.063 mg/l (monthly average)

0.205 mg/l (instantaneous maximum)

Basis: The calculated TRC monthly average limit above (see Attachment 3) is more restrictive than

in the previous permit and will be set with this renewal. The new limit should be attainable. The previous instantaneous maximum limit of 0.11 mg/l is more restrictive than the limit

above so it will be retained.

The measurement frequency was previously set to 3/week. It will be set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

Development and Specification of Efficient Limitations (362-0400-001).

No limit necessary

Basis: N/A

4. Reasonable Potential Analysis:

A Reasonable Potential Analysis was not performed in accordance with State practices for Outfall 001 by the Department's Toxics Management Spreadsheet due to a lack of non-sewage data.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Reasonable Potential Analysis above does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). However, since no non-sewage sample data was provided, no calculations were performed.

Nearest Downstream potable water supply (PWS): Distance downstream from the point of discharge:	
☑ No limits necessary☐ Limits needed	
Basis: Significant dilution available.	

6. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

7. Flow Information:

100% of the flow comes from the Wilmington Township, which is a 100% separate sewer system.

8. Attachment List:

Attachment 1 - WMS Open Violations by Client

Attachment 2 - WQ Modeling Printouts

Attachment 3 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from June 1, 2021 to May 31, 2022)

Parameter	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21
Flow (MGD)												
Average Monthly	0.0346	0.0356	0.0365	0.0378	0.0224	0.0241	0.0216	0.0192	0.0313	0.037	0.0327	0.021
Flow (MGD)												
Daily Maximum	0.0555	0.0586	0.0577	0.0673	0.0316	0.0389	0.0257	0.0263	0.036	0.056	0.074	0.0263
pH (S.U.)												
Minimum	7.3	7.5	7.2	6.7	6.9	6.9	6.9	7.1	6.9	6.9	6.9	7.1
pH (S.U.)												
Maximum	8.0	8.2	7.9	7.7	7.3	7.4	7.4	7.6	7.7	7.8	7.6	7.5
DO (mg/L)												
Minimum	6.1	8.1	8.6	8.6	9.0	9.1	8.5	7.78	6.38	5.07	6.2	7.19
TRC (mg/L)												
Average Monthly	0.05	0.05	0.05	0.05	0.06	0.05	0.05	< 0.05	0.04	0.05	0.07	< 0.04
TRC (mg/L)												
Instantaneous Maximum	0.10	0.09	0.09	0.09	0.23	0.10	0.07	0.09	0.10	0.07	0.10	0.09
CBOD5 (lbs/day)												
Average Monthly	4.0	2.0	2.0	1.0	0.8	0.6	0.6	0.6	0.9	0.8	0.6	< 0.4
CBOD5 (lbs/day)												
Weekly Average	5.0	2	2.0	1	0.9	0.7	0.6	0.8	1.0	0.8	0.6	< 0.4
CBOD5 (mg/L)												
Average Monthly	11.6	6.28	5.05	5.41	3.78	2.84	3.08	4.31	5.26	2.71	2.43	< 2
CBOD5 (mg/L)												
Weekly Average	11.7	6.64	5.09	7.3	4.53	3.04	3.13	5.45	7.94	2.75	2.7	< 2
BOD5 (lbs/day)												
Influent Average Monthly	44	34	41	29	27132	34	22	39	79	33	46	56
BOD5 (mg/L)												
Influent Average Monthly	131	140	106	167	132	161	118	292	395	186	122	304
TSS (lbs/day)												
Average Monthly	7.0	3.0	3.0	2.0	2.0	2.0	1.0	0.9	< 1.0	2.0	1.0	< 1.0
TSS (lbs/day)												
Influent Average Monthly	17	15	15	19	17	19	8	34	32	27	43	30
TSS (lbs/day)												
Weekly Average	9.0	4.0	3.0	2.0	3.0	2.0	2.0	1.0	< 1.0	2.0	2.0	1.0
TSS (mg/L)												
Average Monthly	19.2	11	8.1	8.8	10.6	7	7.4	< 7.2	< 5.8	6.1	6.2	< 5
TSS (mg/L)		_	_		_		1			1		
Influent Average Monthly	54	62	36	103	82	87	44	257	147	155	115	156
TSS (mg/L)						_						_
Weekly Average	20.8	13.6	10	9.4	13.8	9	8.6	9.4	6.6	6.2	6.6	5

NPDES Permit Fact Sheet Wilmington Township Sewer Authority Orchard Terrace STP

Fecal Coliform (No./100 ml)												
Geometric Mean	15	5	< 5	50	188	12	70	< 11	1	17	3	4
Fecal Coliform (No./100 ml)												
Instantaneous Maximum	20	6	30	500	645	14	86	120	1	143	4	5
Total Nitrogen (mg/L)												
Average Monthly	11.1	7.06	9.92	9.66	973	9.32	445.2	21.9	18.8	33.2	11.5	10.1
Ammonia (lbs/day)												
Average Monthly	< 0.40	< 0.2	< 0.2	0.09	< 0.1	< 0.1	< 0.1	0.50	< 0.60	< 0.10	< 0.10	< 0.30
Ammonia (mg/L)												
Average Monthly	< 1.5	< 0.95	< 0.5	< 0.5	< 0.5	< 0.56	< 0.5	3.69	< 3.62	< 0.5	< 0.5	< 1.62
Total Phosphorus (mg/L)												
Average Monthly	1.84	0.736	1.35	2.65	1.7	1.97	2.25	3.02	2.69	3.55	2.31	2.05

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrati	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.063	XXX	0.11	1/day	Grab
CBOD5	8.8	14.0	XXX	25.0	40.0	50	2/month	8-Hr Composite
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite
TSS	10.5	15.8	XXX	30.0	45.0	60	2/month	8-Hr Composite
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	1.1	XXX	XXX	3.0	XXX	6	2/month	8-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	0.35	XXX	XXX	1.0	XXX	2	2/month	8-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
Farameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Type
								8-Hr
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are water quality-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliform are technology based on Chapter 92a.47. Monitoring for influent BOD5 and influent Total Suspended Solids is based on Chapter 92a.61. Monitoring for E. Coli, Total Nitrogen, and Total Phosphorus is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7.

Attachment 1

WATER MANAGEMENT SYSTEM OPEN VIOLATIONS BY CLIENT

Client ID: 36348 Client: All

Open Violations: 1

CLIENTID	CLIENT	PF ID	FACILITY	PF KIND	PF STATUS	INSP PROGRAM
36348	WILMINGTON TWP SEW AUTH	280884	WILMINGTON TWP SA ORCHARD TERR	Sewage Publicly Owned (Muni)	Active	WPC NPDES

PROGRAM SPECIFIC ID	INSP ID	VIOLATION ID	INSPECTION CATEGORY	VIOLATION DATE	VIOLATION CODE	VIOLATION	PF INSPECTOR	INSP REGION
PA0103641	3344534	950768	PF	04/08/2022	92A.44	NPDES - Violation of effluent limits in Part A of permit	PUDLICK, DAN	NWRO

Attachment 2

WQM 7.0 Effluent Limits

	20A 355		Stream Name NESHANNOCK CREEK				
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.530	Wilmington Twp	PA0103641	0.042	CBOD5	25		***
				NH3-N	1.95	3.9	
				Dissolved Oxygen			5

WQM 7.0 D.O.Simulation

SWP Basin Str	eam Code			Stream Name		
20A	35515		NE	SHANNOCK CR	EEK	
<u>RMI</u> 1.530	Total Discharge	1007	<u>) Ana</u>	lysis Temperatu 25.000	re (°C)	Analysis pH 7.136
Reach Width (ft)	Reach Dep	TO MANAGE		Reach WDRati	<u>o</u>	Reach Velocity (fps)
3.888	0.347			11.217		0.066
Reach CBOD5 (mg/L)	Reach Kc (<u>R</u>	each NH3-N (m	g/L)	Reach Kn (1/days) 1.029
18.80 <u>Reach DO (mg/L)</u>	Reach Kr (The second secon			Reach DO Goal (mg/L)	
5,685	28.08	081 Owens				5
Reach Travel Time (days) 1.416	0.142 0.283 0.425 0.566 0.708 0.850 0.991 1.133 1.275	\$ubreach CBOD5 (mg/L) 15.02 12.01 9.60 7.67 6.13 4.90 3.92 3.13 2.50 2.00	1.23 1.06 0.92 0.79 0.69 0.51 0.44 0.38 0.33	D.O. (mg/L) 6.80 7.12 7.36 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.54		

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI	Eleva (ft)		Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	20A	35	515 NESH.	ANNOCK	CREEK		1.53	30 11	40.00	0.75	0.000	00	0.00	✓
2					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth] Temp	<u>Γributary</u> ο pΗ	T	<u>Strean</u> emp	<u>p</u> H	
Corra.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.032	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	25	.00 7.	00	0.00	0.00	
430-10		0.00	0.00	0.000	54/C 50/DEGAN (1760)							*	i	
			Discharge Data											
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Rese Fac		mp	Disc pH		
		Wilm	ington Twp	PA	0103641	0.042	0.000	0.000	0 0	.000	25.00	7.20		
					Pa	arameter	Data							
		Conc Conc Co Parameter Name		ream Conc	Fate Coef									
				ng/L)	(1/days)									
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	El	evation (ft)	Drainage Area (sq mi)	Slop (ft/f	With	VS drawal igd)	Apply FC
	20A	355	515 NESH	ANNOCK	CREEK		0.0	00	937.00	1.6	4 0.00	000	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depti		<u>Tributary</u> np pł	4	<u>Strea</u> Temp	<u>m</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.032	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	.00 2	5.00	7.00	0.00	0.00	
					Di	scharge I	Data							
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Di Fl	sc Res	erve To	oisc emp °C)	Disc pH		
		-				0.0000	0.000	00 0.	.0000	0.000	0.00	7.00	-	
					Pa	rameter l	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
						(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
		_	CBOD5				25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
20A	35515	NESHANNOCK CREEK

RMI	Acute Allocation Discharge Name	Baseline	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	٧	iltiple VLA ng/L)	Critical Reach	Percent Reductio	
1.53	0 Wilmington Twp	9.53	11.79	9.5	3	11.79	0	0	
NH3-N (Chronic Allocati	ions							
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Mult WI (mg	A	Critical Reach	Percent Reduction	
1.53	0 Wilmington Twp	1.3	1.95	1	.3	1.95	0	0	===
issolve	ed Oxygen Alloc	ations							_
		<u>C</u>	BOD5	<u>NH3</u> -	<u>·N</u>	<u>Dissolv</u>	ed Oxygen	Critical	Percent
RMI	Discharge Nar	me Baselii (mg/L			Multiple (mg/L)	Baselin (mg/L)	Mark William and Middle Control	Reach	Reduction
1.5	3 Wilmington Twp		25 25	1.95	1.95	5	5	0	0

17

WQM 7.0 Hydrodynamic Outputs

	SWP Basin Stream Code				Stream Name							
		20A	3	5515			NES	HANNO	CK CREE	K		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
1.530	0.02	0.00	0.02	.065	0.02513	.347	3.89	11.22	0.07	1.416	25.00	7.14
Q1-1	0 Flow											
1.530	0.02	0.00	0.02	.065	0.02513	NA	NA	NA	0.06	1.500	25.00	7.15
Q30-	10 Flow											
1.530	0.03	0.00	0.03	.065	0.02513	NA	NA	NA	0.07	1.345	25.00	7.12

Attachment 3

TRC EVALUATION											
Input appropriate values in A3:A9 and D3:D9											
0.024	= Q stream (cfs)	= CV Daily								
0.042	= Q discharg	je (MGD)	0.5	= CV Hourly							
30	= no. sample	8	1	= AFC_Partial Mix Factor							
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial I	Mix Factor						
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)						
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)						
0	= % Factor o	of Safety (FOS)	0	=Decay Coeffic	eient (K)						
Source	Reference	AFC Calculations		Reference	CFC Calculations						
TRC	1.3.2.iii	WLA afc =	0.137	1.3.2.iii	WLA cfc = 0.126						
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581						
PENTOXSD TRG	5.1b	LTA_afc=	0.051	5.1d	LTA_cfc = 0.073						
Source		Effluer	nt Limit Calcu	77.77.77.7							
PENTOXSD TRG	5.1f		AML MULT =								
PENTOXSD TRG	5.1g		_IMIT (mg/l) =		AFC						
		INST MAX	_IMIT (mg/l) =	0.205							
WLA afc	/ 010/0/ b*Al	FC tc)) + [(AFC Yc*Qs*.019	10d*a/ L*AEC	101							
WLA alc	Markey Advisoration and at 40	C_Yc*Qs*Xs/Qd)]*(1-FOS/10		_16))							
LTAMULT afc		(cvh^2+1))-2.326*LN(cvh^2+									
LTA afc	wla afc*LTA		.,,								
WLA_cfc	(.011/e(-k*Cl	FC_tc) + [(CFC_Yc*Qs*.011/	Qd*e(-k*CFC	_tc))							
	+ Xd + (CF	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)								
LTAMULT_cfc	ACCUPATION AND THE RESIDENCE OF THE RESI										
LTA_cfc											
AML MULT	•	N((cvd^2/no_samples+1)^0.		^2/no_samples-	-1))						
AVG MON LIMIT		J,MIN(LTA_afc,LTA_cfc)*AN	•								
INST MAX LIMIT	1.5*((av_moi	n_limit/AML_MULT)/LTAMUL	.T_afc)								