

Application Type	Renewal
Facility Type	Non- Municipal
5 51	•
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0104078
APS ID	1031351
Authorization ID	1341343

Applicant and Facility Information

Applicant Name	Martha	& Nathan Palm	Facility Name	Anderson MHP
Applicant Address	134 N N	/laysville Road	Facility Address	326 Vernon Road
	Greenv	ille, PA 16125-8632		Greenville, PA 16125-8632
Applicant Contact	Nathan	Palm	Facility Contact	Nathan Palm
Applicant Phone	(724) 8	66-9261	Facility Phone	
Applicant Email	natehea	atherpalm@gmail.com		
Client ID	281458		Site ID	257535
Ch 94 Load Status	Not Ove	erloaded	Municipality	West Salem Township
Connection Status	No Lim	tations	County	Mercer
Date Application Recei	ved	January 19, 2021	EPA Waived?	Yes
Date Application Accept	oted	May 27, 2021	If No, Reason	
Purpose of Application		NPDES renewal		

Summary of Review

No current violations are reported.

Daily DO, pH and TRC monitoring is proposed. This was previously proposed and was later reduced to twice per week for the expiring permit term. For this facility no Shenango River Reservoir based requirements have been established.

Sludge use and disposal description and location(s): No cleaning reported (long term cell bottom storage in place)

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		<i>William 74. Mentzer</i> William H. Mentzer, P.E. / Environmental Engineering Specialist	January 5, 2022
X		Justin C. Dickey Justin C. Dickey, P.E. / Environmental Engineer Manager	January 5, 2022

isonarge, receiving wa	ters and Water Supply Info	Innation		
Outfall No. 001		_	Design Flow (MGD)	.00315
Latitude DP 41° 2	3' 56.40"	_	Longitude DP	-80º 25' 27.20"
Latitude NHD 41° 2	3' 57.09"	_	Longitude NHD	-80º 25' 29.42"
Quad Name			Quad Code	0702
Wastewater Description	Sewage Effluent			
	named Tributary to Big Run	(WWF)	Stream Code	36121
	0027468		RMI	0.7800
Drainage Area 0.0	17		Yield (cfs/mi ²)	0.0555
Q ₇₋₁₀ Flow (cfs) 0			Q7-10 Basis	L Shenango
Elevation (ft) 11	63.44		Slope (ft/ft)	0.0231
Watershed No. 20-	-A		Chapter 93 Class.	WWF
Existing Usesta	tewide		Existing Use Qualifi	ier none
Exceptions to Use	ne		Exceptions to Criter	ria none
Assessment Status	Attaining Use(s)			
Cause(s) of Impairment				
Source(s) of Impairment				
TMDL Status			Name	
Deckare und (Ambient De		Data S		
Background/Ambient Da	lla	Data S	ource	
pH (SU)				
Temperature (°F)				
Hardness (mg/L)				
Other:				
Nearest Downstream Pu	ublic Water Supply Intake	Reynol	ds Water Company	
PWS Waters Big R	un		v at Intake (cfs)	1.5
PWS RMI 0.13		Dist	ance from Outfall (mi)	5.23

Changes Since Last Permit Issuance: none

Other Comments: This discharge should not impact any downstream public water supplies

Treatment Facility Summary								
reatment Facility N	ame: Anderson MHP							
WQM Permit No.	Issuance Date							
4368404	January 14, 1969	Tertiary treatment in a ty	wo-cell lagoon system with g	gas chlorination				
4305403	February 22, 2006	Conversion to tablet feed	chlorination and three cell	series operation				
4305403 A1	November 21, 2006		De-chlorination	•				
	,							
	Degree of			Avg Annual				
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)				
	Secondary With							
Sewage	Ammonia Reduction	Stabilization Lagoon	Hypochlorite	0.0032				
Hydraulic Capacity	Organic Capacity			Biosolids				
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa				
0.0032	11.8	Not Overloaded	Anaerobic Digestion	Other WWTP				

Changes Since Last Permit Issuance: none

Other Comments: WQM 4368404 is part of the 4305403 application. WQM 4305403 is the operating permit and includes WQM 4368404 as part of the design.

Treatment is with a 3-cell lagoon with chlorination and de-chlorination. Lagoon cell bottoms are used for anaerobic sludge digestion and sludge storage.

Compliance History

NOV-21 OCT-21 SEP-21 **JUN-21 MAY-21** APR-21 **MAR-21** FEB-21 JAN-21 **DEC-20** Parameter AUG-21 JUL-21 Flow (MGD) 0.00130 Average Monthly 0.00216 0.00169 0.00292 0.00271 0.00237 0.00217 0.00212 0.00184 0.00166 0.00234 0.00243 pH (S.U.) Minimum 7.4 7.2 7.3 7.33 7.29 7.28 7.28 6.99 7.49 7.38 7.33 6.87 pH (S.U.) Maximum 7.7 7.4 7.4 7.43 7.51 7.58 7.81 7.62 7.78 7.81 7.83 7.63 DO (mg/L) Minimum 8.0 7.1 6.2 6.88 6.5 7.08 6.0 8.03 8.80 9.03 8.8 7.99 TRC (mg/L) Average Monthly 0.01 < 0.01 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01 0.01 0.01 TRC (mg/L) Instantaneous Maximum < 0.01 0.01 < 0.01 < 0.01 < 0.01 0.01 < 0.01 0.01 0.01 0.01 0.01 0.01 CBOD5 (mg/L) Average Monthly 5 7 8 10 18 6 4 < 3.00 6.75 16.45 14.15 9.19 TSS (mg/L) Average Monthly 4 8 7 20 19 7 9 4.50 14.5 17.5 16 5.50 Fecal Coliform (CFU/100 ml) 2 Geometric Mean < 1 < 1 < 1 108 < 1 > 15 2 < 1 1 11.49 < 1.00 Fecal Coliform (CFU/100 ml) Instantaneous Maximum < 1 < 1 < 1 771 < 1 > 2420 4 < 1 1 4 12 < 1.00 Total Nitrogen (mg/L) Average Monthly 3.76 3.89 6.19 2.73 3.51 5.02 1.84 1.45 3.03 4.32 2.36 2.93 Ammonia (mg/L) Average Monthly 2.19 2.3 1.93 0.77 0.49 0.8 0.67 0.62 0.26 1.17 1.00 1.88 Total Phosphorus (mq/L)0.29 0.35 0.26 0.21 Average Monthly 0.38 0.39 0.38 0.34 0.20 0.30 0.21 0.25

DMR Data for Outfall 001 (from December 1, 2020 to November 30, 2021)

Compliance History

Effluent Violations for Outfall 001, from: January 1, 2021 To: November 30, 2021

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	06/30/21	Geo Mean	> 15	CFU/100 ml	200	CFU/100 ml
Fecal Coliform	06/30/21	IMAX	> 2420	CFU/100 ml	1000	CFU/100 ml

Effluent Violations for Outfall 001, from: May 1, 2020 To: March 31, 2021

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
	- / /					
CBOD5	9/30/20	Avg Mo	27.8	Mg/L	25	mg/L

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.00315
Latitude	41º 23' 56.40	11	Longitude	-80º 25' 27.20"
Wastewater D	escription:	Sewage Effluent	-	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: secondary treatment is required

Water Quality-Based Limitations

A Sewerage Program "Reasonable Potential Analysis" determined the following parameters were candidates for limitations: BOD5, CBOD5, TSS, phosphorus, ammonia, chlorine, and pH.

Comments: secondary treatment should be adequate.

Best Professional Judgment (BPJ) Limitations

Parameter	Limit (mg/l)	SBC	Comments
DO	4.0	Daily Minimum	
E. Coli (No./100 mL)	Report	IMAX	
Total Phosphorus	Report	Avg. Mo.	
Total Nitrogen	Report	Avg. Mo.	

Comments: DO daily minimum requirement is being achieved.

E. Coli is based on Ch. 92a.61 and the Departments SOP for Establishing Effluent Limitations for Individual Sewage Permits (SOP No. BPNPSM-PMT-033). E. Coli monitoring of 1/year is a new addition to this permit renewal. JCD

Anti-Backsliding

No non-compliance issues.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	Monitoring Requirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrations (mg/L)				Required	
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	xxx	xxx	xxx	xxx	ххх	1/week	Measured	
pH (S.U.)	XXX	XXX	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab	
DO	ХХХ	xxx	4.0 Daily Min	xxx	xxx	ххх	1/day	Grab	
TRC	ХХХ	XXX	ХХХ	0.5	xxx	1.6	1/day	Grab	
CBOD5	XXX	XXX	xxx	25	xxx	50	2/month	8-Hr Composite	
TSS	ХХХ	xxx	xxx	30	XXX	60	2/month	8-Hr Composite	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	xxx	xxx	2000 Geo Mean	xxx	10000	2/month	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	xxx	xxx	200 Geo Mean	xxx	1000	2/month	Grab	
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab	
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite	
Ammonia	ХХХ	XXX	XXX	Report	XXX	xxx	2/month	8-Hr Composite	
Total Phosphorus	XXX	XXX	XXX	Report	xxx	xxx	2/month	8-Hr Composite	

Compliance Sampling Location: Outfall 001 after disinfection

Other Comments: daily DO, pH and TRC monitoring is proposed.

NPDES Permit Fact Sheet Anderson MHP

С	charger Site nicipality county ES Permit 0.5	Anderson Mi Anderson Mi West Salem Mercer PA0104078	Township				Revised	Wednesday, December 1, 2021 Wednesday, December 1, 2021
					TRC EVA	LUATION		
C	oriate values in E 0.0472 0.0032 30 0.3 0	= Q stream (o = Q discharg = no. sample = Chlorine De = Chlorine De = BAT/BPJ V = % Factor of	fs) e (MGD) s em and of Strea em and of Disch alue f Safety (FOS)	large	0.5 1 1 15 720	= CV Daily = CV Hourly = AFC_Partial M = CFC_Partial M = AFC_Criteria (= CFC_Criteria (= Decay Coeffici	e (min)	
	Source TRC	Reterence 1.3.2.iii	AFC Calculatio	ons WLA afc =	3.106	Referi 1.3.2	000000	CFC Calculations WLA cfc = 3.021
PENTOXSD ⁻ PENTOXSD ⁻		5.1a 5.1b		LTAMULT afc = LTA_afc=	0.373	5.1 5.1	C	LTAMULT cfc = 0.581 LTA_cfc = 1.756
	Into	0.10			1.101	2000		
Source PENTOXSD ⁻	TRG	5.1f			AML MULT =		t Limit Calculat	lions
PENTOXSD "	TRG	5.1g		>	LIMIT (mg/l) = (LIMIT (mg/l) =	0.500	E	3AT/BPJ
WLA afc LTAMULT afc LTA_afc WLA_cfc		+ Xd + (AFC EXP((0.5*LN(wla_afc*LTAM (.011/e(-k*CF)	:_Yc*Qs*Xs/Qc cvh^2+1))-2.328 IULT_afc C_tc) + [(CFC_'	Yc*Qs*.019/Qd*e()]*(1-FOS/100) *LN(cvh*2+1)*0.5) Yc*Qs*.011/Qd*e(-))*4-EOS/100)				
LTAMULT_cfc LTA_cfc			cvd^2/no_samp	1)]*(1-FOS/100) es+1))-2.326*LN(c	vd^2/no_sample	s+1)^0.5)		
AMEMULT AVG MON LIM INST MAX LIMI		MIN(BAT_BP.	J,MIN(LTA_afc,I	nples+1)^0.5)-0.5*l _TA_cfc)*AML_MU J LT)/LTAMULT_af	LT)	mples+1))		
	K*CFC_tc/1440)) FC_tc/1440))HX		*0.011)/(1.547* *Xs/1.547*Qd))					
					Chlorino	Domand	+ (Chlorino Posidual
Stream	Chlorine Requir Reach/Node	ed	= 2	perennial 1	Chlorine 2	Demand	+ (Chlorine Residual
Stream Stream	Chlorine Requir		=	perennial		Demand	+ (Chlorine Residual
Stream Stream Stream	Chlorine Requir Reach/Node Flow	ed	=	perennial 1 intermittent 36121	2 perennial 36121	Demand	+ (Chlorine Residual
Stream Stream Stream Samples	Chlorine Requir Reach/Node Flow Code	ed	=	perennial 1 intermittent	2 perennial	Demand	+ (Chlorine Residual
Stream Stream Stream Samples reach	Chlorine Requir Reach/Node Flow Code Function	ed	= 2 RMI RMI	perennial 1 intermittent 36121 30 1.44 0.41	2 perennial 36121 30 0.41 0	Demand	+ (Chlorine Residual
Stream Stream Stream Samples reach reach	Chlorine Requir Reach/Node Flow Code Function outfall	ed	= 2 RMI RMI feet	perennial 1 intermittent 36121 30 1.44 0.41 5459.52	2 perennial 36121 30 0.41 0 2164.8	Demand	+ (Chlorine Residual
Stream Stream Stream Samples reach reach drainage	Chlorine Requir Reach/Node Flow Code Function outfall	red Conditions average	= 2 RMI RMI feet sq miles mg/L	perennial 1 intermittent 36121 30 1.44 0.41 5459.52 0.07 0.162	2 perennial 36121 30 0.41 0 2164.8 0.85 0.500	Demand	+ (Chlorine Residual
Stream Stream Stream Samples reach treach drainage TRC	Chlorine Requir Reach/Node Flow Code Function outfall Reach End	ed Conditions average maximum	= 2 RMI RMI feet sq miles mg/L mg/L	perennial 1 intermittent 36121 30 1.44 0.41 5459.52 0.07 0.162 0.529	2 perennial 36121 30 0.41 0 2164.8 0.85 0.500 1.600	Demand	+ (Chlorine Residual
Stream Stream Samples reach drainage TRC elevation elevation	Chlorine Requir Reach/Node Flow Code Function outfall Reach End	ed Conditions average maximum modelled modelled	= 2 RMI feet sq miles mg/L feet feet feet	perennial 1 intermittent 36121 30 1.44 0.41 5459.52 0.07 0.162 0.529 1163.44 1016.12	2 perennial 36121 30 0.41 0 2164.8 0.85 0.500 1.600 1016.12 973.29	Demand	+ (Chlorine Residual
Stream Stream Samples reach drainage TRC elevation elevation slope	Chlorine Requir Reach/Node Flow Code Function outfall Reach End	ed Conditions average maximum modelled	= 2 RMI RMI feet sq miles mg/L feet feet foot/foot	perennial 1 intermittent 36121 30 1.44 0.41 5459.52 0.07 0.162 0.529 1163.44 1016.12 0.027	2 perennial 36121 30 0.41 0 2164.8 0.85 0.500 1.600 1016.12 973.29 0.020	Demand	+ (Chlorine Residual
Stream Stream Samples reach drainage TRC elevation slope ow flow	Chlorine Requir Reach/Node Flow Code Function outfall Reach End	ed Conditions average maximum modelled modelled	= 2 RMI feet sq miles mg/L feet feet feet	perennial 1 intermittent 36121 30 1.44 0.41 5459.52 0.07 0.162 0.529 1163.44 1016.12	2 perennial 36121 30 0.41 0 2164.8 0.85 0.500 1.600 1016.12 973.29	Demand	+ (Chlorine Residual
Stream Stream Stream Samples reach drainage TRC elevation slope elevation slope low flow discharge Runoff Intermittent	Chlorine Requir Reach/Node Flow Code Function outfall Reach End limitation	ed Conditions average maximum modelled modelled modelled	= 2 RMI RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mgd hours	perennial 1 intermittent 36121 30 1.44 0.41 5459.52 0.07 0.162 0.529 1163.44 1016.12 0.027 0.055 0.0032 24.000	2 perennial 36121 30 0.41 0 2164.8 0.85 0.500 1.600 1016.12 973.29 0.020 0.055 0.0032 24.000			Chlorine Residual
Stream Stream Samples reach drainage TRC elevation slope ow flow discharge Runoff Intermittent : flow conditio	Chlorine Requir Reach/Node Flow Code Function outfall Reach End limitation Period stream discharg ns.	ed Conditions average maximum modelled modelled modelled	= 2 RMI RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mgd hours d at outfall and	perennial 1 intermittent 36121 30 1.44 0.41 5459.52 0.07 0.162 0.529 1163.44 1016.12 0.027 0.0032 24.000 d estimated peren	2 perennial 36121 30 0.41 0 2164.8 0.85 0.500 1.600 1016.12 973.29 0.020 0.055 0.0032 24.000 mial streaam co			
Stream Stream Stream Samples reach drainage TRC elevation elevation slope ow flow discharge Runoff flow conditio stream	Chlorine Requir Reach/Node Flow Code Function outfall Reach End limitation Period stream discharg ns.	ed Conditions average maximum modelled modelled modelled	= 2 RMI RMI feet sq miles mg/L mg/L feet foot/foot cfs/sq mi mgd hours d at outfall and	perennial 1 intermittent 36121 30 1.44 0.41 5459.52 0.07 0.162 0.529 1163.44 1016.12 0.027 0.055 0.0032 24.000 d estimated peren	2 perennial 36121 30 0.41 0 2164.8 0.85 0.500 1.600 1016.12 973.29 0.020 0.055 0.0032 24.000 nial streaam co			
Stream Stream Stream Samples reach drainage TRC elevation slope ow flow discharge Runoff intermittent : flow conditio stream stream stream	Chlorine Requir Reach/Node Flow Code Function outfall Reach End limitation Period stream discharg ons. flow flow flow chlorine	ed Conditions maximum modelled modelled e. TRC reviwe total demand	= 2 RMI RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mgd hours d at outfall and cfs MGD MGD mg/L	perennial 1 intermittent 36121 30 1.44 0.41 5459.52 0.07 0.162 0.529 1163.44 1016.12 0.027 0.0032 24.000 d estimated peren	2 perennial 36121 30 0.41 0 2164.8 0.85 0.500 1.600 1016.12 973.29 0.020 0.055 0.0032 24.000 mial streaam co			
Stream Stream Stream Samples reach drainage TRC elevation slope elevation slope elevation slope Runoff Intermittent : flow conditio stream stream stream stream discharge	Chlorine Requir Reach/Node Flow Code Function outfall Reach End limitation Period stream discharg ons.	ed Conditions maximum modelled modelled e. TRC reviwe total demand demand	= 2 RMI RMI feet sq miles mg/L mg/L feet foot/foot cfs/sq mi mgd hours d at outfall and	perennial 1 intermittent 36121 30 1.44 0.41 5459.52 0.07 0.162 0.529 1163.44 1016.12 0.027 0.055 0.0032 24.000 d estimated perent 0.00388 0.002510 0.005660	2 perennial 36121 30 0.41 0 2164.8 0.85 0.500 1.600 1016.12 973.29 0.020 0.055 0.0032 24.000 inial streaam co			
Stream Stream Stream Samples reach drainage TRC elevation slope elevation slope low flow discharge Runoff Intermittent : flow condition stream stream stream stream stream stream	Chlorine Requir Reach/Node Flow Code Function outfall Reach End limitation Period stream discharg ns. flow flow chlorine discharge Total Stream,	ed Conditions maximum modelled modelled e. TRC reviwe total demand demand Waste mean	= 2 RMI RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mg/L hours d at outfall and cfs MGD MGD mg/L mg/L ratio BAT	perennial 1 intermittent 36121 30 1.44 0.41 5459.52 0.07 0.162 0.529 1163.44 1016.12 0.027 0.055 0.0032 24.000 d estimated perent 0.00388 0.002510 0.003660 0.4 1.8	2 perennial 36121 30 0.41 0 2164.8 0.85 0.500 1.600 1016.12 973.29 0.020 0.055 0.0032 24.000 mial streaam co 0.04716 0.030479 0.03629 0.3 10.7			
Stream Stream Stream Samples reach drainage TRC elevation elevation slope ow flow discharge Runoff Intermittent : flow conditio stream stream stream discharge stream	Chlorine Requir Reach/Node Flow Code Function outfall Reach End limitation Period stream discharg ns. flow flow flow chlorine discharge Total Stream,	ed Conditions maximum modelled modelled e. TRC reviwe total demand demand Waste	= 2 RMI RMI feet sq miles mg/L feet foot/foot cfs/sq mi mgd hours d at outfall and Cfs MGD MGD MGD mg/L ratio	perennial 1 intermittent 36121 30 1.44 0.41 5459.52 0.07 0.162 0.529 1163.44 1016.12 0.027 0.055 0.0032 24.000 d estimated perent 0.00388 0.002510 0.005660 0.4 1.8	2 perennial 36121 30 0.41 0 2164.8 0.85 0.500 1.600 1016.12 973.29 0.020 0.055 0.0032 24.000 mial streaam co 0.04716 0.030479 0.033629 0.3 10.7			

		Strea Coo		Stre	am Name		RMI		vation ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
		361	21 Trib 36	121 to Big	ı Run		1.44	I C 1	163.44	0.07	0.00000	0.0	o 🗌
0					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Tra∨ Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10 Q1-10 Q30-10	0.055	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00) 2	0.00 7.0)C (0.00 0.0	0

Input Data WQM 7.0

	Dis	scharge D	ata				
Name	Permit Number	Existing Disc Flow (mgd)	Permitte d Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
Anderson MHP	PA0104078	0.0032	0.0032	0.0032	2 0.000	25.00	7.00
	Pa	rameter D	ata				
5		Dis Co			eam Fat onc Co		
Pa	rameter Name	(mg	I/L) (mg	I/L) (m	g/L) (1/da	iys)	
CBOD5		2	5.00	2.00	0.00	1.50	
Dissolved O	xygen	8	4.00	8.24	0.00	00.0	
NH3-N		2	5.00	0.10	0.00	0.70	

Input Data WQM 7.0

		0.000000000	Stream Code Stream		F Stream Name		RMI	Elev: (f		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
		36	36121 Trib 36121 to Big Run			0.41	I C 10	016.12	0.85	0.00000	0.00	\checkmark	
0					St	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Tem	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.055	0.00	0.00	0.000	0.000	0.0	0.00	0.00	2	0.00 7.	0C (0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
					D	ischarge	Data						

		Dis	charge Da	ata					
ļ	Name	Permit Number	Existing Disc Flow (mgd)	Permitte d Disc Flow (mgd)	Desi Dis Flo (mg	ic Res w Fa	erve T ctor	Disc emp (°C)	Disc pH
-			0.0000	0.0000	0.0	0000	0.000	25.00	7.00
		Pai	ameter Da	ata					
	Daram	eter Name	Disc Cor		ib onc	Stream Conc	Fate Coef		
	Falain	eter Marrie	(mg.	′L) (m	g/L)	(mg/L)	(1/days)		
CI	BOD5		25	5.00	2.00	0.00	1.50	0	
Di	issolved Oxyge	en	:	3.00	8.24	0.00	0.00		
N	H3-N		25	5.00	0.10	0.00	0.70		

In	nut	Data	WQM	70
	put	Duru		

		Strea Coo		Stre	am Name		RMI		∨ation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdraw (mgd)		Apply FC
		36	121 Trib 36	6121 to Big	g Run		0.00	ю	973.29	16.70	0.00000	0	.00	\checkmark
					S	tream Da	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> p p	н	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)		
Q7-10	0.055	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	0.00 7.	oc (0.00 0	0.00	
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									
						lochorge	Data							

		Dis	charge D	ata					
	Name	Permit Number	Existing Disc Flow (mgd)	Permit d Dis Flow (mgd	c Di Fl	sc Res	serve T ictor	Disc ⁻ emp (°C)	Disc pH
-			0.0000	0.00	00 0.	0000	0.000	25.00	7.00
		Pai	rameter D	ata					
	,	Parameter Name	Dis Co		Trib Conc	Stream Conc	Fate Coef		
		Farameter Name	(mg	/L) (mg/L)	(mg/L)	(1/days)		
С	BOD5		2	5.00	2.00	0.00	1.50)	
D	issolved	Oxygen	9	4.00	8.24	0.00	0.00)	
Ν	H3-N		2	5.00	0.10	0.00	0.70)	

NPDES Permit Fact Sheet Anderson MHP

	SW	P Basin	<u>Strea</u>	m Code				Stream	Name			
		20A	3	36121			Trib	36121 t	Ŭ.			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
1.440	0.00	0.00	0.00	.0049	0.02709	.251	1.14	4.54	0.03	2.064	22.79	7.00
0.410	0.05	0.00	0.05	.0049	0.01978	.314	3.54	11.28	0.05	0.540	20.47	7.00
Q1-10	0 Flow											
1.440	0.00	0.00	0.00	.0049	0.02709	NA	NA	NA	0.03	2.274	23.32	7.00
0.410	0.03	0.00	0.03	.0049	0.01978	NA	NA	NA	0.04	0.673	20.70	7.00
Q30-'	10 Flow											
1.440	0.01	0.00	0.01	.0049	0.02709	NA	NA	NA	0.03	1.901	22.41	7.00
0.410	0.06	0.00	0.06	.0049	0.01978	NA	NA	NA	0.05	0.461	20.36	7.00

WQM 7.0 Hydrodynamic Outputs

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	95.00%	Use Balanced Technology	✓
D.O. Goal	5		

Wednesday, December 1, 2021

Version 1.1

cute Allocations
Baseline Baseline Multiple Multiple Critical Percent Discharge Name Criterion WLA Criterion WLA Reach Reductio (mg/L) (mg/L) (mg/L) (mg/L)
Anderson MHP NA 50 12.73 50 0 0
NA NA 15.82 NA NA NA
nronic Allocations
Baseline Baseline Multiple Multiple Critical Percent Discharge Name Criterion WLA Criterion WLA Reach Reduction (mg/L) (mg/L) (mg/L)
Anderson MHP NA 25 1.62 25 0 0
NA NA 1.84 NA NA NA
Anderson MHP NA 25 1.62 25 0 0

WQM 7.0 Wasteload Allocations

	Discharge Name	CBOD5		<u>NH3-N</u>		Dissolved	<u>l Oxygen</u>	Critical	Percent
RMI		Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
1.44	Anderson MHP	25	25	25	25	4	4	0	0
0.41		NA	NA	NA	NA	NA	NA	NA	NA

Version 1.1

<u>SWP Basin</u> St 20A	ream Code 36121		Tri	<u>Stream Name</u> b 36121 to Big Run			
50.4 (57)0.0 (74)	1996 th 12753-155 62	2-0 0 0		2 15 12-15 25 35 38 2019	10 VD 52 VD64		
<u>RMI</u>	<u>Total Discharge</u> 0.00	K.S. (24) (24) (24)	<u>)</u> <u>Ana</u>	lysis Temperature (°C) 22.793	Analysis pH		
1.440 Reach Width (ft)					7.000 Reach Valenity (fac)		
1.140	<u>Reach De</u> 0.25	20		Reach WDRatio 4.542	Reach Velocity (fps) 0.030		
Reach CBOD5 (mg/L)	0.231 <u>Reach Kc (1/days)</u> 0.854 <u>Reach Kr (1/days)</u>		R	each NH3-N (mg/L)	<u>Reach Kn (1/days)</u> 0.868 <u>Reach DO Goal (mg/L)</u>		
14.85				14.01			
Reach DO (mg/L)				Kr Equation			
5.873	28.85	9		Owens	NA		
each Travel Time (days)		Subreach	Results				
2.064	TravTime	CBOD5	NH3-N	D.O.			
	(days)	(mg/L)	(mg/L)	(mg/L)			
	0.200	10.45	44 74	C 11			
	0.206	12.15 9.94	11.71	6.41			
	0.413	9.94 8.14	9.79	6.80 7.12			
	0.619 0.826	6.66	8.19 6.84	7.12			
	1.032	5.45					
	1.032	5.45 4.46	5.72 4.78	7.61 7.79			
	1.235	3.65	4.70	7.95			
	1.445	2.99	3.34	8.07			
	1.858	2.99	2.79	8.18			
	1.050	2.44	2.10	0.10			
	2.064	2.00	2.34	8.24			
	2.064	2.00	2.34	8.24			
<u>RMI</u>	Total Discharge	Flow (mgd)		8.24 lysis Temperature (°C)	<u>Analysis pH</u>		
0.410	<u>Total Discharge</u> 0.00	Flow (mgd) 3		lysis Temperature (°C) 20.472	7.000		
0.410 <u>Reach Width (ft)</u>	<u>Total Discharge</u> 0.00 <u>Reach De</u>	<u>Flow (mgd)</u> 3 pth (ft)		lysis Temperature (°C) 20.472 <u>Reach WDRatio</u>	7.000 Reach Velocity (fps)		
0.410 <u>Reach Width (ft)</u> 3.542	<u>Total Discharge</u> 0.00 <u>Reach De</u> 0.31	<u>Flow (mgd)</u> 3 <u>pth (ft)</u> 4	<u>Ana</u>	lysis Temperature (°C) 20.472 <u>Reach WDRatio</u> 11.283	7.000 <u>Reach Velocity (fps)</u> 0.046		
0.410 <u>Reach Width (ft)</u> 3.542 <u>Reach CBOD5 (mg/L)</u>	<u>Total Discharge</u> 0.00 <u>Reach De</u> 0.31 <u>Reach Kc (</u>	<u>Flow (mgd)</u> 3 <u>pth (ft)</u> 4 1/days)	<u>Ana</u>	lysis Temperature (°C) 20.472 <u>Reach WDRatio</u> 11.283 each NH3-N (mg/L)	7.000 <u>Reach Velocity (fps)</u> 0.046 <u>Reach Kn (1/days)</u>		
0.410 <u>Reach Width (ft)</u> 3.542 <u>Reach CBOD5 (mg/L)</u> 2.00	<u>Total Discharge</u> 0.00 <u>Reach De</u> 0.31 <u>Reach Kc (</u> 0.00	<u>Flow (mgd)</u> 3 <u>oth (ft)</u> 4 <u>1/days)</u> 0	<u>Ana</u>	lysis Temperature (°C) 20.472 <u>Reach WDRatio</u> 11.283 each NH3-N (mg/L) 0.48	7.000 <u>Reach Velocity (fps)</u> 0.046 <u>Reach Kn (1/days)</u> 0.726		
0.410 <u>Reach Width (ft)</u> 3.542 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u>	<u>Total Discharge</u> 0.00 <u>Reach De</u> 0.31 <u>Reach Kc (</u> 0.00 <u>Reach Kr (</u>	<u>Flow (mgd)</u> 3 <u>oth (ft)</u> 4 1/days) 0 1/days)	<u>Ana</u>	lysis Temperature (°C) 20.472 <u>Reach WDRatio</u> 11.283 each NH3-N (mg/L) 0.48 <u>Kr Equation</u>	7.000 <u>Reach Velocity (fps)</u> 0.046 <u>Reach Kn (1/days)</u> 0.726 <u>Reach DO Goal (mg/L</u>		
0.410 <u>Reach Width (ft)</u> 3.542 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.243	<u>Total Discharge</u> 0.00 <u>Reach De</u> 0.31 <u>Reach Kc (</u> 0.00	<u>Flow (mgd)</u> 3 <u>oth (ft)</u> 4 1/days) 0 1/days)	<u>Ana</u>	lysis Temperature (°C) 20.472 <u>Reach WDRatio</u> 11.283 each NH3-N (mg/L) 0.48	7.000 <u>Reach Velocity (fps)</u> 0.046 <u>Reach Kn (1/days)</u> 0.726		
0.410 <u>Reach Width (ft)</u> 3.542 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.243 <u>each Travel Time (days)</u>	<u>Total Discharge</u> 0.00 <u>Reach De</u> 0.31 <u>Reach Kc (</u> 0.00 <u>Reach Kr (</u> 23.92	<u>Flow (mgd)</u> 3 <u>pth (ft)</u> 4 <u>1/days)</u> 0 <u>1/days)</u> 55 Subreach	<u>Ana</u> <u>R</u> esults	lysis Temperature (°C) 20.472 <u>Reach WDRatio</u> 11.283 <u>each NH3-N (mg/L)</u> 0.48 <u>Kr Equation</u> Owens	7.000 <u>Reach Velocity (fps)</u> 0.046 <u>Reach Kn (1/days)</u> 0.726 <u>Reach DO Goal (mg/L</u>		
0.410 <u>Reach Width (ft)</u> 3.542 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.243	<u>Total Discharge</u> 0.00 <u>Reach De</u> 0.31 <u>Reach Kc (</u> 0.00 <u>Reach Kr (</u> 23.92 TravTime	<u>Flow (mgd)</u> 3 p <u>th (ft)</u> 4 <u>1/days)</u> 0 <u>1/days)</u> 55 Subreach CBOD5	<u>Ana</u> <u>R</u> esults NH3-N	lysis Temperature (°C) 20.472 <u>Reach WDRatio</u> 11.283 each NH3-N (mg/L) 0.48 <u>Kr Equation</u> Owens D.O.	7.000 <u>Reach Velocity (fps)</u> 0.046 <u>Reach Kn (1/days)</u> 0.726 <u>Reach DO Goal (mg/L</u>		
0.410 <u>Reach Width (ft)</u> 3.542 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.243 <u>each Travel Time (days)</u>	<u>Total Discharge</u> 0.00 <u>Reach De</u> 0.31 <u>Reach Kc (</u> 0.00 <u>Reach Kr (</u> 23.92	<u>Flow (mgd)</u> 3 <u>pth (ft)</u> 4 <u>1/days)</u> 0 <u>1/days)</u> 55 Subreach	<u>Ana</u> <u>R</u> esults	lysis Temperature (°C) 20.472 <u>Reach WDRatio</u> 11.283 <u>each NH3-N (mg/L)</u> 0.48 <u>Kr Equation</u> Owens	7.000 <u>Reach Velocity (fps)</u> 0.046 <u>Reach Kn (1/days)</u> 0.726 <u>Reach DO Goal (mg/L</u>		
0.410 <u>Reach Width (ft)</u> 3.542 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.243 <u>each Travel Time (days)</u>	<u>Total Discharge</u> 0.00 <u>Reach De</u> 0.31 <u>Reach Kc (</u> 0.00 <u>Reach Kr (</u> 23.92 TravTime	<u>Flow (mgd)</u> 3 p <u>th (ft)</u> 4 <u>1/days)</u> 0 <u>1/days)</u> 55 Subreach CBOD5	<u>Ana</u> <u>R</u> esults NH3-N	lysis Temperature (°C) 20.472 <u>Reach WDRatio</u> 11.283 each NH3-N (mg/L) 0.48 <u>Kr Equation</u> Owens D.O.	7.000 <u>Reach Velocity (fps)</u> 0.046 <u>Reach Kn (1/days)</u> 0.726 <u>Reach DO Goal (mg/L</u>		
0.410 <u>Reach Width (ft)</u> 3.542 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.243 <u>each Travel Time (days)</u>	<u>Total Discharge</u> 0.00 <u>Reach De</u> 0.31 <u>Reach Kc (</u> 0.00 <u>Reach Kr (</u> 23.92 TravTime (days)	<u>Flow (mgd)</u> 3 p <u>th (ft)</u> 4 <u>1/days)</u> 5 <u>Subreach CBOD5 (mg/L)</u>	<u>Ana</u> <u>R</u> Results NH3-N (mg/L)	lysis Temperature (°C) 20.472 <u>Reach WDRatio</u> 11.283 each NH3-N (mg/L) 0.48 <u>Kr Equation</u> Owens D.O. (mg/L)	7.000 <u>Reach Velocity (fps)</u> 0.046 <u>Reach Kn (1/days)</u> 0.726 <u>Reach DO Goal (mg/L</u>		
0.410 <u>Reach Width (ft)</u> 3.542 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.243 <u>each Travel Time (days)</u>	<u>Total Discharge</u> 0.00 <u>Reach De</u> 0.31 <u>Reach Kc (</u> 0.00 <u>Reach Kr (</u> 23.92 TravTime (days) 0.054	Flow (mgd) 3 pth (ft) 4 1/days) 5 Subreach CBOD5 (mg/L) 2.00	<u>Ana</u> <u>Results</u> NH3-N (mg/L) 0.46	lysis Temperature (°C) 20.472 Reach WDRatio 11.283 each NH3-N (mg/L) 0.48 <u>Kr Equation</u> Owens D.O. (mg/L) 8.24	7.000 <u>Reach Velocity (fps)</u> 0.046 <u>Reach Kn (1/days)</u> 0.726 <u>Reach DO Goal (mg/L</u>		
0.410 <u>Reach Width (ft)</u> 3.542 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.243 <u>each Travel Time (days)</u>	<u>Total Discharge</u> 0.00 <u>Reach De</u> 0.31 <u>Reach Kc (</u> 0.00 <u>Reach Kr (</u> 23.92 TravTime (days) 0.054 0.108	Flow (mgd) 3 pth (ft) 4 1/days) 0 1/days) 15 Subreach CBOD5 (mg/L) 2.00 2.00	<u>Ana</u> <u>R</u> esults NH3-N (mg/L) 0.46 0.44	lysis Temperature (°C) 20.472 Reach WDRatio 11.283 each NH3-N (mg/L) 0.48 <u>Kr Equation</u> Owens D.O. (mg/L) 8.24 8.24	7.000 <u>Reach Velocity (fps)</u> 0.046 <u>Reach Kn (1/days)</u> 0.726 <u>Reach DO Goal (mg/L</u>		
0.410 <u>Reach Width (ft)</u> 3.542 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.243 each Travel Time (days)	Total Discharge 0.00 Reach De 0.31 Reach KC (0.00 Reach Kr (23.92 TravTime (days) 0.054 0.108 0.162	Flow (mgd) 3 pth (ft) 4 1/days) 0 1/days) 5 Subreach CBOD5 (mg/L) 2.00 2.00 2.00	<u>Results</u> NH3-N (mg/L) 0.46 0.44 0.42	lysis Temperature (°C) 20.472 <u>Reach WDRatio</u> 11.283 <u>each NH3-N (mg/L)</u> 0.48 <u>Kr Equation</u> Owens D.O. (mg/L) 8.24 8.24 8.24 8.24	7.000 <u>Reach Velocity (fps)</u> 0.046 <u>Reach Kn (1/days)</u> 0.726 <u>Reach DO Goal (mg/L</u>		
0.410 <u>Reach Width (ft)</u> 3.542 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.243 each Travel Time (days)	<u>Total Discharge</u> 0.00 <u>Reach De</u> 0.31 <u>Reach Kc (</u> 0.00 <u>Reach Kr (</u> 23.92 TravTime (days) 0.054 0.108 0.162 0.216	Flow (mgd) 3 pth (ft) 4 1/days) 0 1/days) 15 Subreach CBOD5 (mg/L) 2.00 2.00 2.00 2.00 2.00	<u>Results</u> NH3-N (mg/L) 0.46 0.44 0.42 0.41	lysis Temperature (°C) 20.472 <u>Reach WDRatio</u> 11.283 each NH3-N (mg/L) 0.48 <u>Kr Equation</u> Owens D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24	7.000 <u>Reach Velocity (fps)</u> 0.046 <u>Reach Kn (1/days)</u> 0.726 <u>Reach DO Goal (mg/L</u>		
0.410 <u>Reach Width (ft)</u> 3.542 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.243 each Travel Time (days)	Total Discharge 0.00 Reach De 0.31 Reach KC (0.00 Reach Kr (23.92 TravTime (days) 0.054 0.162 0.216 0.270	Flow (mgd) 3 pth (ft) 4 1/days) 0 1/days) 55 Subreach CBOD5 (mg/L) 2.00 2.00 2.00 2.00 2.00 2.00	2 <u>Ana</u> Results NH3-N (mg/L) 0.46 0.44 0.42 0.41 0.39	lysis Temperature (°C) 20.472 Reach WDRatio 11.283 each NH3-N (mg/L) 0.48 <u>Kr Equation</u> Owens D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24 8.24 8.24	7.000 <u>Reach Velocity (fps)</u> 0.046 <u>Reach Kn (1/days)</u> 0.726 <u>Reach DO Goal (mg/L</u>		
0.410 <u>Reach Width (ft)</u> 3.542 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.243 <u>each Travel Time (days)</u>	<u>Total Discharge</u> 0.00 <u>Reach De</u> 0.31 <u>Reach Kc (</u> 0.00 <u>Reach Kr (</u> 23.92 TravTime (days) 0.054 0.108 0.162 0.216 0.270 0.324	Flow (mgd) 3 pth (ft) 4 1/days) 0 1/days) 5 Subreach CBOD5 (mg/L) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	2 <u>Ana</u> Results NH3-N (mg/L) 0.46 0.44 0.42 0.41 0.39 0.38	lysis Temperature (°C) 20.472 Reach WDRatio 11.283 each NH3-N (mg/L) 0.48 <u>Kr Equation</u> Owens D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24	7.000 <u>Reach Velocity (fps)</u> 0.046 <u>Reach Kn (1/days)</u> 0.726 <u>Reach DO Goal (mg/L</u>		
0.410 <u>Reach Width (ft)</u> 3.542 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.243 <u>each Travel Time (days)</u>	Total Discharge 0.00 Reach De 0.31 Reach KC (0.00 Reach KC (0.00 Reach Kr (23.92 TravTime (days) 0.054 0.162 0.216 0.270 0.324 0.378	Flow (mgd) 3 pth (ft) 4 1/days) 0 1/days) 55 Subreach CBOD5 (mg/L) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	Results NH3-N (mg/L) 0.46 0.44 0.42 0.41 0.39 0.38 0.36	lysis Temperature (°C) 20.472 Reach WDRatio 11.283 each NH3-N (mg/L) 0.48 <u>Kr Equation</u> Owens D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24	7.000 <u>Reach Velocity (fps)</u> 0.046 <u>Reach Kn (1/days)</u> 0.726 <u>Reach DO Goal (mg/L</u>		

WQM 7.0 D.O.Simulation

Wednesday, December 1, 2021

Version 1.1

		am Code 6121	<u>Stream Name</u> Trib 36121 to Big Run				
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.440	Anderson MHP	PA0104078	0.003	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

WQM 7.0 Effluent Limits

Wednesday, December 1, 2021

Version 1.1