

Northwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal Facility Type Municipal Major / Minor Minor

NPDES PERMIT FACT SHEET **INDIVIDUAL SEWAGE**

Application No. PA0104108 APS ID 1064989 Authorization ID 1398963

Applicant and Facility Information							
Applicant Name		Beaver Township cipal Authority	Facility Name	Hickory View Terrace WWTP			
Applicant Address	861 M	ount Jackson Road	Facility Address	169 Terrace Drive			
	New C	Castle, PA 16102-2415	<u>-</u>	New Castle, PA 16102			
Applicant Contact	Jerry	Tillia, Chairman (nbtma@noi.net)	Facility Contact	Jerry Tillia, Chairman (nbtma@noi.net)			
Applicant Phone	(724)	667-7999	Facility Phone	(724) 667-7999			
Client ID	13694	.4	Site ID	244309			
Ch 94 Load Status	Not O	verloaded	Municipality	North Beaver Township			
Connection Status	No Lir	nitations	County	Lawrence			
Date Application Rece	eived	June 3, 2022	EPA Waived?	Yes			
Date Application Acce	epted	June 9, 2022	If No, Reason	_ <u></u>			
Purpose of Application	า		- '				

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The Permittee should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

SPECIAL CONDITIONS: II. Solids Management

- A. Stormwater into sewers
- B. Right of way
- D. Effluent Chlorine Optimization and Minimization

C. Solids handling

There are no open violations in efacts for Client ID (136944) as of 1/25/2024.

Approve	Deny	Signatures	Date	
		Stephen A. McCauley	1/25/2024	
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	1/25/2024	
V			Okay to Draft	
^		Vacant / Environmental Engineer Manager	JCD 1/30/2024	

scharge, Receiv	ing Water	s and Water Supply Inf	ormation			
Outfall No. 00			Design Flow (MGD)	0.223		
Latitude 40	58' 10.00)"	Longitude	-80° 27' 1.00"		
Quad Name	•		Quad Code	-		
Wastewater Des	cription:	Sewage Effluent				
Receiving Water	s Hicko	ry Run (TSF)	Stream Code	35394		
NHD Com ID	12556	61032	RMI	5.1		
Drainage Area	17.8		Yield (cfs/mi²)	0.077		
Q ₇₋₁₀ Flow (cfs)	1.37		Q ₇₋₁₀ Basis	calculated		
Elevation (ft)	1002		Slope (ft/ft)	0.00884		
Watershed No.	20-B		Chapter 93 Class.	TSF		
Existing Use			Existing Use Qualifier			
Exceptions to Us	e <u>-</u>	-	Exceptions to Criteria			
Assessment Stat	us	Attaining Use(s)				
Cause(s) of Impa	irment					
Source(s) of Imp	airment	-				
TMDL Status		-	Name			
Background/Amb	oient Data		Data Source			
pH (SU)		8.1	Previous stream background	data		
Temperature (°F))	-	-			
Hardness (mg/L)		<u>-</u>	-			
Other:		_	-			
Nearest Downstr	eam Publi	ic Water Supply Intake	Beaver Falls Municipal Author	rity - Eastvale		
PWS Waters	Beaver		Flow at Intake (cfs) 561			
PWS RMI	5.0		Distance from Outfall (mi)	10.6		

Sludge use and disposal description and location(s):

<u>Sludge is hauled by Daltons Sanitary Service to the New Castle</u> Sanitation Authority, where it is disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

NPDES Permit Fact Sheet Hickory View Terrace WWTP

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.223 MGD of treated sewage from an existing Publicly Owned Treatment Works (POTW) in North Beaver Township

Lawrence County.

Treatment permitted under WQM Permit 3701402 consists of the following: A raw sewage pumping station, an open channel grinder with bypass bar screen, a distribution chamber, three Sequential Batch Reactors (SBRs), three aerobic digesters, and chlorine disinfection with two contact tanks.

1. Streamflow:

Little Shenango River at Greenville Streamgage No.03102500 (1980-2000):

Drainage Area: 104 sq. mi. (USGS StreamStats)

Q₇₋₁₀: <u>8.0</u> cfs (USGS StreamStats)

Yieldrate: <u>0.077</u> cfsm (calculated)

Hickory Run at Outfall 001:

Drainage Area: 17.8 sq. mi. (USGS StreamStats)

Yieldrate: <u>0.077</u> cfsm (calculated above)

% of stream allocated: 100% Basis: No nearby discharges

 Q_{7-10} : <u>1.37</u> cfs (Calculated)

2. Wasteflow:

Maximum discharge: 0.223 MGD = 0.344 cfs

Runoff flow period: 24 hours Basis: Runoff flow for municipal STPs

The calculated stream flow (Q7-10) is greater than 3 times the permitted discharge flow. In accordance with the SOP, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, will not be evaluated with this renewal.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Disinfection.

а. <u>рН</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

NPDES Permit Fact Sheet Hickory View Terrace WWTP

b. Total Suspended Solids

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits

c. Fecal Coliform

05/01 - 09/30: <u>200/100ml</u> (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: <u>2,000/100ml</u> (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/quarter.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows greater than 0.05 MGD

and less than 1.0 MGD.

e. <u>Total Phosphorus</u>

Chapter 96.5 does not apply. Therefore, the previous monitoring for Total Phosphorus will be retained in accordance with the SOP, based on Chapter 92a.61.

f. Total Nitrogen

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: 7.7 Standard Units (S.U.)

Basis: <u>eDMR data from previous 12 months</u>

Discharge temperature: <u>25°C</u> (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 25°C (default value used for TSF modeling)

Background NH₃-N concentration: <u>0.0</u> mg/l

Basis: Default value

Calculated NH₃-N Summer limits: 3.2 mg/l (monthly average)

6.4 mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: 9.6 mg/l (monthly average)

<u>19.2</u> mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer NH3-N limits above (see Attachment 1). The winter limits are

calculated as three times the summer limits. These limits are more restrictive than the previous permit. Based on eDMR data, the more restrictive limits are attainable and will be set with this

renewal without a compliance schedule.

h. CBOD₅

Median discharge pH to be used: 7.7 Standard Units (S.U.)

Basis: <u>eDMR data from previous 12 months</u>

Discharge temperature: <u>25°C</u> (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: <u>25°C</u> (default value used for TSF modeling)

Background CBOD₅ concentration: 2.0 mg/l

Basis: Default value

Calculated CBOD₅ limits: 25.0 mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated CBOD5 limits above (see Attachment 1). These limits are the

same as the previous permit and will be retained.

i. Influent Total Suspended Solids and BOD₅

Monitoring for these two parameters will be retained as recommended in the SOP for POTWs, as authorized under Chapter 92a.61.

j. <u>Dissolved Oxygen (DO)</u>

The technology-based minimum of 4.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. This limit is the same as the previous permit and will be retained.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

k. <u>Disinfection</u>

☐ Ultraviolet (UV) light monitoring

☐ Total Residual Chlorine (TRC) limits: 0.5 mg/l (monthly average)

1.6 mg/l (instantaneous maximum)

Basis: The technology-based TRC limits above were calculated using the Department's TRC

Calculation Spreadsheet (see Attachment 2). The limits are the same as the previous

NPDES Permit and will be retained.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was performed in accordance with State practices for Outfall 001 using the Department's Toxics Management Spreadsheet (see Attachment 3).

Result: Per the SOP, since the discharge concentration for Total Copper was greater than 10% of the calculated WQBEL, 1/quarter monitoring will be added to this renewal.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate).

Nearest Downstream potable water supply (PWS): Beaver Falls Municipal Authority - Eastvale

Distance downstream from the point of discharge: 10.6 miles (approximate)

Parameter	PWS Criteria (mg/l)	Discharge Maximum (mg/l)
TDS	500	750
Chloride	250	315
Bromide	1.0	0.17
Sulfate	250	44.1

Since Bromide and Sulfate are discharged at concentrations less than the criteria at the PWS, no limits or monitoring are necessary as significant dilution is available. However, since TDS and Chloride were greater than the criteria at the PWS, mass balance calculations were performed below:

Mass balance for TDS at the PWS intake:

(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria) (1.37 cfs)(150 mg/l) + (0.344 cfs)(x) = (1.71 cfs)(500 mg/l) x = 1,888 mg/l (renewal application maximum was 750 mg/l - ok)

Mass balance for Chlorides at the PWS intake:

(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria) (1.37 cfs)(0 mg/l) + (0.344 cfs)(x) = (1.71 cfs)(250 mg/l)x = 1,242 mg/l (renewal application maximum was 315 mg/l - ok)

Result: No limits or monitoring are necessary for TDS and Chlorides since significant dilution is available.

6. Industrial/Commercial users:

Business Name	Business Type	Average Flow (gpd)
Mohawk High School	Educational Institution	14,000

7. Flow Information:

The Hickory View Terrace WWTP receives 100% of its flow from the North Beaver Township, which consists of separate sewers.

8. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

9. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

Attachment 3 - Toxics Management Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from December 1, 2022 to November 30, 2023)

Parameter	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22
Flow (MGD)												
Average Monthly	0.0552	0.0566	0.0561	0.0682	0.0547	0.0486	0.0675	0.0853	0.17428	0.0869	0.127	0.0728
Flow (MGD)												
Weekly Average	0.0601	0.0592	0.0604	0.1113	0.0712	0.0525	0.0898	0.1042	0.24644	0.1024	0.142	0.0816
pH (S.U.)												
Instantaneous Minimum	7.21	7.31	7.72	7.54	7.4	7.1	7.1	7.7	7.7	7.8	7.7	7.7
pH (S.U.)												
Instantaneous Maximum	7.98	8.15	8.33	8.38	8.2	7.8	8.4	8.1	8.1	8.1	8.2	8.1
DO (mg/L)												
Instantaneous Minimum	6.28	4.79	8.05	6.33	5.6	4.9	5.6	6.2	6.4	5.9	5.8	6.0
TRC (mg/L)												
Average Monthly	0.5	0.5	0.5	0.4	0.3	0.3	0.3	0.30	0.3	0.3	0.3	0.3
TRC (mg/L)												
Instantaneous Maximum	0.54	0.56	0.59	1.08	0.46	0.44	0.26	0.37	0.36	0.36	0.4	0.38
CBOD5 (lbs/day)												
Average Monthly	2.3	< 1.7	3.6	2.1	3.0	< 2.4	< 1.8	< 1.9	< 1.7	< 1.6	< 2.2	< 1.3
CBOD5 (lbs/day)												
Weekly Average	2.9	2.4	5.6	3.8	5.9	3.7	2.4	3.2	< 2.0	< 1.3	< 3.6	< 1.8
CBOD5 (mg/L)												
Average Monthly	5	< 4	7	5	7	< 6	< 3	< 3	< 2	< 2	< 2	< 2
CBOD5 (mg/L)												
Weekly Average	6	6.98	11.1	7.88	14	8	4	4	2	< 2	< 2	2
BOD5 (lbs/day)												
Raw Sewage Influent 												
Average Monthly	70	72	80	39	91	74	106	128	157	116	143	130
BOD5 (mg/L)												
Raw Sewage Influent 												
Average Monthly	158	151	170.4	95	212	181	193	< 184	190	169.3	139.9	205
TSS (lbs/day)												
Average Monthly	< 2.4	< 2.4	< 10.4	5.0	< 2.3	< 2.1	< 2.9	< 3.6	< 4.3	< 4.0	< 5.4	< 3.2
TSS (lbs/day)												
Raw Sewage Influent 												
Average Monthly	43	57	60	26	98	52	56	84	89	61	99	57
TSS (lbs/day)												
Weekly Average	2.8	< 2.8	20.9	13.0	< 2.9	< 2.3	< 4.2	4.7	< 5.0	< 3.3	< 9.1	< 4.4
TSS (mg/L)												
Average Monthly	< 5	< 5	< 21	12	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5

NPDES Permit Fact Sheet Hickory View Terrace WWTP

TSS (mg/L)												
Raw Sewage Influent 												
Average Monthly	96	122	136	65	233	127	95	113	106	80	101	96
TSS (mg/L)												
Weekly Average	6	6	41	27	7	6	< 5	6	< 5	< 5	< 5	< 5
Fecal Coliform (No./100 ml)												
Geometric Mean	> 26	< 2	< 17	51	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Fecal Coliform (No./100 ml)												
Instantaneous Maximum	> 2420	5	88	24200	2	1	1	1	< 1	< 1	1	< 1
Total Nitrogen (mg/L)												
Average Quarterly			4.97			22.4			3.63			3.11
Ammonia (lbs/day)												
Average Monthly	< 2.4	1.0	3.3	4.54	0.7	< 1.8	< 1.0	< 0.4	< 0.6	< 0.4	< 0.5	< 0.3
Ammonia (mg/L)												
Average Monthly	< 5.0	2.2	6.9	< 1.4	2.0	< 4.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Phosphorus (mg/L)												
Average Quarterly			2.4			1.83			1.46			4.6

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat		Minimum (2)	Required	
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	23.5	37.5	XXX	25.0	40.0	50	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS	28.1	42.2	XXX	30.0	45.0	60	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Total Nitrogen	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite
Ammonia Nov 1 - Apr 30	17.8	XXX	XXX	9.6	XXX	19.2	1/week	24-Hr Composite
Ammonia May 1 - Oct 31	5.9	xxx	XXX	3.2	xxx	6.4	1/week	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) (1)		Concentrati	Minimum ⁽²⁾	Required		
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
				Report	.			24-Hr
Total Phosphorus	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
	Report			Report				24-Hr
Total Copper	Avg Qrtly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are technology-based on Chapter 92a.48. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for influent BOD5 and influent TSS is based on Chapter 92a.61. Monitoring for E. Coli, Total Nitrogen, Ammonia-Nitrogen, Total Phosphorus, and Total Copper is based on Chapter 92a.61.

Attachment 1

WQM 7.0 Effluent Limits

		m Code		Stream Name			
	20B 3	5394		HICKORY RUI	N		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
6.610	Bessemer MA	PA0210471	0.350	CBOD5	25		
				NH3-N	2.48	4.96	
				Dissolved Oxygen			4
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
5.100	Hickory View	PA0104108	0.223	CBOD5	25		
				NH3-N	3.23	6.46	
				Dissolved Oxygen			4

Wednesday, January 24, 2024

Page 1 of 1

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
20B	35394			HICKORY RUN	
RMI 6.610 Reach Width (ft) 19.560 Reach CBOD5 (mg/L) 9.18 Reach DO (mg/L) 6.435	Total Discharge 0.350 Reach De 0.560 Reach Kc (1.14 Reach Kr (9.08	oth (ft) 3 1/days) 1 1/days)		ysis Temperature (°C) 25.000 Reach WDRatio 34.732 each NH3-N (mg/L) 0.77 Kr Equation Tsivoglou	Analysis pH 7.814 Reach Velocity (fps) 0.157 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L) 5
Reach Travel Time (days) 0.586	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.059 0.117 0.176 0.234 0.293 0.352 0.410 0.469 0.527 0.586	8.44 7.76 7.13 6.56 6.03 5.54 5.09 4.68 4.31 3.96	0.73 0.68 0.64 0.61 0.57 0.54 0.51 0.48 0.45	6.22 6.17 6.21 6.31 6.42 6.55 6.67 6.80 6.91 7.02	
RMI 5.100 Reach Width (ft) 20.831 Reach CBOD5 (mg/L) 7.02 Reach DO (mg/L) 6.600	Total Discharge 0.57; Reach De 0.58; Reach Kc (0.59; Reach Kr (17.43	3 oth (ft) 7 <u>1/days)</u> 1 1/days)		lysis Temperature (°C) 25.000 Reach WDRatio 35.460 each NH3-N (mg/L) 0.82 Kr Equation Tsivoglou	Analysis pH 7.811 Reach Velocity (fps) 0.184 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L) 5
Reach Travel Time (days) 1.690	TravTime (days) 0.169 0.338 0.507 0.676 0.845 1.014 1.183 1.352 1.521 1.690	Subreach CBOD5 (mg/L) 6.19 5.46 4.82 4.25 3.75 3.30 2.91 2.57 2.27 2.00	0.69 0.58 0.49 0.41 0.34 0.29 0.24 0.20 0.17 0.14	D.O. (mg/L) 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.54	

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Input Data WQM 7.0

					ШР	ut Date	A VVQ	VI 7 .U						
	SWP Basin			Str	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PV Witho (m	Irawal	App FC
	20B	353	394 HICK	DRY RUN			6.6	10	1045.00	15.50	0.0000	0	0.00	✓
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	ı Ten	<u>Tributary</u> np pH	Te	<u>Strear</u> mp	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°	C)		
Q7-10 Q1-10 Q30-10	0.077	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	5.00 8.	10	0.00	0.00	
					Di	scharge l	Data]	
			Name	Pe	rmit Numbe	Disc	Permiti Disc Flow (mgc	Dis	sc Res	Diserve Ter actor (°0	np	Disc pH		
		Bess	emer MA	PA	0210471	0.350	0.00	00 0.0	0000	0.000	25.00	7.50		
					Pa	arameter l	Data							
				Paramete	er Name			Trib Conc	Stream Conc	Fate Coef				
			2	a annote		(m	ıg/L) (mg/L)	(mg/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

					шр	ut Data	I VVQ	101 7 .0						
	SWP Basin			Str	eam Name		RM	I EI	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (m	Irawal	Apply FC
	20B	350	394 HICK	ORY RUN			5.1	00	1002.00	17.80	0.00000	ס	0.00	✓
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depti		<u>Tributary</u> np pH	Te	<u>Strear</u> mp	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)	(°	C)		
Q7-10 Q1-10 Q30-10	0.077	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.	00 2	5.00 8.	10	0.00	0.00	
					Di	scharge [Data]	
			Name	Pe	rmit Number	Existing Disc r Flow (mgd)	Permit Disc Flow (mgd	c Di v Fl	sc Res	Disserve Ten	ηp	Disc pH		
		Hicko	ory View	PA	0104108	0.2230	0.00	000 0.	0000	0.000 2	5.00	7.70		
					Pa	arameter I	Data							
				Paramete	r Name		sc onc	Trib Conc	Stream Conc	Fate Coef				
	_		ā	. a. amoto		(m	g/L) ((mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				
			NH3-N			1	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

						ut Dutt	4 0000	11.119						
	SWP Basin			Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withdi (mg	rawal	Appl FC
	20B	353	394 HICK	ORY RUN			0.0	00	764.00	27.20	0.00000	li .	0.00	V
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np pH	Ter	<u>Stream</u> np	<u>1</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°C	C)		
Q7-10 Q1-10 Q30-10	0.077	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	5.00 8.	10	0.00	0.00	
					Di	scharge	Data							
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Dis Flo	c Res	Dis serve Ten actor	np	risc pH		
		96				0.000	0.00	0.0	0000	0.000 2	5.00	7.00		
					Pa	arameter	Data							
			1	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
			28		100000000000000000000000000000000000000	(m	ng/L) (r	mg/L)	(mg/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>			
		20B	3	5394			3	HICKOR	Y RUN			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	Flow											
6.610	1.19	0.00	1.19	.5414	0.00539	.563	19.56	34.73	0.16	0.586	25.00	7.81
5.100	1.37	0.00	1.37	.8864	0.00884	.587	20.83	35.46	0.18	1.690	25.00	7.81
Q1-10	Flow											
6.610	0.76	0.00	0.76	.5414	0.00539	NA	NA	NA	0.13	0.687	25.00	7.75
5.100	0.88	0.00	0.88	.8864	0.00884	NA	NA	NA	0.16	1.940	25.00	7.76
Q30-1	10 Flow	•										
6.610	1.62	0.00	1.62	.5414	0.00539	NA	NA	NA	0.18	0.518	25.00	7.86
5.100	1.86	0.00	1.86	.8864	0.00884	NA	NA	NA	0.21	1.513	25.00	7.85

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
20B	35394	HICKORY RUN

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction 0 0 Percent Reduction
6.61	0 Bessemer MA	4.06	9.8	4.06	9.8	0	0
5.10	0 Hickory View	2.86	10.12	4.03	10.12	0	0
H3-N (Chronic Allocati			** ** *			
		Baseline	Baseline	Multiple	Multiple	Critical	
Н3-N (RMI	Chronic Allocati		Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	
RMI		Baseline Criterion	WLA	Criterion	WLA		Reduction

Dissolved Oxygen Allocations

		<u>CBC</u>	DD5	NH	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
6.61	Bessemer MA	25	25	2.48	2.48	4	4	0	0
5.10	Hickory View	25	25	3.23	3.23	4	4	0	0

Attachment 2

TRC EVALUA	ATION				
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9			
1.37	= Q stream (cfs)	0.5	= CV Daily	
0.223	= Q discharg	e (MGD)	0.5	= CV Hourly	
30	= no. sample	8	1	= AFC_Partial N	flix Factor
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial f	Aix Factor
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)
	= BAT/BPJ V		720	= CFC_Criteria	Compliance Time (min)
0	= % Factor o	of Safety (FOS)	0	=Decay Coeffic	ient (K)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 1.246
PENTOXSD TRG	5.1a	LTAMULT afc =	TOTAL STATE OF THE	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	0.479	5.1d	LTA_cfc = 0.724
Source		Effluer	nt Limit Calcu	lations	
PENTOXSD TRG	5.1f		AML MULT =	1.231	
PENTOXSD TRG	5.1g		_IMIT (mg/l) =		BAT/BPJ
c		INST MAX I	_IMIT (mg/l) =	1.635	
WLA afc	STREET, STATESTICS STREET, SELECTION	FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10		:_tc))	
LTAMULT afc	EXP((0.5*LN)	(cvh^2+1))-2.326*LN(cvh^2+	1)^0.5)		
LTA_afc	wla_afc*LTA	MULT_afc			
WLA_cfc		FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-F0S/10	200	_tc))	
LTAMULT cfc		cvd^2/no_samples+1))-2.32		o samples+1)^().5)
LTA_cfc	wla_cfc*LTA	and three-color recommendational interaction and the second and th	(-,		,
AML MULT	2.28	N((cvd^2/no_samples+1)^0.		^2/no_samples+	-1))
AVG MON LIMIT		J,MIN(LTA_afc,LTA_cfc)*AN			
INST MAX LIMIT	1.5*((av_moi	n_limit/AML_MULT)/LTAMUL	.T_afc)		

Attachment 3

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Instructions	Discharge Stream		
Facility: Hi	ckory View Terrace WWTP	NPDES Permit No.: PA0104108	Outfall No.: 001
Evaluation Type	e: Major Sewage / Industrial Waste	Wastewater Description: POTW Sewage	

			Discharge	Characteris	tics			
Design Flow	Design Flow Hardness (mg/l)*	pH (SU)*	F	Partial Mix Fa	s)	Complete Mix Times (mi		
(MGD)*	Hardness (mg/l)*	рп (50)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h
0.223	100	7.7						

					0 if lef	t blank	0.5 if le	eft blank	C	if left blan	k	1 if left	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	
	Total Dissolved Solids (PWS)	mg/L		750									
1	Chloride (PWS)	mg/L		315									
Group	Bromide	mg/L		0.17									
اق	Sulfate (PWS)	mg/L		44.1									
	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L											
	Total Antimony	μg/L											
	Total Arsenic	μg/L											
	Total Barium	μg/L											
	Total Beryllium	μg/L											
	Total Boron	μg/L											
	Total Cadmium	μg/L											
	Total Chromium (III)	μg/L											
	Hexavalent Chromium	μg/L											
	Total Cobalt	μg/L											
	Total Copper	mg/L		0.005									
2 2	Free Cyanide	μg/L											
Group	Total Cyanide	μg/L											
5	Dissolved Iron	μg/L											
en.	Total Iron	μg/L											
	Total Lead	mg/L	<	0.001									
	Total Manganese	μg/L											
	Total Mercury	μg/L											
	Total Nickel	μg/L											
	Total Phenols (Phenolics) (PWS)	μg/L											
	Total Selenium	μg/L											
	Total Silver	μg/L											
	Total Thallium	μg/L											
	Total Zinc	mg/L		0.0151									
	Total Molybdenum	μg/L											
	Acrolein	μg/L	٧										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<										
	Benzene	μg/L	<										
	Bromoform	μg/L	<										

1	Carbon Tetrachloride	μg/L	<				
	Chlorobenzene	μg/L	_				
	Chlorodibromomethane	μg/L	<				
	Chloroethane		<				
	2-Chloroethyl Vinyl Ether	μg/L	<				
		μg/L	<				
	Chloroform	μg/L		<u> </u>			
	Dichlorobromomethane	μg/L	<				
	1,1-Dichloroethane	μg/L	<				
m	1,2-Dichloroethane	μg/L	<				
Group	1,1-Dichloroethylene	μg/L	<				
1%	1,2-Dichloropropane	μg/L	<				
١٥	1,3-Dichloropropylene	μg/L	<				
	1,4-Dioxane	μg/L	<				
	Ethylbenzene	μg/L	<				
	Methyl Bromide	μg/L	<				
	Methyl Chloride	μg/L	<				
	Methylene Chloride	μg/L	<				
	1,1,2,2-Tetrachloroethane	μg/L	<				
	Tetrachloroethylene	μg/L	<				
	Toluene	μg/L	<				
	1,2-trans-Dichloroethylene	μg/L	<	1			
	•		<				
	1,1,1-Trichloroethane	μg/L					
1	1,1,2-Trichloroethane	μg/L	<				
	Trichloroethylene	μg/L	<				
\vdash	Vinyl Chloride	μg/L	<				
	2-Chlorophenol	μg/L	<				
	2,4-Dichlorophenol	μg/L	<				
	2,4-Dimethylphenol	μg/L	<				
	4,6-Dinitro-o-Cresol	μg/L	<				
4	2,4-Dinitrophenol	μg/L	<				
Group	2-Nitrophenol	μg/L	<				
ij	4-Nitrophenol	μg/L	<				
-	p-Chloro-m-Cresol	μg/L	<				
	Pentachlorophenol	μg/L	<				
	Phenol	μg/L	<				
	2,4,6-Trichlorophenol	μg/L	<				
\vdash	Acenaphthene	μg/L	<				
	Acenaphthylene	μg/L	<				
	Anthracene		<	1 1			
		μg/L		1			
	Benzidine	μg/L	<	1			
	Benzo(a) Anthracene	μg/L	<				
	Benzo(a)Pyrene	μg/L	<				
	3,4-Benzofluoranthene	μg/L	<				
1	Benzo(ghi)Perylene	μg/L	<				
1	Benzo(k)Fluoranthene	μg/L	<				
1	Bis(2-Chloroethoxy)Methane	μg/L	<				
1	Bis(2-Chloroethyl)Ether	μg/L	<				
1	Bis(2-Chloroisopropyl)Ether	μg/L	<				
1	Bis(2-Ethylhexyl)Phthalate	μg/L	<				
1	4-Bromophenyl Phenyl Ether	μg/L	<				
1	Butyl Benzyl Phthalate	μg/L	<				
1	2-Chloronaphthalene	μg/L	<				
1	4-Chlorophenyl Phenyl Ether	μg/L	<				
1	Chrysene	µg/L	<				
1	Dibenzo(a,h) Anthrancene	μg/L	<				
1	1,2-Dichlorobenzene	μg/L	<				
1			<				
	1,3-Dichlorobenzene	μg/L					
5	1,4-Dichlorobenzene	μg/L	<				
ΙŽ	3,3-Dichlorobenzidine	μg/L	<				
Group	Diethyl Phthalate	μg/L	<				
١	Dimethyl Phthalate	μg/L	<				
1	Di-n-Butyl Phthalate	μg/L	<				
	2,4-Dinitrotoluene	μg/L	<				

	2,6-Dinitrotoluene	μg/L	<					
	Di-n-Octyl Phthalate	μg/L	<					
	1,2-Diphenylhydrazine	μg/L	<					
	Fluoranthene	µg/L	<					
	Fluorene	μg/L	<					
	Hexachlorobenzene	μg/L	<					
	Hexachlorobutadiene		<					
	Minima Na California de Castro Astronoma a decesar	μg/L	<					
	Hexachlorocyclopentadiene	μg/L						
	Hexachloroethane	μg/L	<					
	Indeno(1,2,3-cd)Pyrene	μg/L	<					
	Isophorone	μg/L	<					
	Naphthalene	μg/L	<					
	Nitrobenzene	μg/L	<					
	n-Nitrosodimethylamine	μg/L	<					
	n-Nitrosodi-n-Propylamine	μg/L	<					
	n-Nitrosodiphenylamine	µg/L	<					
	Phenanthrene	µg/L	<					
	700	μg/L	<					
	Pyrene		<					
_	1,2,4-Trichlorobenzene	μg/L	_					
	Aldrin	μg/L	<					
	alpha-BHC	μg/L	<					
	beta-BHC	μg/L	<					
	gamma-BHC	μg/L	<					
	delta BHC	μg/L	<					
	Chlordane	μg/L	<					
	4.4-DDT	μg/L	<					
	4,4-DDE	μg/L	<					
	4,4-DDD	µg/L	<					
	Dieldrin	μg/L	<					
			<					
	alpha-Endosulfan	μg/L						
	beta-Endosulfan	μg/L	<					
<u>a</u>	Endosulfan Sulfate	μg/L	<					
~	Endrin	μg/L	<					
	Endrin Aldehyde	μg/L	<					
	Heptachlor	μg/L	<					
	Heptachlor Epoxide	μg/L	<					
	PCB-1016	μg/L	<					
	PCB-1221	μg/L	<					
	PCB-1232	μg/L	<					
	PCB-1242	μg/L	<					
	PCB-1248	µg/L	<					
	PCB-1254	μg/L	<					
	PCB-1260		<					
		μg/L						
	PCBs, Total	μg/L	<					
	Toxaphene	μg/L	<					
	2,3,7,8-TCDD	ng/L	<					
	Gross Alpha	pCi/L						
١,	Total Beta	pCi/L	<					
dronb	Radium 226/228	pCi/L	<					
اِ قِ	Total Strontium	μg/L	<					
ן פ	Total Uranium	μg/L	<					
	Osmotic Pressure	mOs/kg						

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Hickory View Terrace WWTP, NPDES Permit No. PA0104108, Outfall 001

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

Hickory View Terrace WWTP, NPDES Permit No. PA0104108, Outfall 001

nstructions	Results		RETUR	N TO INPU	TS (SAVE AS	PDF		PRINT	r)	All	○ Inputs	○ Results	O Limits	
] Hydrod	ynamics														
7-10															
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream Flow (cfs		arge Analy low (cfs)	sis Slope ((ft/ft)	Depth	(ft) V	vidth (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
5.1	1.37			1.37		0.345	0.00	19	0.56	7	19.144	33.79	0.158	1.97	7.997
0	2.09	6		2.0944											
h															
RMI	Stream Flow (cfs)	PWS With (cfs)	T11-700000000000000000000000000000000000	Net Stream Flow (cfs		arge Analy low (cfs)	sis Slope ((ft/ft)	Depth	(ft) V	vidth (ft)	W/D Ratio	Velocity (fps)	Time	Complete Mix Time (min)
5.1	9.79			9.79		0.345	0.00	19	1.23	8	19.144	15.468	0.428	0.729	3.621
0	14.177			14.18											
☑ AF	Pollutants	CC.	T (min): 7	Stream	PMF:		WQC	W	Q Obj	wLA (00	Analysis pH:	7.98	
T (15)		(5)11(6)	(uall)	CV	(µg/L)	Coef	(µg/L)		19/L)					ommonto	
Total Dissolved Solids (PWS) 0 Chloride (PWS) 0			0		0	N/A N/A		N/A N/A	N/A						
	Sulfate (PWS		0	0		0	N/A		V/A	N/A					
Total Copper		0	0		0	13.439		14.0	69.			Chem Transl	lator of 0.96	applied	
Total Lead		0	0		0 6		8	31.6 406			Chem Translator of 0.791 applied				
	Total Zinc		0	0		0	117.180	1	120	596	3		Chem Transla	ator of 0.978	applied
☑ CF	c	CC.	T (min): 7	7.997	PMF:	1	Ana	alysis	Hardne	ess (mg/	1): 1	00	Analysis pH:	7.98	
	Pollutants			Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)		Q Obj ug/L)	WLA (ug/L)		Co	omments	
Total Dis	solved Solid	s (PWS)	(ug/L) 0	0		0	N/A	1	V/A	N/A	4				

Model Results 1/25/2024 Page 5

Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	8.956	9.33	46.4	Chem Translator of 0.96 applied
Total Lead	0	0		0	2.517	3.18	15.8	Chem Translator of 0.791 applied
Total Zinc	0	0		0	118.139	120	596	Chem Translator of 0.986 applied
☑ THH CC	T (min): 7.	997	PMF:	1	Ana	ılysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
otal Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
☑ CRL CC	T (min): 3.	621	PMF:	1	Ana	ılysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	T (min): 3.	621 Stream CV	PMF: Trib Conc (µg/L)	1 Fate Coef	Ana WQC (µg/L)	llysis Hardne WQ Obj (µg/L)	ess (mg/l): WLA (µg/L)	
Pollutants	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj	2.52.	
Pollutants	Conc	Stream CV	Trib Conc	Fate Coef	WQC (µg/L)	WQ Obj (µg/L) N/A N/A	WLA (µg/L) N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS)	Conc (ug/L)	Stream CV 0	Trib Conc	Fate Coef	WQC (µg/L) N/A N/A	WQ Obj (µg/L) N/A N/A N/A	WLA (µg/L) N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Copper	Conc (ug/L) 0	Stream CV 0	Trib Conc	Fate Coef 0	WQC (µg/L) N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A	
Pollutants otal Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS)	Conc (uall) 0 0	Stream CV 0 0	Trib Conc	Fate Coef 0 0	WQC (µg/L) N/A N/A	WQ Obj (µg/L) N/A N/A N/A	WLA (µg/L) N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Copper	Conc (ug/l) 0 0 0 0 0	Stream CV 0 0	Trib Conc	Fate Coef 0 0 0	WQC (µg/L) N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A	

☑ Other Pollutants without Limits or Monitoring

Mass Limits

AML

(lbs/day)

MDL

(lbs/day)

Report

Report

No. Samples/Month:

Pollutants

Total Copper

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

IMAX

Report

mg/L

Governing WQBEL

0.045

WQBEL

Basis

AFC

Comments

Discharge Conc > 10% WQBEL (no RP)

Concentration Limits

MDL

Report

Model Results 1/25/2024 Page 6

NPDES Permit Fact Sheet Hickory View Terrace WWTP

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Lead	N/A	N/A	Discharge Conc < TQL
Total Zinc	0.38	mg/L	Discharge Conc ≤ 10% WQBEL
	1		

Model Results 1/25/2024 Page 7