

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0104272

APS ID 1043552

Authorization ID 1362147

Applicant Name	PA Fi	sh & Boat Commission	Facility Name	North East Access & Marina
Applicant Address	595 E	ast Rolling Ridge Drive	Facility Address	11950 East Lake Road
	Bellef	onte, PA 16823		North East, PA 16428
Applicant Contact		l Gahagan, Chief of Engineering agan@pa.gov)	Facility Contact	Daniel Gahagan, Chief of Engineering (dgahagan@pa.gov)
Applicant Phone	(814)	359-5142	Facility Phone	(814) 359-5142
Client ID	87637	•	Site ID	237678
Ch 94 Load Status	Not O	verloaded	Municipality	North East Township
Connection Status	No Ex	cceptions Allowed	County	Erie
Date Application Rece	eived	July 20, 2021	_ EPA Waived?	Yes
Date Application Acce	pted	July 21, 2021	If No, Reason	<u>_</u> -

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

- A. Stormwater into Sewers
- B. Right of Way
- C. Solids Handling
- D. Effluent Chlorine Optimization and Minimization
- E. Little Assimilative Capacity

SPECIAL CONDITIONS:

- II. Solids Management
- III. Public Sewerage Connection

There is 1 open violation in efacts associated with the subject Client ID (87637) as of 9/28/2023 (see Attachment 3). The violation has been resolved and is no longer open as of 10/12/2023 CWY

The Department has approved an amendment to the Municipality's sewage facilities official plan under Act 537 (Pennsylvania Sewage Facilities Act, the Act of January 24, 1966, P.L. 1535 as amended) in which sewage from the herein approved facilities will be collected via a public sewer system and treated at a publicly owned treatment facility. Upon completion of the proposed sewer, the permittee shall, upon notification from the municipality or DEP, provide for the conveyance of its sewage to the planned facilities, abandon use and decommission the herein approved facilities including the proper disposal of solids, and notify DEP accordingly. The permittee shall adhere to schedules in the approved official plan, amendments to the plan, or other agreements between the permittee and municipality. This permit shall then, upon notice from DEP, terminate and become null and void and shall be relinquished to DEP. 10/12/2023 CWY

Approve	Deny	Signatures	Date
V		Stephen A. McCauley	0/00/0000
_ ^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	9/28/2023
V		Chad W. Yurisic	40/40/0000
Α		Chad W. Yurisic, P.E. / Environmental Engineer Manager	10/13/2023

Outfall No. 001	Design Flow (MGD)	0.005
Latitude 42° 15′ 23.00″	Longitude	-79° 47' 36.00"
Quad Name -	Quad Code	-
Wastewater Description: Sewage Effluent		
Unnamed Tributary to		
Receiving Waters Lake Erie (CWF, MF)	Stream Code	N/A
NHD Com ID <u>123924729</u>	RMI	N/A
Drainage Area 0.16		0.07 (small stream)
Q ₇₋₁₀ Flow (cfs) 0.011		calculated
Elevation (ft) 597	<u> </u>	0.037878
Watershed No. 15-A		CWF, MF
Existing Use		-
Exceptions to Use	Exceptions to Criteria	-
Assessment Status Attaining Use(s)		
Source(s) of Impairment		
TMDL Status -	Name	
Background/Ambient Data	Data Source	
pH (SU)		
Temperature (°F)		
Hardness (mg/L)	-	
Other:		
	Pannaylyania Canada Intarn	national horder
Nearest Downstream Public Water Supply Intake	Pennsylvania - Canada Intern	idilonal boldol
Nearest Downstream Public Water Supply Intake PWS Waters _Lake Erie	Flow at Intake (cfs)	-

Sludge use and disposal description and location(s): All sludge is sent to the Erie Wastewater Treatment Plant, where it is ultimately disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.005 MGD of treated sewage from a non-municipal STP in North East Township, Erie County.

NPDES Permit Fact Sheet North East Access & Marina

Treatment permitted under WQM Permit No. 2590403 A-1 consists of the following: Septic tanks, an alum feeder, mixer, and settling tank for Phosphorus control, a dosing tank, dual surface sand filters, tablet chlorine disinfection with a contact tank, and sodium bisulfite dechlorination with a 45 gallon contact tank.

1. Streamflow:

Unnamed Tributary to Lake Erie at Outfall 001:

Yieldrate: 0.07 cfsm assumed based on stream size

Drainage Area: 0.16 sq. mi. (USGS StreamStats)

% of stream allocated: 100% Basis: No nearby discharges

 Q_{7-10} : ofs calculated

2. Wasteflow:

Maximum discharge: 0.005 MGD = 0.007 cfs

Runoff flow period: 24 hours Basis: Septic tanks

The calculated stream flow (Q7-10) is less than 3 times the permitted discharge flow. In accordance with the SOP, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, will not be evaluated with this renewal.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Disinfection.

a. pH

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency was previously set to 3/week. It will be set as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

b. Total Suspended Solids

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum based on Chapter 92a47.

Basis: <u>Application of Chapter 92a47 technology-based limits</u>. However, the previous limits based on an older "Dry Stream Guidance" will be retained as they are attainable.

c. Fecal Coliform

05/01 - 09/30: 200/100ml (monthly average geometric mean)

<u>1,000/100ml</u> (instantaneous maximum)

10/01 - 04/30: 2,000/100ml (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows between 0.002 MGD and

0.05 MGD.

e. <u>Total Phosphorus</u>

The previous limits based on the Lake Erie 1969 International Joint Committee (IJC) agreement will be retained.

f. <u>Total Nitrogen</u>

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: 7.1 Standard Units (S.U.)

Basis: <u>eDMR data from previous 12 months</u>

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: <u>default value used in the absence of data</u>

Stream Temperature: 20°C (default value used for CWF modeling)

Background NH₃-N concentration: <u>0.1</u> mg/l

Basis: Default value

Calculated NH₃-N Summer limits: <u>5.0</u> mg/l (monthly average)

10.0 mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: <u>15.0</u> mg/l (monthly average)

30.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer limits above (see Attachment 1). The winter limits are

calculated as three times the summer limits. The calculated limits are less restrictive than in the

previous permit. Since the previous limits are attainable, they will be retained.

h. <u>CBOD</u>₅

Median discharge pH to be used: 7.1 Standard Units (S.U.)

Basis: <u>eDMR data from previous 12 months</u>

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: <u>default value used in the absence of data</u>

Stream Temperature: 20°C (default value used for CWF modeling)

Background CBOD₅ concentration: <u>2.0</u> mg/l

Basis: Default value

Calculated CBOD₅ limits: 25.0 mg/l (monthly average)

<u>50.0</u> mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated limits above (see Attachment 1). The calculated limits are less

restrictive than in the previous permit. Since the previous limits are attainable, they will be retained.

i. Dissolved Oxygen (DO)

The technology-based minimum of 4.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. The DO limit is the same as the previous permit and will be retained.

The measurement frequency was previously set to 3/week. It will be set as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

j. <u>Disinfection</u>

☐ Ultraviolet (UV) light

☐ Total Residual Chlorine (TRC) limits: 0.36 mg/l (monthly average)

1.20 mg/l (instantaneous maximum)

Basis: The TRC limits above were calculated at the first point of use at Lake Erie using the

<u>Department's TRC Calculation Spreadsheet (see Attachment 2). The calculated limits are more restrictive than in the previous permit. Since the more restrictive limits are attainable, </u>

they will be added with this renewal.

The measurement frequency was previously set to 3/week. It will be set as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices using the Department's Toxics Management Spreadsheet since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate).

Nearest Downstream potable water supply (PWS): Pennsylvania - Canada International border

Distance downstream from the point of discharge: 15.0 miles

Result: No limits or monitoring is necessary as there is significant dilution available.

6. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

7. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

Attachment 3 - Open Violations by Client

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from August 1, 2022 to July 31, 2023)

Parameter	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22
Flow (MGD)												
Average Monthly	0.001	0.0007	0.0007	0.0004	0.0006	0.0009	0.0008	0.0009	0.0009	0.0008	0.0005	0.0007
Flow (MGD)												
Daily Maximum	0.0011	0.0008	0.008	0.0005	0.0007	0.001	0.001	0.001	0.0011	0.0011	0.0008	0.001
pH (S.U.)												
Minimum	6.5	6.8	7.1	7.1	7.1	7.3	6.8	7.2	7.1	7.0	6.9	6.7
pH (S.U.)												
Maximum	7.1	7.3	7.3	7.4	7.6	7.8	7.3	7.5	7.6	7.4	7.4	7.5
DO (mg/L)												
Minimum	9.2	10.9	8.2	4.9	14.7	5.4	10.4	10.6	11.3	10.1	9.3	6.2
TRC (mg/L)												
Average Monthly	0.1	0.1	0.4	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.2
TRC (mg/L)												
Instantaneous Maximum	0.3	0.3	0.7	0.3	0.1	0.2	0.1	0.4	0.3	0.2	0.4	0.7
CBOD5 (mg/L)												
Average Monthly	< 2.3	< 2.5	< 2.2	2.4	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.2	< 2.6	< 2.2
TSS (mg/L)												
Average Monthly	< 2.5	< 2.5	7.0	< 2.5	< 2.8	< 2.5	< 2.8	< 2.5	< 2.5	3.8	< 4.3	< 2.5
Fecal Coliform (CFU/100 ml)												
Geometric Mean	< 1	< 1	< 1	< 1	< 1	1	< 11	1.0	2	1	< 1.0	< 1
Fecal Coliform (CFU/100 ml)												
Instantaneous Maximum	< 1	1	< 1	< 1	< 1	1	115	1.0	3.1	1	< 1.0	< 1
Total Nitrogen (mg/L)												
Annual Average								< 3.935				
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Phosphorus (mg/L)												
Average Monthly	0.8	0.5	0.5	0.4	0.4	0.3	0.4	0.3	0.5	0.6	0.6	0.6

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements	
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required	
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured	
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab	
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab	
TRC	XXX	XXX	XXX	0.36	XXX	1.2	1/day	Grab	
CBOD5	XXX	XXX	XXX	10.0	XXX	20	2/month	Grab	
TSS	XXX	XXX	XXX	10.0	XXX	20	2/month	Grab	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab	
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab	
Total Nitrogen	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab	
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	9.0	XXX	18	2/month	Grab	
Ammonia May 1 - Oct 31	XXX	XXX	XXX	3.0	XXX	6	2/month	Grab	
Total Phosphorus	XXX	XXX	XXX	1.0	XXX	2	2/month	Grab	

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are technology-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids (TSS), and Fecal Coliforms are technology-based on Chapter 92a.47. The limits for Ammonia-Nitrogen are technology-based on Chapter 93.7. Monitoring for E. Coli and Total Nitrogen is based on Chapter 92a.61. The limits for Total Phosphorus are based on the Lake Erie 1969 International Joint Committee (IJC) agreement.

Attachment 1

WQM 7.0 Effluent Limits

	SWP Basin Str	eam Code		Stream Name	<u> </u>		
	15	62255		Trib 62255 to Lake	e Erie		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.110	NE Marina	PA0104272	0.005	CBOD5	25		
				NH3-N	5.03	10.06	
				Dissolved Oxygen			4

Input Data WQM 7.0

					ıııp,	at Date	4	11.7.0						
	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PV Witho (m	Irawal	App FC
	15	622	255 Trib 6:	2255 to La	ake Erie		0.1	10	597.00	0.16	0.000	00	0.00	V
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Т	<u>Strear</u> emp	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°C)		
Q7-10 Q1-10 Q30-10	0.070	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	0 2	0.00 7.	00	0.00	0.00	
					Di	scharge I	Data						1	
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Dis Flo	c Res w Fa	Dis serve Ter actor (°C	np	Disc pH		
		NE M	larina	PA	0104272	0.0050	0.000	0.0	000	0.000 2	25.00	7.00		
					Pa	arameter I	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
	_		8			(m	ıg/L) (r	mg/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50	•	_		
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWF Basii	1455001515		Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slo (ft/	With	WS drawal	Apply FC
	15	62:	255 Trib 62	2255 to La	ake Erie		0.0		575.00		9 0.00		0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pł	Н	<u>Strea</u> Temp	<u>ım</u> pH	
Corra.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.070	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00	7.00	0.00	0.00	
					Di	scharge I	Data							
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Dis Flo	c Res	erve To)isc emp °C)	Disc pH		
						0.0000	0.000	0.0	0000	0.000	25.00	7.00		
					Pa	rameter l	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				V9.1 (50-100-100-100-100-100-100-100-100-100-1		(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name		
15	62255		Trib	62255 to Lake	Erie	
RMI	Total Discharge	URANI.	l) <u>Ana</u>	lysis Temperatui	e (°C)	Analysis pH
0.110	0.00			22.043		7.000
Reach Width (ft)	Reach De			Reach WDRati	<u>o</u>	Reach Velocity (fps)
1.685	0.27		_	6.050	a s	0.040
Reach CBOD5 (mg/L)	Reach Kc		<u> </u>	each NH3-N (mg	<u>1/L)</u>	Reach Kn (1/days)
11.40	1.32			2.05		0.819 Reach DO Goal (mg/L)
Reach DO (mg/L)	<u>Reach Kr (</u> 28.20			Kr Equation		6
6.510	20.20) [Owens		ь
Reach Travel Time (days)		Subreach	Results			
0.167	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.017	11.12	2.03	6.95		
	0.033	10.86	2.00	7.23		
	0.050	10.60	1.97	7.42		
	0.067	10.34	1.94	7.54		
	0.083	10.10	1.92	7.63		
	0.100	9.85	1.89	7.69		
	0.117	9.62	1.87	7.74		
	0.133	9.39	1.84	7.78		
	0.150	9.16	1.82	7.81		
	0.167	8.94	1.79	7.84		

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code				<u>Stream</u>	<u>Name</u>			
		15	6	2255			Trib	62255 to	Lake Eri	ie		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.110	0.01	0.00	0.01	.0077	0.03788	.279	1.69	6.05	0.04	0.167	22.04	7.00
Q1-1	0 Flow											
0.110	0.01	0.00	0.01	.0077	0.03788	NA	NA	NA	0.04	0.191	22.60	7.00
Q30-	10 Flow	,										
0.110	0.02	0.00	0.02	.0077	0.03788	NA	NA	NA	0.04	0.150	21.68	7.00

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
15	62255	Trib 62255 to Lake Erie

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.11	0 NE Marina	13.52	26.04	13.52	26.04	0	0
IH3-N (Chronic Allocati	ons					
IH3-N (Chronic Allocati		Deceline	Multimla	N. M. Him La	Oritical	Davaant
IH3-N	Chronic Allocati	ONS Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBC	DD5	NH	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
0.11	NE Marina	25	25	5.03	5.03	4	4	0	0

Attachment 2

TRC EVALUA	NOITA						
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9					
0.019	= Q stream (cfs)	0.5	= CV Daily			
0.005	= Q discharg	je (MGD)	0.5	= CV Hourly			
30	= no. sample	8	1	= AFC_Partial I	Mix Factor		
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial I	Mix Factor		
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria Compliance Time (min)			
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)			
0	= % Factor of	of Safety (FOS)	0	=Decay Coefficient (K)			
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 0.775		
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRG	5.1b	LTA_afc=	0.299	5.1d	LTA_cfc = 0.451		
Source		Effluer	nt Limit Calcu	lations			
PENTOXSD TRG	5.1f	Emdo	AML MULT =				
PENTOXSD TRG	5.1g	AVG MON I	_IMIT (mg/l) =		AFC		
	- 3		_IMIT (mg/l) =		5000 SP0		
hall A = C	/ 040/-/ letAl		10 Jt - / Lt 4 C 0	1.4.11			
WLA afc	Manager descriptions and at an	FC_tc)) + [(AFC_Yc*Qs*.019 C Yc*Qs*Xs/Qd)]*(1-FOS/10	season com constant contrato account of the	_lC))			
LTAMULT afc		(cvh^2+1))-2.326*LN(cvh^2+	Name of the last o				
LTA afc	wla afc*LTA	L	1, 0.0,				
Livi_uio	wa_are zrx						
WLA_cfc	(.011/e(-k*C	FC_tc) + [(CFC_Yc*Qs*.011/	Qd*e(-k*CFC	_tc))			
	+ Xd + (CF	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)				
LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.32	6*LN(cvd^2/n	o_samples+1)^(0.5)		
LTA_cfc	wla_cfc*LTA	MULT_cfc					
AML MULT	EXP(2.326*L	N((cvd^2/no samples+1)^0.	5)-0.5*LN(cvd	^2/no samples	- 1))		
AVG MON LIMIT	230	J,MIN(LTA_afc,LTA_cfc)*AN	5	p.100	.,,		
INST MAX LIMIT		_limit/AML_MULT)/LTAMUL	•				
Total							

Attachment 3

WATER MANAGEMENT SYSTEM OPEN VIOLATIONS BY CLIENT

Client ID: 87637 Client: All

Open Violations: 1

CLIENTID	CLIENT	PF ID	FACILITY	PF KIND	INSP PROGRAM	PROGRAM SPECIFIC ID
87637	PA FISH & BOAT COMM	465527	PA FISH BOAT COMM STACKHOUSE F	Transient NonCommunity	Safe Drinking Water	4140824

INSP ID	VIOLATION ID	INSPECTION CATEGORY	VIOLATION DATE	VIOLATION CODE	VIOLATION	PF INSPECTOR	INSP REGION
3529963	989996	PF	03/27/2023	B6A	OTHER VIOLATIONS DEEMED TO BE SIGNIFICANT DEFICIENCIES	HOLLISTER,SONDRA	NCRO