

## Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Renewal

Non
Facility Type

Major / Minor

Minor

## NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0104299

APS ID 1009151

Authorization ID 1301377

**Applicant and Facility Information** Applicant Name Lutherlyn **Facility Name** Camp Lutherlyn Applicant Address P.O. Box 355 Facility Address 500 Lutherlyn Lane Prospect, PA 16052-0355 Prospect, PA 16052-0355 Applicant Contact Debra Roberts **Facility Contact** Eric Roehling (724) 816-2218 Applicant Phone (724) 865-2161 Facility Phone Client ID 63315 Site ID 453389 Ch 94 Load Status Not Overloaded Connoquenessing Township Municipality Connection Status No Limitations County Butler **Date Application Received** December 30, 2019 **EPA Waived?** Yes **Date Application Accepted** January 10, 2020 If No, Reason Purpose of Application Minor Sewage Treatment Facility Renewal for a campground.

#### Summary of Review

This application is for a renewal of an NPDES permit, for an existing Minor discharge of treated sewage from a Non-Municipal STP.

Act 14 – Proof of Notification was submitted and received.

There are no open violations for subject client ID (63315) as of 4/27/2020.

A part 2 WQM permit is not required at this time.

Treatment consist of (WQM Permit No. 1091401): A central pump station directing flow to the head of the treatment process, during which, Ferric Chloride and Aluminum Sulfate are added. The sewage is then treated by a Two-Stage Aerated Lagoon, followed by a Polishing Pond, and then a Chlorine Contact Tank where Sodium Hypochlorite is used for disinfection. The treated sewage then discharges into Semiconon Run.

#### **Public Participation**

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Approve | Deny | Signatures                                                                  | Date        |
|---------|------|-----------------------------------------------------------------------------|-------------|
| Х       |      | Jon F. Bucha<br>Jonathan F. Bucha / Civil Engineer Trainee                  | May 4, 2020 |
| Х       |      | Justin C. Dickey<br>Justin C. Dickey, P.E. / Environmental Engineer Manager | May 4, 2020 |

| ischarge, Receiving Wate                       | rs and Water Supply Info | rmation                    |                                  |
|------------------------------------------------|--------------------------|----------------------------|----------------------------------|
| Outfall No. 001                                |                          | Design Flow (MGD)          | .0155                            |
| Latitude 40° 53′ 4″                            |                          | Longitude                  | -80° 1' 30"                      |
| Quad Name Prospect                             |                          | Quad Code                  | 1105                             |
| Wastewater Description:                        | Sewage Effluent          |                            |                                  |
| Tractoriator 2 ccompaion.                      |                          |                            |                                  |
| Receiving Waters Semi                          | iconon Run (CWF)         | Stream Code                | 34982                            |
| NHD Com ID 1262                                | 17094                    | RMI                        | 2.88                             |
| Drainage Area 2.42                             | mi <sup>2</sup>          | Yield (cfs/mi²)            | 0.043                            |
| Q <sub>7-10</sub> Flow (cfs) 0.10 <sup>4</sup> |                          | Q <sub>7-10</sub> Basis    | Buffalo Creek @ Freeport<br>Gage |
| Elevation (ft) 1157                            |                          | Slope (ft/ft)              | 0.01125                          |
| Watershed No. 20-C                             |                          | Chapter 93 Class.          | CWF                              |
| Existing Use -                                 |                          | Existing Use Qualifier     | -                                |
| Exceptions to Use                              |                          | Exceptions to Criteria     | -                                |
| Assessment Status                              | Attaining Use(s)         |                            |                                  |
| Cause(s) of Impairment                         | Organic Enrichment       |                            |                                  |
| Source(s) of Impairment                        | Fertilizer               |                            |                                  |
| TMDL Status                                    | Final                    | Name Little Conno          | quenessing Creek Watershed       |
| Background/Ambient Data                        | l                        | Data Source                |                                  |
| pH (SU)                                        | 7.4                      | Stream Survey Sample       |                                  |
| Temperature (°F)                               | -                        | -                          |                                  |
| Hardness (mg/L)                                | -                        | -                          |                                  |
| Other:                                         | -                        | -                          |                                  |
| Nearest Downstream Publ                        | lic Water Supply Intake  | Harmony Borough Water Auth | nority                           |
|                                                | onnoquenessing Creek     | Flow at Intake (cfs)       | 2.0                              |
| PWS RMI 1.1                                    |                          | Distance from Outfall (mi) | 12.68                            |

Changes Since Last Permit Issuance: River mile index's, elevations, and drainage areas were revised using streamstats and google earth for modeling purposes. These revisions did not change the effluent limits.

Other Comments: The yield was changed from 0.047 cfsm in the previous renewal permit to 0.043 cfsm due to using more recent data from 1977-2011 at the Buffalo @ Freeport gage, this did not change the modeling effluent limits.

|                          | Tre                                 | atment Facility Summa | ry                  |                           |
|--------------------------|-------------------------------------|-----------------------|---------------------|---------------------------|
| Treatment Facility Na    | me: Camp Lutherlyn                  |                       |                     |                           |
| WQM Permit No.           | Issuance Date                       |                       |                     |                           |
| 1091401                  |                                     |                       |                     |                           |
|                          | Degree of                           |                       |                     | Avg Annual                |
| Waste Type               | Treatment                           | Process Type          | Disinfection        | Flow (MGD)                |
| Sewage                   | Secondary With<br>Ammonia Reduction | Aerated Lagoon        | Hypochlorite        | 0.0155                    |
|                          |                                     | -                     |                     |                           |
|                          |                                     |                       |                     |                           |
| Hydraulic Capacity (MGD) | Organic Capacity<br>(Ibs/day)       | Load Status           | Biosolids Treatment | Biosolids<br>Use/Disposal |
| 0.0155                   |                                     | Not Overloaded        |                     | -                         |

Changes Since Last Permit Issuance: N/A

Other Comments: N/A

### **Compliance History**

### DMR Data for Outfall 001 (from February 1, 2019 to January 31, 2020)

| Parameter             | JAN-20 | DEC-19  | NOV-19  | OCT-19  | SEP-19  | AUG-19 | JUL-19 | JUN-19 | MAY-19  | APR-19  | MAR-19 | FEB-19 |
|-----------------------|--------|---------|---------|---------|---------|--------|--------|--------|---------|---------|--------|--------|
| Flow (MGD)            |        |         | 0.00485 |         |         |        |        |        |         |         |        |        |
| Average Monthly       | 0.0089 | 0.00585 | 8       | 0.00385 | 0.00226 | 0.0089 | 0.0206 | 0.0170 | 0.00979 | 0.00867 | 0.0070 | 0.0177 |
| pH (S.U.)             |        |         |         |         |         |        |        |        |         |         |        |        |
| Minimum               | 7.5    | 7.0     | 7.1     | 6.9     | 6.8     | 7.2    | 7.2    | 7.2    | 7.1     | 7.1     | 6.5    | 7.5    |
| pH (S.U.)             |        |         |         |         |         |        |        |        |         |         |        |        |
| Maximum               | 7.9    | 7.6     | 7.4     | 7.1     | 7.4     | 7.4    | 7.4    | 7.4    | 7.4     | 7.5     | 7.3    | 8.0    |
| TRC (mg/L)            |        |         |         |         |         |        |        |        |         |         |        |        |
| Average Monthly       | 0.18   | 0.06    | 0.20    | 0.18    | 0.03    | 0.13   | 0.16   | 0.04   | 0.04    | 0.14    | 0.05   | 0.04   |
| TRC (mg/L)            |        |         |         |         |         |        |        |        |         |         |        |        |
| Instantaneous         |        |         |         |         |         |        |        |        |         |         |        |        |
| Maximum               | 0.25   | 0.10    | 0.30    | 0.48    | 0.07    | 0.26   | 0.41   | 0.06   | 0.05    | 0.36    | 0.06   | 0.05   |
| CBOD5 (mg/L)          |        |         |         |         |         |        |        |        |         |         |        |        |
| Average Monthly       | 5.0    | 4.6     | 7.4     | 3.55    | 4.7     | 5.8    | 7.4    | 6.7    | 4.7     | 8.4     | 17.0   | 5.4    |
| TSS (mg/L)            |        |         |         |         |         |        |        |        |         |         |        |        |
| Average Monthly       | 18     | 14      | 4.0     | 17      | 12      | 20     | 33     | 19     | 15      | 16      | 27     | 17     |
| Fecal Coliform        |        |         |         |         |         |        |        |        |         |         |        |        |
| (CFU/100 ml)          |        |         |         |         |         |        |        |        |         |         |        |        |
| Geometric Mean        | 2.0    | 6.0     | 18      | 379     | 16      | 1488   | 73     | 119    | 50      | 6       | 5      | 501    |
| Fecal Coliform        |        |         |         |         |         |        |        |        |         |         |        |        |
| (CFU/100 ml)          |        |         |         |         |         |        |        |        |         |         |        |        |
| Instantaneous         |        |         |         |         |         |        |        |        |         |         | _      |        |
| Maximum               | 2.0    | 27.0    | 23      | 1046    | 238     | 2420   | 1733   | 2420   | 816     | 31      | 6      | 727    |
| Total Nitrogen (mg/L) |        |         |         |         |         |        |        |        |         |         |        |        |
| Average Monthly       | 3.16   | 7.67    | 9.0     | 11.10   | 9.62    | 9.74   | 8.46   | 0.1    | 0.1     | 5.10    | 4.79   | 4.68   |
| Ammonia (mg/L)        |        |         |         |         |         |        |        |        |         |         |        |        |
| Average Monthly       | 0.57   | 2.16    | 2.72    | 6.97    | 6.2     | 3.42   | 2.11   | 1.24   | 1.31    | 1.06    | 0.28   | 0.89   |
| Total Phosphorus      |        |         |         |         |         |        |        |        |         |         |        |        |
| (mg/L)                |        | 4.00    |         |         |         |        |        |        | 0.70    |         | 0.04   |        |
| Average Monthly       | 0.59   | 1.23    | 2.41    | 2.30    | 2.4     | 1.95   | 1.6    | 1.10   | 0.70    | 0.81    | 0.61   | 0.52   |

### **Compliance History**

Effluent Violations for Outfall 001, from: March 1, 2019 To: January 31, 2020

| Parameter        | Date     | SBC      | DMR Value | Units      | Limit Value | Units      |
|------------------|----------|----------|-----------|------------|-------------|------------|
| TSS              | 07/31/19 | Avg Mo   | 33        | mg/L       | 30          | mg/L       |
| Fecal Coliform   | 08/31/19 | Geo Mean | 1488      | CFU/100 ml | 200         | CFU/100 ml |
| Fecal Coliform   | 07/31/19 | IMAX     | 1733      | CFU/100 ml | 1000        | CFU/100 ml |
| Fecal Coliform   | 06/30/19 | IMAX     | 2420      | CFU/100 ml | 1000        | CFU/100 ml |
| Fecal Coliform   | 08/31/19 | IMAX     | 2420      | CFU/100 ml | 1000        | CFU/100 ml |
| Total Phosphorus | 09/30/19 | Avg Mo   | 2.4       | mg/L       | 2.0         | mg/L       |
| Total Phosphorus | 10/31/19 | Avg Mo   | 2.30      | mg/L       | 2.0         | mg/L       |
| Total Phosphorus | 11/30/19 | Avg Mo   | 2.41      | mg/L       | 2.0         | mg/L       |

Summary of Inspections: The last compliance inspection at the site occurred on 8/20/2018 by inspector Bruce Leidy, and no violations were noted.

Other Comments: Camp Lutherlyn received effluent violation notices on 11/1/2016, 1/25/2018, and 10/9/2019 for exceeding the effluent limits in Part A of the permit. March 1, 2019 to January 31, 2020 exceeded fecal coliform effluent limit values in June, July, and August, which is expected to be the camps busy time of the year. The previous 5 years showed infrequent fecal coliform effluent limit exceedances. Fecal Coliform and Total Phosphorus limits will need to be closely monitored. The permittee should be able to meet these limits based on historical DMR data and the treatment plant design.

| Development of Effluent Limitations |              |                 |                   |             |   |  |  |
|-------------------------------------|--------------|-----------------|-------------------|-------------|---|--|--|
| Outfall No.                         | 001          |                 | Design Flow (MGD) | .0155       |   |  |  |
| Latitude                            | 40° 53' 4"   |                 | Longitude         | -80° 1' 30" | - |  |  |
| Wastewater [                        | Description: | Sewage Effluent | -                 |             |   |  |  |

#### **Technology-Based Limitations**

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

| Pollutant                       | Limit (mg/l)    | SBC             | Federal Regulation | State Regulation |
|---------------------------------|-----------------|-----------------|--------------------|------------------|
| CBOD                            | 25              | Average Monthly | 133.102(a)(4)(i)   | 92a.47(a)(1)     |
| CBOD <sub>5</sub>               | 40              | Average Weekly  | 133.102(a)(4)(ii)  | 92a.47(a)(2)     |
| Total Suspended                 | 30              | Average Monthly | 133.102(b)(1)      | 92a.47(a)(1)     |
| Solids                          | 45              | Average Weekly  | 133.102(b)(2)      | 92a.47(a)(2)     |
| рН                              | 6.0 – 9.0 S.U.  | Min – Max       | 133.102(c)         | 95.2(1)          |
| Fecal Coliform<br>(5/1 – 9/30)  | 200 / 100 ml    | Geo Mean        | -                  | 92a.47(a)(4)     |
| Fecal Coliform<br>(5/1 – 9/30)  | 1,000 / 100 ml  | IMAX            | -                  | 92a.47(a)(4)     |
| Fecal Coliform<br>(10/1 – 4/30) | 2,000 / 100 ml  | Geo Mean        | -                  | 92a.47(a)(5)     |
| Fecal Coliform<br>(10/1 – 4/30) | 10,000 / 100 ml | IMAX            | -                  | 92a.47(a)(5)     |
| Total Residual Chlorine         | 0.5             | Average Monthly | -                  | 92a.48(b)(2)     |

Comments: All of the Technology-Based Limitations were applied to the NPDES permit as the most stringent effluent limits. These Technology-Based Limitations were also applied on the previous permit renewal.

#### **Water Quality-Based Limitations**

The following limitations were determined through water quality modeling (output files attached):

| Parameter          | Limit (mg/l) | SBC             | Model   |
|--------------------|--------------|-----------------|---------|
| Disssolved Oxygen  | 3            | Average Monthly | WQM 7.0 |
| CBOD5              | 25           | Average Monthly | WQM 7.0 |
| Ammonia-Nitrogen   | 9.84         | Average Monthly | WQM 7.0 |
| (May 1 – Oct 31)   |              |                 |         |
| Ammonia-Nitrogen   |              |                 |         |
| (Nov 1 – April 30) | 29.52        | Average Monthly | WQM 7.0 |

Comments: Modeling results show that the present limits are more stringent than the Water Quality-Based Limitations required to protect water quality. It is recommended that the current limits be re-imposed to protect the stream. A Water Quality Based Phosphorus limit of 2 mg/L is being re-imposed from the previous permit renewal to help control eutrophication in Connoquenessing Creek.

#### **Best Professional Judgment (BPJ) Limitations**

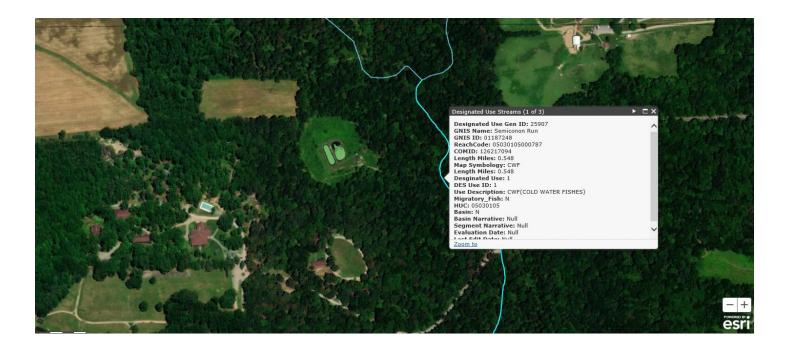
Comments: A Dissolved Oxygen limit of 4 mg/L is being carried over from the previous permit renewal. This D.O. limit is based on the Chapter 93 Instream Standard for Warm Water Fisheries. Total Nitrogen monitoring is based on Ch. 92a.61 and the Departments SOP for Establishing Effluent Limitations for Individual Sewage Permits (SOP No. BPNPSM-PMT-033).

#### **Anti-Backsliding**

Anti-Backsliding considerations do not apply since the effluent limitations are all remaining the same as in the previous permit renewal.

### **Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

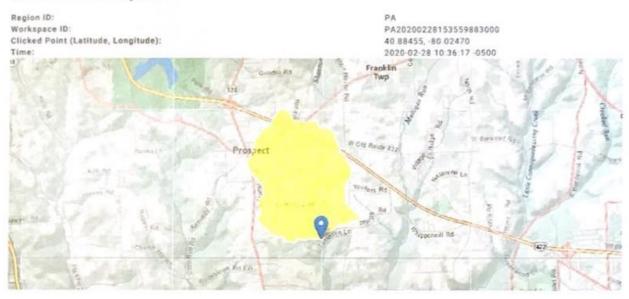

### Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

|                                               |                    | Monitoring Re     | quirements       |                            |     |                        |                          |                   |
|-----------------------------------------------|--------------------|-------------------|------------------|----------------------------|-----|------------------------|--------------------------|-------------------|
| Parameter                                     | Mass Units         | (lbs/day) (1)     |                  | Concentrat                 |     | Minimum <sup>(2)</sup> | Required                 |                   |
| r ai ailletei                                 | Average<br>Monthly | Average<br>Weekly | Minimum          | Average<br>Minimum Monthly |     | Instant.<br>Maximum    | Measurement<br>Frequency | Sample<br>Type    |
| Flow (MGD)                                    | Report             | XXX               | XXX              | XXX                        | XXX | XXX                    | 1/week                   | Measured          |
| pH (S.U.)                                     | XXX                | XXX               | 6.0<br>Daily Min | XXX                        | XXX | 9.0                    | 1/day                    | Grab              |
| DO                                            | XXX                | XXX               | 4.0<br>Daily Min | XXX                        | XXX | XXX                    | 1/day                    | Grab              |
| TRC                                           | XXX                | XXX               | XXX              | 0.5                        | XXX | 1.6                    | 1/day                    | Grab              |
| CBOD5                                         | XXX                | XXX               | XXX              | 25.0                       | XXX | 50                     | 2/month                  | 8-Hr<br>Composite |
| TSS                                           | XXX                | XXX               | XXX              | 30.0                       | XXX | 60                     | 2/month                  | 8-Hr<br>Composite |
| Fecal Coliform (No./100 ml)<br>Oct 1 - Apr 30 | XXX                | XXX               | XXX              | 2000<br>Geo Mean           | XXX | 10000                  | 2/month                  | Grab              |
| Fecal Coliform (No./100 ml)<br>May 1 - Sep 30 | XXX                | XXX               | XXX              | 200<br>Geo Mean            | XXX | 1000                   | 2/month                  | Grab              |
| Total Nitrogen                                | XXX                | XXX               | XXX              | Report                     | XXX | XXX                    | 1/month                  | 8-Hr<br>Composite |
| Ammonia<br>Nov 1 - Apr 30                     | XXX                | XXX               | XXX              | 21.0                       | XXX | 42                     | 2/month                  | 8-Hr<br>Composite |
| Ammonia<br>May 1 - Oct 31                     | XXX                | XXX               | XXX              | 7.0                        | XXX | 14                     | 2/month                  | 8-Hr<br>Composite |
| Total Phosphorus                              | XXX                | XXX               | XXX              | 2.0                        | XXX | 4                      | 2/month                  | 8-Hr<br>Composite |

Compliance Sampling Location: <u>Outfall 001 after disinfection.</u>

|             | Tools and References Used to Develop Permit                                                                                                                     |  |  |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|             |                                                                                                                                                                 |  |  |  |  |  |  |
|             | WQM for Windows Model (see Attachment )                                                                                                                         |  |  |  |  |  |  |
| $\boxtimes$ | TRC Model Spreadsheet (see Attachment )                                                                                                                         |  |  |  |  |  |  |
| $\boxtimes$ | Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.                                                          |  |  |  |  |  |  |
|             | Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.                                                                                           |  |  |  |  |  |  |
|             | Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. |  |  |  |  |  |  |
| $\boxtimes$ | SOP: Establishing Effluent Limitations for Individual Sewage Permits (SOP No. BPNPSM-PMT-033) dated November 9, 2012, Revised August 23, 2013).                 |  |  |  |  |  |  |

# ATTACHMENT A eMAP – Stream Designation



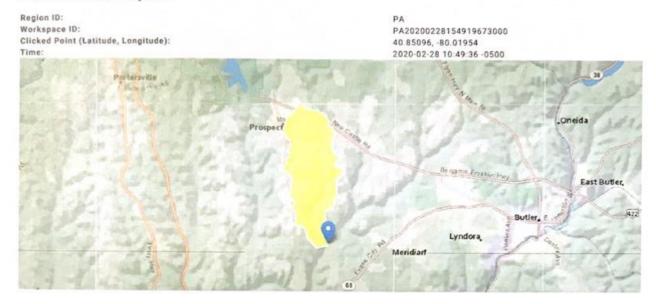

## ATTACHMENT B eMAP – AERIAL MAPPING WITH NEARBY DISCHARGES



## ATTACHMENT C StreamStats REPORT – RMI 2.88 ON SEMICONON RUN

### StreamStats Report




| Basin Characteristics |                                         |        |              |
|-----------------------|-----------------------------------------|--------|--------------|
| Parameter Code        | Parameter Description                   | Value  | Unit         |
| DRNAREA               | Area that drains to a point on a stream | 2.42   | square miles |
| ELEV                  | Mean Basin Elevation                    | 1316.5 | feet         |

| arameter Code               | Parameter Name                                | Value                   | Units                    | Min Limit           |    | Max Limit |
|-----------------------------|-----------------------------------------------|-------------------------|--------------------------|---------------------|----|-----------|
| DRNAREA                     | Drainage Area                                 | 2.42                    | square miles             | 2.26                |    | 1400      |
| ELEV                        | Mean Basin Elevation                          | 1316.5                  | feet                     | 1050                |    | 2580      |
| Low-Flow Statistics Flow Re | DOTS_ow Flow Report 4                         |                         |                          |                     |    |           |
| II: Prediction Interval-Low | er, Plu: Prediction Interval-Upper, SEp: Stan | dard Error of Predictio | n, SE: Standard Error (e | other - see report) |    |           |
| Statistic                   |                                               | Valu                    | e t                      | Init                | SE | SEp       |
| 7 Day 2 Year Low Flow       |                                               | 0.08                    | 3 1                      | t*3/s               | 43 | 43        |
| 30 Day 2 Year Low Flow      |                                               | 0.15                    | 5 1                      | t^3/s               | 38 | 38        |
| 7 Day 10 Year Low Flow      |                                               | 0.02                    | 57 f                     | t*3/s               | 66 | 66        |
| 30 Day 10 Year Low Flo      | w                                             | 0.05                    | 2 f                      | t*3/s               | 54 | 54        |
| O Day 10 Year Low Flo       | w                                             | 0.10                    | 4 f                      | t*3/s               | 41 | 41        |
|                             |                                               |                         |                          |                     |    |           |

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

# ATTACHMENT D StreamStats REPORT – RMI 0.0 ON SEMICONON RUN

### StreamStats Report



| Basin Characteristics |                                         |        |              |
|-----------------------|-----------------------------------------|--------|--------------|
| Parameter Code        | Parameter Description                   | Value  | Unit         |
| DRNAREA               | Area that drains to a point on a stream | 5.25   | square miles |
| ELEV                  | Mean Basin Elevation                    | 1276.4 | feet         |

| Parameter Code                | Parameter Name                               | Value                   | Units                     | Min Limit       |    | Max Limit |
|-------------------------------|----------------------------------------------|-------------------------|---------------------------|-----------------|----|-----------|
| DRNAREA                       | Drainage Area                                | 5.25                    | square miles              | 2.26            |    | 1400      |
| ELEV                          | Mean Basin Elevation                         | 1276.4                  | feet                      | 1050            |    | 2580      |
| ow-Flow Statistics Flow Rep   | Off[Low Flow Region 4]                       |                         |                           |                 |    |           |
| II: Prediction Interval-Lower | r, Plu: Prediction Interval-Upper, SEp: Stan | dard Error of Predictio | n, SE: Standard Error (ot | her see report) |    |           |
| Statistic                     |                                              | Valu                    | e Ur                      | nit             | SE | SEp       |
| 7 Day 2 Year Low Flow         |                                              | 0.19                    | 6 ft                      | 3/s             | 43 | 43        |
| 30 Day 2 Year Low Flow        |                                              | 0.35                    | ft                        | `3/s            | 38 | 38        |
| Day 10 Year Low Flow          |                                              | 0.06                    | 57 ft                     | `3/s            | 66 | 66        |
| 30 Day 10 Year Low Flow       | (                                            | 0.12                    | 5 ft                      | 3/s             | 54 | 54        |
| 0 Day 10 Year Low Flow        |                                              | 0.23                    | 9 ft                      | 3/s             | 41 | 41        |
|                               |                                              |                         |                           |                 |    |           |

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

## ATTACHMENT E WQM 7.0 MODEL OUTPUT FILE

## **WQM 7.0 Effluent Limits**

|       |               | <u>n Code</u><br>982 |                       | SEMICONON R      |                                      |                                  |                                  |
|-------|---------------|----------------------|-----------------------|------------------|--------------------------------------|----------------------------------|----------------------------------|
| RMI   | Name          | Permit<br>Number     | Disc<br>Flow<br>(mgd) | Parameter        | Effl. Limit<br>30-day Ave.<br>(mg/L) | Effl. Limit<br>Maximum<br>(mg/L) | Effl. Limit<br>Minimum<br>(mg/L) |
| 2.880 | Camp Lutheran | PA0104299            | 0.015                 | CBOD5            | 25                                   | TOTAL                            |                                  |
|       |               |                      |                       | NH3-N            | 9.84                                 | 19.68                            |                                  |
|       |               |                      |                       | Dissolved Oxygen |                                      |                                  | 3                                |

## WQM 7.0 D.O.Simulation

| SWP Basin Si<br>20C      | 34982           |                 | s               | Stream Name<br>EMICONON RUN |                      |
|--------------------------|-----------------|-----------------|-----------------|-----------------------------|----------------------|
| RMI                      | Total Discharge | Flow (mgd       | Ana             | lysis Temperature (°C)      | Analysis pH          |
| 2.880                    | 0.018           | 5               |                 | 20.912                      | 7.356                |
| Reach Width (ft)         | Reach De        | oth (ft)        |                 | Reach WDRatio               | Reach Velocity (fps) |
| 5.994                    | 0.364           | 4               |                 | 16.466                      | 0.058                |
| Reach CBOD5 (mg/L)       | Reach Kc (      | 1/days)         | B               | each NH3-N (mg/L)           | Reach Kn (1/days)    |
| 6.19                     | 0.359           | 9               |                 | 1.88                        | 0.751                |
| Reach DO (mg/L)          | Reach Kr (      | 1/days)         |                 | Kr Equation                 | Reach DO Goal (mg/L) |
| 7.287                    | 21.42           | 2               |                 | Owens                       | 6                    |
| Reach Travel Time (days) |                 | Subreach        | Results         |                             |                      |
| 3.017                    | TravTime (days) | CBOD5<br>(mg/L) | NH3-N<br>(mg/L) | D.O.<br>(mg/L)              |                      |
|                          | 0.302           | 5.53            | 1.50            | 8.10                        |                      |
|                          | 0.603           | 4.94            | 1.19            | 8.10                        |                      |
|                          | 0.905           | 4.41            | 0.95            | 8.10                        |                      |
|                          | 1.207           | 3.94            | 0.76            | 8.10                        |                      |
|                          | 1.508           | 3.52            | 0.60            | 8.10                        |                      |
|                          | 1.810           | 3.14            | 0.48            | 8.10                        |                      |
|                          | 2.112           | 2.81            | 0.38            | 8.10                        |                      |
|                          | 2.413           | 2.51            | 0.31            | 8.10                        |                      |
|                          | 2.715           | 2.24            | 0.24            | 8.10                        |                      |
|                          | 3.017           | 2.00            | 0.19            | 8.10                        |                      |

### Input Data WQM 7.0

|                 | SWP<br>Basir |              |                | Stre                | eam Name        |             | RMI                               | Ele          | evation<br>(ft) | Drainage<br>Area<br>(sq mi) |                     | lope<br>ft/ft) | PWS<br>Withdra<br>(mgd | awal | Apply<br>FC |
|-----------------|--------------|--------------|----------------|---------------------|-----------------|-------------|-----------------------------------|--------------|-----------------|-----------------------------|---------------------|----------------|------------------------|------|-------------|
|                 | 20C          | 349          | 982 SEMIC      | ONON R              | RUN             |             | 2.88                              | 80           | 1157.00         | 2.4                         | 12 0.0              | 00000          |                        | 0.00 | ~           |
|                 |              |              |                |                     | Str             | ream Data   | a                                 |              |                 |                             |                     |                |                        |      |             |
| Design<br>Cond. | LFY          | Trib<br>Flow | Stream<br>Flow | Rch<br>Trav<br>Time | Rch<br>Velocity | WD<br>Ratio | Rch<br>Width                      | Rch<br>Depth | Tem             | Tributary<br>p p            | н                   | Tem            | <u>Stream</u><br>p     | рН   |             |
| oona.           | (cfsm)       | (cfs)        | (cfs)          | (days)              | (fps)           |             | (ft)                              | (ft)         | (°C             | )                           |                     | (°C)           |                        |      |             |
| 27-10           | 0.043        | 0.00         |                | 0.000               |                 | 0.0         | 0.00                              | 0.0          | 00 2            | 0.00                        | 7.40                | (              | 0.00                   | 0.00 |             |
| Q1-10<br>Q30-10 |              | 0.00         | 0.00           | 0.000               |                 |             |                                   |              |                 |                             |                     |                |                        |      |             |
|                 |              |              |                |                     | Di              | scharge [   | Data                              |              |                 |                             |                     |                |                        |      |             |
|                 |              |              | Name           | Per                 | rmit Number     | Disc        | Permitte<br>Disc<br>Flow<br>(mgd) | Dis          | sc Res          | erve T<br>ctor              | Disc<br>emp<br>(°C) | Dis            |                        |      |             |
|                 |              | Camp         | p Lutheran     | PA                  | 0104299         | 0.0150      | 0.000                             | 0 0.0        | 0000            | 0.000                       | 25.0                | 0              | 7.20                   |      |             |
|                 |              |              |                |                     | Pa              | rameter [   | Data                              |              |                 |                             |                     |                |                        |      |             |
|                 |              |              |                | Paramete            | r Name          | Dis         |                                   | rib<br>onc   | Stream<br>Conc  | Fate<br>Coef                |                     |                |                        |      |             |
|                 |              |              |                | didilioto           | , ramo          | (m          | g/L) (n                           | ng/L)        | (mg/L)          | (1/days)                    |                     |                |                        |      |             |
|                 |              |              | CBOD5          |                     |                 | :           | 25.00                             | 2.00         | 0.00            | 1.50                        |                     |                |                        |      |             |
|                 |              |              | Dissolved      | Oxygen              |                 |             | 3.00                              | 8.24         | 0.00            | 0.00                        | 1                   |                |                        |      |             |
|                 |              |              | NH3-N          |                     |                 |             | 25.00                             | 0.10         | 0.00            | 0.70                        | 1                   |                |                        |      |             |

### Input Data WQM 7.0

|                 | SWP    |              |                | Stre                | eam Name        |             | RMI          |              | ation<br>ft) | Drainage<br>Area<br>(sq mi) | Slope<br>(ft/ft) | PWS<br>Withdrawal<br>(mgd) | Apply<br>FC |
|-----------------|--------|--------------|----------------|---------------------|-----------------|-------------|--------------|--------------|--------------|-----------------------------|------------------|----------------------------|-------------|
|                 | 20C    | 349          | 82 SEMIC       | CONON R             | UN              |             | 0.00         | 01           | 986.00       | 5.25                        | 0.00000          | 0.00                       | V           |
|                 |        |              |                |                     | S               | tream Da    | ta           |              | -11-         |                             |                  |                            |             |
| Design<br>Cond. | LFY    | Trib<br>Flow | Stream<br>Flow | Rch<br>Trav<br>Time | Rch<br>Velocity | WD<br>Ratio | Rch<br>Width | Rch<br>Depth | Tem          | Tributary<br>p pH           | Tem              | Stream<br>p pH             |             |
| oona.           | (cfsm) | (cfs)        | (cfs)          | (days)              | (fps)           |             | (ft)         | (ft)         | (°C)         |                             | (°C)             | )                          |             |
| Q7-10           | 0.043  | 0.00         | 0.00           | 0.000               | 0.000           | 0.0         | 0.00         | 0.00         | 20           | 0.00 7.4                    | 0 0              | 0.00                       | )           |
| Q1-10           |        | 0.00         | 0.00           | 0.000               | 0.000           |             |              |              |              |                             |                  |                            |             |
| 230-10          |        | 0.00         | 0.00           | 0.000               | 0.000           |             |              |              |              |                             |                  |                            |             |

|             | Dis           | charge D              |                          |      |                           |        |      |              |                      |            |
|-------------|---------------|-----------------------|--------------------------|------|---------------------------|--------|------|--------------|----------------------|------------|
| Name        | Permit Number | Disc<br>Flow<br>(mgd) | Perm<br>Di<br>Flo<br>(mg | sc   | Desi<br>Dis<br>Flo<br>(mg | c R    | eser | ve 7         | Disc<br>remp<br>(°C) | Disc<br>pH |
|             |               | 0.0000                | 0.0                      | 0000 | 0.0                       | 0000   | 0.0  | 000          | 25.00                | 7.00       |
|             | Par           | rameter D             | ata                      |      |                           |        |      |              |                      |            |
|             |               | Dis<br>Co             |                          | Trib |                           | Stream |      | Fate<br>Coef |                      |            |
| Pa          | rameter Name  | (mg                   | J/L)                     | (mg/ | L)                        | (mg/L  | .) ( | 1/days)      |                      |            |
| CBOD5       |               | 2                     | 5.00                     | 2    | 2.00                      | 0.     | 00   | 1.50         | 0                    |            |
| Dissolved O | xygen         |                       | 3.00                     | 8    | 3.24                      | 0.     | 00   | 0.0          | 0                    |            |
| NH3-N       |               | 2                     | 5.00                     | 0    | 0.00                      | 0.     | 00   | 0.7          | 0                    |            |

## WQM 7.0 Hydrodynamic Outputs

| _              | P Basin                                                     |                               | m Code                                                             |                           |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------|-------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | 20C                                                         | 3                             | 4982                                                               |                           |                                                                                                           | SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MICON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ON RUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Stream<br>Flow | PWS<br>With                                                 | Net<br>Stream<br>Flow         | Disc<br>Analysis<br>Flow                                           | Reach<br>Slope            | Depth                                                                                                     | Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W/D<br>Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reach<br>Trav<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analysis<br>Temp                                                                                                                                                                               | Analysis<br>pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (cfs)          | (cfs)                                                       | (cfs)                         | (cfs)                                                              | (ft/ft)                   | (ft)                                                                                                      | (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (fps)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (°C)                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0 Flow         |                                                             |                               |                                                                    |                           |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.10           | 0.00                                                        | 0.10                          | .0232                                                              | 0.01125                   | .364                                                                                                      | 5.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.91                                                                                                                                                                                          | 7.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 Flow         |                                                             |                               |                                                                    |                           |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.07           | 0.00                                                        | 0.07                          | .0232                                                              | 0.01125                   | NA                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.29                                                                                                                                                                                          | 7.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10 Flow        |                                                             |                               |                                                                    |                           |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.14           | 0.00                                                        | 0.14                          | .0232                                                              | 0.01125                   | NA                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.70                                                                                                                                                                                          | 7.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (              | Stream<br>Flow<br>(cfs)<br>0 Flow<br>0.10<br>0 Flow<br>0.07 | Flow With (cfs) (cfs)  0 Flow | Stream   PWS   Net   Stream   Flow   (cfs)   (cfs)   (cfs)   (cfs) | Stream   PWS   Net   Disc | Stream   Flow   With   Stream   Analysis   Slope   Flow   (cfs)   (cfs)   (cfs)   (cfs)   (cfs)   (ft/ft) | Stream   Flow   With   Stream   Analysis   Slope   Flow   (cfs)   (cfs)   (cfs)   (cfs)   (cfs)   (ft/ft)   (ft)     O Flow   0.10   0.00   0.10   .0232   0.01125   .364     O Flow   0.07   0.00   0.07   .0232   0.01125   NA     10 Flow   10 Fl | Stream<br>Flow         PWS<br>With         Net<br>Stream<br>Flow<br>(cfs)         Disc<br>Analysis<br>Flow<br>(cfs)         Reach<br>Flow<br>Flow<br>(cfs)         Depth<br>Slope<br>(ft)         Width<br>(ft)           0 Flow<br>0.10         0.00         0.10         .0232         0.01125         .364         5.99           0 Flow<br>0.07         0.00         0.07         .0232         0.01125         NA         NA           10 Flow<br>10 Flow         0.07         0.0232         0.01125         NA         NA | Stream<br>Flow         PWS<br>With         Net<br>Stream<br>Flow<br>(cfs)         Disc<br>Flow<br>(cfs)         Reach<br>Flow<br>(cfs)         Depth<br>Slope<br>(ft)         Width<br>(ft)         W/D<br>Ratio           0 Flow<br>0.10         0.00         0.10         .0232         0.01125         .364         5.99         16.47           0 Flow<br>0.07         0.00         0.07         .0232         0.01125         NA         NA         NA           10 Flow<br>10 Flow         0.07         .0232         0.01125         NA         NA         NA | Stream<br>Flow         PWS<br>With         Net<br>Stream<br>Flow<br>Flow<br>(cfs)         Disc<br>Stream<br>Flow<br>Flow<br>(cfs)         Reach<br>Flow<br>Flow<br>(cfs)         Depth<br>Slope<br>(ft)         Width<br>Ratio         W/D<br>Ratio         Velocity<br>Ratio           0 Flow<br>0.10         0.00         0.10         .0232         0.01125         .364         5.99         16.47         0.06           0 Flow<br>0.07         0.00         0.07         .0232         0.01125         NA         NA         NA         NA         0.05           10 Flow<br>10 Flow         0.07         0.00         0.07         .0232         0.01125         NA         NA         NA         0.05 | Stream   PWS   Net   Disc   Reach   Depth   Width   W/D   Velocity   Reach   Trav   Time   (cfs)   (cfs)   (cfs)   (cfs)   (cfs)   (ftft)   (ft)   (ft)   (ft)   (ft)   (fts)   (fps)   (days) | Stream Flow         PWS Flow (cfs)         Net Flow (cfs)         Disc Flow Flow (cfs)         Reach Flow (cfs)         Depth Flow (ft)         Width (ft)         W/D Flow (fps)         Velocity Flow Flow (fps)         Analysis Temp Time (fps)           0 Flow 0.10         0.00         0.10         0.0232         0.01125         0.364         5.99         16.47         0.06         3.017         20.91           0 Flow 0.07         0.07         0.00         0.07         0.0232         0.01125         NA         NA         NA         0.05         3.667         21.29           10 Flow 10 Flo |

### **WQM 7.0 Modeling Specifications**

| Parameters         | Both   | Use Inputted Q1-10 and Q30-10 Flows | ~        |
|--------------------|--------|-------------------------------------|----------|
| WLA Method         | EMPR   | Use Inputted W/D Ratio              |          |
| Q1-10/Q7-10 Ratio  | 0.64   | Use Inputted Reach Travel Times     |          |
| Q30-10/Q7-10 Ratio | 1.36   | Temperature Adjust Kr               | <b>~</b> |
| D.O. Saturation    | 90.00% | Use Balanced Technology             | •        |
| D.O. Goal          | 6      |                                     |          |
|                    |        |                                     |          |

### **WQM 7.0 Wasteload Allocations**

| SWP Basin | Stream Code | Stream Name   |
|-----------|-------------|---------------|
| 20C       | 34982       | SEMICONON RUN |

|          |                | (mg/L)                          | (mg/L)                    | Criterion<br>(mg/L)             | WLA<br>(mg/L)             | Reach             | Reduction            |
|----------|----------------|---------------------------------|---------------------------|---------------------------------|---------------------------|-------------------|----------------------|
| 2.880 0  | amp Lutheran   | 6.5                             | 24.88                     | 6.5                             | 24.88                     | 0                 | 0                    |
| NH3-N Ch | ronic Allocati | ons                             |                           |                                 |                           |                   |                      |
| RMI [    | Discharge Name | Baseline<br>Criterion<br>(mg/L) | Baseline<br>WLA<br>(mg/L) | Multiple<br>Criterion<br>(mg/L) | Multiple<br>WLA<br>(mg/L) | Critical<br>Reach | Percent<br>Reduction |
| 2.880 0  | amp Lutheran   | 1.47                            | 9.84                      | 1.47                            | 9.84                      | 0                 | 0                    |

25

Thursday, March 12, 2020

2.88 Camp Lutheran

25

3

3

0

0

9.84

9.84

## ATTACHMENT E TRC SPREADSHEET



| THE PARTY OF THE PARTY OF THE PARTY OF THE         | ite values in A3:A                                                                                                                                                  | A9 and D3:D9                                                                                                                                                                         |                                                                                  |                                  |                       |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------|-----------------------|
| 0.104                                              | = Q stream (cfs)                                                                                                                                                    |                                                                                                                                                                                      | 0.5                                                                              | = CV Daily                       |                       |
| 0.0155                                             | = Q discharge (M                                                                                                                                                    | (GD)                                                                                                                                                                                 | 0.5                                                                              | = CV Hourly                      |                       |
| 30                                                 | = no. samples                                                                                                                                                       |                                                                                                                                                                                      | 1                                                                                | = AFC_Partial !                  | Mix Factor            |
| 0.3                                                | = Chlorine Dema                                                                                                                                                     | nd of Stream                                                                                                                                                                         | 1                                                                                | = CFC_Partial !                  | Mix Factor            |
| 0                                                  | = Chlorine Dema                                                                                                                                                     | nd of Discharge                                                                                                                                                                      | 15                                                                               | = AFC_Criteria                   | Compliance Time (min) |
| 0.5                                                | = BAT/BPJ Value                                                                                                                                                     |                                                                                                                                                                                      | 720                                                                              | = CFC_Criteria                   | Compliance Time (min) |
| 0                                                  | = % Factor of Sa                                                                                                                                                    | ifety (FOS)                                                                                                                                                                          | 0                                                                                | =Decay Coeffic                   | cient (K)             |
| Source                                             | Reference                                                                                                                                                           | AFC Calculations                                                                                                                                                                     |                                                                                  | Reference                        | CFC Calculations      |
| TRC                                                | 1.3.2.iii                                                                                                                                                           | WLA afc = 1                                                                                                                                                                          | 1.403                                                                            | 1.3.2.iii                        | WLA cfc = 1.360       |
| PENTOXSD TRG                                       | 5.1a                                                                                                                                                                | LTAMULT afc = (                                                                                                                                                                      | ).373                                                                            | 5.1c                             | LTAMULT cfc = 0.581   |
| PENTOXSD TRG                                       | 5.1b                                                                                                                                                                | LTA_afc= (                                                                                                                                                                           | 0.523                                                                            | 5.1d                             | LTA_cfc = 0.791       |
| Source                                             |                                                                                                                                                                     | Effluen                                                                                                                                                                              | t Limit Calcul                                                                   | lations                          |                       |
| PENTOXSD TRG                                       | 5.1f                                                                                                                                                                |                                                                                                                                                                                      | AML MULT =                                                                       | 1.231                            |                       |
| PENTOXSD TRG                                       | 5.1g                                                                                                                                                                | AVG MON L                                                                                                                                                                            | IMIT (mg/l) =                                                                    | NAME OF TAXABLE PARTY.           | BAT/BPJ               |
|                                                    |                                                                                                                                                                     |                                                                                                                                                                                      | (9/                                                                              | 1.000                            |                       |
| WLA afc                                            | + Xd + (AFC_Y                                                                                                                                                       | c)) + [(AFC_Yc*Qs*.019/<br>c*Qs*Xs/Qd)]*(1-FOS/100<br>^2+1))-2.326*LN(cvh^2+                                                                                                         | Qd*e(-k*AFC                                                                      |                                  |                       |
| LTAMULT afc                                        | + Xd + (AFC_Y                                                                                                                                                       | c)) + [(AFC_Yc*Qs*.019/<br>c*Qs*Xs/Qd)]*(1-FOS/100<br>^2+1))-2.326*LN(cvh^2+                                                                                                         | Qd*e(-k*AFC                                                                      |                                  |                       |
|                                                    | + Xd + (AFC_Yo<br>EXP((0.5*LN(cvh<br>wla_afc*LTAMUL<br>(.011/e(-k*CFC_1                                                                                             | c)) + [(AFC_Yc*Qs*.019/<br>c*Qs*Xs/Qd)]*(1-FOS/100<br>^2+1))-2.326*LN(cvh^2+                                                                                                         | Qd*e(-k*AFC<br>))<br>1)^0.5)<br>Qd*e(-k*CFC                                      | :_tc))                           |                       |
| LTAMULT afc<br>LTA_afc                             | + Xd + (AFC_Ye<br>EXP((0.5*LN(cvh<br>wla_afc*LTAMUL<br>(.011/e(-k*CFC_t<br>+ Xd + (CFC_Ye                                                                           | (c)) + [(AFC_Yc*Qs*.019/<br>c*Qs*Xs/Qd)]*(1-FOS/100<br>^2+1))-2.326*LN(cvh^2+<br>.T_afc                                                                                              | Qd*e(-k*AFC<br>))<br>()^0.5)<br>Qd*e(-k*CFC                                      | (_tc))<br>_tc))                  | 0.5)                  |
| LTAMULT afc LTA_afc  WLA_cfc  LTAMULT_cfc          | + Xd + (AFC_Ye<br>EXP((0.5*LN(cvh<br>wla_afc*LTAMUL<br>(.011/e(-k*CFC_t<br>+ Xd + (CFC_Ye                                                                           | (c)) + [(AFC_Yc*Qs*.019/<br>c*Qs*Xs/Qd)]*(1-FOS/100<br>^2+1))-2.326*LN(cvh^2+1<br>.T_afc<br>(c) + [(CFC_Yc*Qs*.011/0<br>c*Qs*Xs/Qd)]*(1-FOS/100<br>^2/no_samples+1))-2.326           | Qd*e(-k*AFC<br>))<br>()^0.5)<br>Qd*e(-k*CFC                                      | (_tc))<br>_tc))                  | 0.5)                  |
| LTAMULT afc LTA_afc  WLA_cfc  LTAMULT_cfc  LTA_cfc | + Xd + (AFC_YCEXP((0.5*LN(cvh wla_afc*LTAMUL)) (.011/e(-k*CFC_t)+ Xd + (CFC_YCEXP((0.5*LN(cvd wla_cfc*LTAMUL))) EXP(2.326*LN((c)                                    | (c)) + [(AFC_Yc*Qs*.019/<br>c*Qs*Xs/Qd)]*(1-FOS/100<br>^2+1))-2.326*LN(cvh^2+1<br>.T_afc<br>(c) + [(CFC_Yc*Qs*.011/0<br>c*Qs*Xs/Qd)]*(1-FOS/100<br>^2/no_samples+1))-2.326<br>.T_cfc | Qd*e(-k*AFC<br>))<br>1)^0.5)<br>Qd*e(-k*CFC<br>))<br>*LN(cvd^2/n<br>)-0.5*LN(cvd | _tc))<br>_tc))<br>o_samples+1)^( |                       |
| LTAMULT afc<br>LTA_afc                             | + Xd + (AFC_YC<br>EXP((0.5*LN(cvh<br>wla_afc*LTAMUL<br>(.011/e(-k*CFC_t<br>+ Xd + (CFC_YC<br>EXP((0.5*LN(cvd<br>wla_cfc*LTAMUL<br>EXP(2.326*LN((c<br>MIN(BAT_BPJ,MI | (c)) + [(AFC_Yc*Qs*.019/<br>c*Qs*Xs/Qd)]*(1-FOS/100<br>^2+1))-2.326*LN(cvh^2+1<br>.T_afc<br>(c) + [(CFC_Yc*Qs*.011/0<br>c*Qs*Xs/Qd)]*(1-FOS/100<br>^2/no_samples+1))-2.326           | Qd*e(-k*AFC<br>))<br>()^0.5)<br>Qd*e(-k*CFC<br>))<br>*LN(cvd^2/n<br>)-0.5*LN(cvd | _tc))<br>_tc))<br>o_samples+1)^( |                       |