

Application Type Renewal Facility Type Municipal Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0110469

 APS ID
 869760

 Authorization ID
 1398836

Applicant and Facility Information

Applicant Name	Patton Borough	Facility Name	Patton Borough STP
Applicant Address	800 4th Avenue	Facility Address	Logging Road 11054
	Patton, PA 16668-0175		Patton, PA 16668
Applicant Contact	Donna Dunegan	Facility Contact	Michelle Baker
Applicant Phone	(814) 676-3641	Facility Phone	814-674-3641
Client ID	37516	Site ID	244488
Ch 94 Load Status	Not Overloaded	Municipality	Elder Township
Connection Status	Dept. Imposed Connection Prohibitions	County	Cambria
Date Application Receiv	vedJune 3, 2022	EPA Waived?	No
Date Application Accep	ted June 8, 2022	If No, Reason	Significant CB Discharge
Purpose of Application	Renewal of NPDES permit for discl	harge of treated sewag	e

Summary of Review

The applicant has applied for the renewal of NPDES Permit PA0110469. The previous permit was issued on November 17, 2017 and will expire on November 30, 2022.

Sewage from this plant is treated with screening, anoxic selectors, oxidation ditches, clarifiers, an aerobic digestor, and UV light disinfection.

There are two SSOs at this facility, located at the Highland Avenue and Palmer avenue pump stations. The facility is managing the SSOs as part of a Corrective Action Plan that was initiated with the DEP in September 2019.

The applicant is currently enrolled in and will continue to use eDMR.

The Act 14-PL 834 Municipal Notification was provided by the May 31, 2022 letters and no comments were received.

Below is a summary of changes made to this permit:

- E. Coli monitoring was imposed
- Ammonia-nitrogen limits became more stringent
- Monitoring frequencies for Total Nitrogen and Total Phosphorus have been updated
- Mass loading limits for CBOD₅ and TSS have been rounded to comply with DEP guidance. They are slightly more stringent than the previous cycle.

Sludge use and disposal description and location(s): Laurel Highlands Landfill, Cambria County

Approve	Deny	Signatures	Date
x		grace Polaboshi	
		Grace Polakoski, E.I.T. / Environmental Engineering Specialist	August 2, 2022
x		MAHBUBA IASMIN	
		Mahbuba lasmin, Ph.D., P.E. / Environmental Engineer Manager	August 12, 2022

Summary of Review

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Info	rmation
Outfall No. 001	Design Flow (MGD) 0.54
Latitude 40° 38' 13.19"	Longitude78º 38' 22.04"
Quad Name Hastings	Quad Code 40078F6
Wastewater Description: Sewage Effluent	
Receiving Waters Chest Creek (CWF)	Stream Code <u>26798</u>
NHD Com ID61837371	RMI25.34
Drainage Area 44.7 sq. mi.	Yield (cfs/mi ²) 0.068
Q ₇₋₁₀ Flow (cfs) <u>3.06</u>	Q7-10 Basis USGS StreamStats
Elevation (ft) 1727	Slope (ft/ft)
Watershed No. 8-B	Chapter 93 Class. CWF
Existing Use	Existing Use Qualifier
Exceptions to Use	Exceptions to Criteria
Assessment Status Attaining Use(s)	
Cause(s) of Impairment N/A	
Source(s) of Impairment N/A	
	Chest Creek Sediment TMDL, West
TMDL Status Final. Final	Branch Susquehanna River Watershed Name TMDL
TMDL Status Final, Final	
Background/Ambient Data	Data Source
5	Data Source
pH (SU)	
Temperature (°F)	·
Hardness (mg/L)	
Other:	
Nearest Downstream Public Water Supply Intake	Shawville Power Plant
PWS Waters West Branch Susquehanna River	Flow at Intake (cfs)
PWS RMI	
	Distance from Outfall (mi) <u>69.34</u>

Changes Since Last Permit Issuance: USGS StreamStats was used for the Q7-10 flow instead of Bulletin #12.

Other Comments:

Chest Creek Watershed Sediment TMDL

A TMDL for the Chest Creek Watershed was approved by the EPA on July 29, 2011 for the control of excessive siltation. In accordance with 40 CFR § 122.44(d)(1)(vii)(B), when developing WQBELs, the permitting authority shall ensure that effluent limits developed to protect a narrative water quality criterion, a numeric water quality criterion, or both, are consistent with the assumptions and requirements of any available wasteload allocation (WLA) for the discharge prepared by the State and approved by the EPA pursuant to 40 CFR § 130.7. The Chest Creek Watershed Sediment TMDL was prepared for sediment-impaired segments of the Chest Creek Watershed. Since the receiving water for Patton Borough STP is not a sediment-impaired segment of Chest Creek, Patton Borough STP will not be assigned wasteload allocations or monitoring for sediment, beyond the standard TBELs for TSS.

West Branch Susquehanna River Watershed TMDL

A TMDL for the West Branch Susquehanna River Watershed was approved by the EPA on July 9, 2009 for the control of abandoned mine drainage pollutants including: low pH, iron, manganese, and aluminum. In accordance with 40 CFR § 122.44(d)(1)(vii)(B), when developing WQBELs, the permitting authority shall ensure that effluent limits developed to protect a narrative water quality criterion, a numeric water quality criterion, or both, are consistent with the assumptions and requirements of any available wasteload allocation (WLA) for the discharge prepared by the State and approved by the EPA pursuant to 40 CFR § 130.7. Patton Borough STP was not assigned a WLA in this TMDL. Monitoring for Total Aluminum, Total Iron, and Total Manganese will once again be imposed during this permit cycle.

	Trea	atment Facility Summa	ry	
Freatment Facility Na	me: Patton Borough STP			
WQM Permit No.	Issuance Date			
WQG02111802	10/01/2018			
565S051 A-2	01/09/2013			
565S051 A-1	09/26/2002			
565S051	05/22/1967			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
	Secondary With	* •		
Sewage	Ammonia Reduction	Oxidation Ditch	Ultraviolet	0.54
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposa
0.54	750	Not Overloaded		Landfill

Changes Since Last Permit Issuance: N/A

Compliance History

Facility: Patton Boro STP

NPDES Permit No.: PA0110469

Compliance Review Period: 6/2017 – 6/2022

Inspection Summary:

	INSPECTED			INSPECTION RESULT
INSP ID	DATE	INSP TYPE	AGENCY	DESC
<u>2947144</u>	09/18/2019	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted
2890718	06/06/2019	Chapter 94 Inspection	PA Dept of Environmental Protection	No Violations Noted
<u>3052155</u>	05/04/2020	Administrative/File Review	PA Dept of Environmental Protection	Violation(s) Noted
<u>2856289</u>	01/29/2019	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted

Violation Summary:

VIOL	VIOLATION	VIOLATION		
ID	DATE	TYPE	VIOLATION TYPE DESC	RESOLVED DATE
888121	05/04/2020	92A.44	NPDES - Violation of effluent limits in Part A of permit	05/04/2020

Open Violations by Client ID:

No open violations for client id 37516

Enforcement Summary:

ENF ID	ENF TYPE	ENF CREATION DATE	ENF FINALSTATUS	ENF CLOSED DATE
386737	FLNOV	07/07/2020	Administrative Close Out	04/08/2021

DMR Violation Summary:

Can't get power BI to run report. Had one exceedance in 2021 and none in 2020.

Compliance Status:

Permittee in compliance.

Completed by: John Murphy

Completed date: 6/10/2022

Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	0.54
Latitude	40° 38' 13.19"	Longitude	-78º 38' 22.04"
Wastewater De	escription: Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

The discharge was evaluated using WQM7.0 to determine the CBOD₅, ammonia nitrogen, and dissolved oxygen parameters. The model results show technology-based effluent limitations for CBOD₅ are appropriate. However, during the last permit cycle, seasonal CBOD₅ limits were imposed. These seasonal CBOD₅ limits prove to be more stringent than the recommended TBELs for CBOD₅ so they will be reimposed this permit cycle to comply with anti-backsliding regulations. The model results recommend more stringent ammonia-nitrogen limits for the facility.

Parameter	Limit (mg/l)	SBC	Model
Dissolved Oxygen	4	Minimum	WQM7.0
Ammonia Nitrogen (Nov 1			
– Apr 30)	25.0	Average Monthly	WQM7.0
Ammonia Nitrogen (May 1			
– Oct 31)	11.29	Average Monthly	WQM7.0

Per DEP SOP "Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers" (SOP No. BCW-PMT-037), the Toxics Management Spreadsheet (TMS) will be run for all pollutants for which sampling data is available. All sewage facilities with a design flow of greater than or equal to 0.1 MGD are required to provide effluent samples for: pH, TRC, fecal coliform, CBOD₅ or BOD₅, TSS, NH₃-N, Total N, Total P, DO, temperature, TKN, NO₂-N + NO₃-N, TDS, Chloride, Bromide, Sulfate, oil and grease, and any applicable TMDL parameters. The TMS spreadsheet was run for the applicable parameters of: TDS, Chloride, Bromide, Sulfate, Total Copper, Total Lead, and Total Zinc. Reasonable Potential was not found for these parameters therefore no additional WQBELs will be included in the permit. The TMS results can be found in Attachment D.

Best Professional Judgment (BPJ) Limitations

A Dissolved Oxygen minimum limitation of 4.0 mg/L will be implemented based on the standard in 25 PA Code Chapter 93 and best professional judgment.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Mass Loading Limitations

Per Department SOP "Establishing Effluent Limitations for Individual Sewage Permits" (BCW-PMT-033), mass loading limits will be established for POTWs for CBOD₅, TSS, ammonia nitrogen. Average monthly mass loading limits will be established for CBOD₅, TSS, and ammonia nitrogen. Average weekly mass loading limits will be established for CBOD₅ and TSS. Mass loading limits will be calculated according to the formula below:

average annual design flow (MGD) × concentration limit $\left(\frac{mg}{L}\right)$ × 8.34 (conversion factor) = mass loading limit $\left(\frac{lbs}{L}\right)$

= mass	loading	limit ($\left(\frac{1}{day}\right)$	1

Parameter	Average Monthly (Ibs/day)	Average Weekly (Ibs/day)
CBOD₅ (May 1 – Oct 31)	90.07	135.11
CBOD ₅ (Nov 1 – Apr 30)	112.59	168.89
TSS	135.11	202.66
Ammonia Nitrogen (May 1 – Oct 31)	50.85	-
Ammonia Nitrogen (Nov 1 – Apr 30)	112.59	-

Influent Monitoring

Per Department SOP "New and Reissuance Sewage Individual NPDES Permit Applications" (BCW-PMT-002), POTWs with design flows greater than 2,000 GPD, influent BOD₅ and TSS monitoring will be established in the permit. The influent monitoring will be established with the same frequency and sample type as the effluent sampling.

Chesapeake Bay

Patton Borough STP is considered a Phase 3 discharger by the Chesapeake Bay Watershed Implementation Plan and all effluent limits were to be established in the permit by October 2016. Patton Borough STP has been assigned a cap load for TN and TP in the Phase 3 Watershed Implementation Plan Wastewater Supplement (rev. July 29, 2022) to the Chesapeake Bay Watershed Implementation Plan. The cap load for Total Nitrogen is set at 9,863 lbs/year. The cap load for Total Phosphorus is set at 1,315 lbs/year. No TN Offsets were incorporated into the TN Cap loads, and therefore, no Offsets will need to be removed. To comply with the cap loads, annual reporting of the load for total nitrogen and total phosphorus will be imposed. Total Nitrogen is the sum of Total Kjeldahl Nitrogen and Nitrate-Nitrite as N so monitoring for Total Kjeldahl Nitrogen and Nitrate-Nitrite as N will also be imposed. In addition, Patton Borough STP will be required to monitor and report both the concentration and the load for Total Nitrogen and Total Phosphorus. The monitoring frequency for Total Nitrogen and Total Phosphorus will be 1/week according to DEP SOP "Establishing Effluent

Limitations for Individual Sewage Permits" (SOP No. BCW-PMT-033, Rev. March 24, 2021) and Table 6-3 of the DEP's "Technical Guidance for the Development and Specification of Effluent Limitations."

Additional Considerations

Sewage discharges will include monitoring, at a minimum, for *E. coli*, in new and reissued permits, with a monitoring frequency of 1/quarter for design flows >= 0.05 and < 1 MGD.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Department's "Technical Guidance for the Development and Specification of Effluent Limitations".

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent Lir	mitations			Monitoring Re	quirements
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentration	ons (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	XXX	XXX	xxx	Continuous	Recorded
pH (S.U.)	XXX	xxx	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	4.0	XXX	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30	112.59	168.89	xxx	25.0	37.5	50	1/week	24-Hr Composite
Carbonaceous Biochemical Oxygen Demand (CBOD5) May 1 - Oct 31	90.07	135.11	xxx	20.0	30.0	40	1/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	1/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Total Suspended Solids	135.11	202.66	xxx	30.0	45.0	60	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	xxx	xxx	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	xxx	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Ultraviolet light transmittance (%)	XXX	xxx	Report	Report	XXX	xxx	1/day	Measured

NPDES Permit Fact Sheet Patton Borough STP

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent Lir	nitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentratio	ons (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Ammonia-Nitrogen Nov 1 - Apr 30	112.59	XXX	XXX	25.0	XXX	50	1/week	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	50.85	XXX	XXX	11.29	XXX	22.58	1/week	24-Hr Composite
	50.85			11.29				24-Hr
Total Phosphorus	Report	XXX	XXX	Report Report	XXX	XXX	1/week	Composite 24-Hr
Aluminum, Total	XXX	XXX	XXX	Daily Max	XXX	XXX	1/quarter	Composite
Iron, Total	xxx	XXX	XXX	Report Daily Max	XXX	xxx	1/quarter	24-Hr Composite
Manganese, Total	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/quarter	24-Hr Composite

Compliance Sampling Location: Outfall 001

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
AmmoniaNitrogen	Report	Report	XXX	Report	XXX	XXX	1/week	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite
								24-Hr
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/week	Composite
								24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	1/week	Composite
Net Total Nitrogen	Report	9863	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	1315	XXX	XXX	ХХХ	XXX	1/month	Calculation

Compliance Sampling Location: Outfall 001

ATTACHMENT A: USGS STREAMSTATS

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20220615164644646000

 Clicked Point (Latitude, Longitude):
 40.63701, -78.63943

 Time:
 2022-06-15 12:47:05 -0400

Collapse All

Basin Characteri	SUCS		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	44.7	square miles
ELEV	Mean Basin Elevation	1964	feet
PRECIP	Mean Annual Precipitation	44	inches

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 3]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	44.7	square miles	2.33	1720
ELEV	Mean Basin Elevation	1964	feet	898	2700
PRECIP	Mean Annual Precipitation	44	inches	38.7	47.9

Low-Flow Statistics Flow Report [Low Flow Region 3]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	6.11	ft^3/s	43	43
30 Day 2 Year Low Flow	8.4	ft^3/s	38	38
7 Day 10 Year Low Flow	3.06	ft^3/s	54	54
30 Day 10 Year Low Flow	3.95	ft^3/s	49	49
90 Day 10 Year Low Flow	5.66	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.9.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.0

ATTACHMENT B: WQM MODELING RESULTS (SUMMER)

	SWP Basin			Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withdi (mg	rawal	Apply FC
	08B	267	798 CHES	T CREEK	1		25.4	40 1	1727.00	44.70	0.0000	0	0.00	V
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> p pH	т	<u>Stream</u> emp	рН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	C	°C)		
Q7-10 Q1-10	0.068	3.06	0.00	0.000	0.000	10.0	0.00	0.0	0 2	0.00 7.0	00	0.00	0.00	
Q30-10		0.00		0.000										
					D	ischarge [Data]	
			Name	Per	mit Numbe	Disc	Permitt Disc Flow (mgd)	Disi	c Res w Fa	erve Ten ctor (°C	np	Disc pH		
		Patto	n Boro STF	PAG	011049	0.000	0.000	0 0.5	400	0.000 2	0.00	7.00		
					P	arameter [Data							
				Paramete	r Name	Di		Trib Conc	Stream Conc	Fate Coef				
						(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	9.01	0.00	0.00				
			NH3-N			3	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

Input Data WQM 7.0

	SWP Basir			Stre	am Name		RMI		Elevatio (ft)	on	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgd	wal	Apply FC
	08B	267	98 CHES	T CREEK			25.34	10	1719	9.00	44.80	0.00000		0.00	
					S	tream Da	ta								
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width		ch pth	Tem	<u>Tributary</u> p pH	Ten	Stream	pН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	0	ft)	(°C)	(°C)		
Q7-10	0.068	3.06	0.00	0.000	0.000	10.0	0.00		0.00	20	0.00 7.	00	0.00	0.00	
Q1-10 Q30-10		0.00 0.00	0.00	0.000	0.000										

	Dis	charge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitt Disc Flow (mgd	, D	lisc Re	serve T actor	Disc 'emp (°C)	Disc pH
		0.0000	0.00	00 0	0.0000	0.000	25.00	7.00
	Par	rameter D	ata					
	arameter Name	Dis Co		Trib Conc	Stream Conc	Fate Coef		
F	arameter Name	(mç	9/L) (mg/L)	(mg/L)	(1/days)		
CBOD5		2	5.00	2.00	0.00) 1.50		
Dissolved (Dxygen		3.00	8.24	0.00	0.00		
NH3-N		2	5.00	0.00	0.00	0.70		

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	6		

WQM 7.0 Hydrodynamic Outputs

	SW	SWP Basin		m Code				Stream	Name			
		08B	2	6798			C	CHEST	REEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
25.440	3.06	0.00	3.06	.8354	0.01515	.678	26.87	39.63	0.21	0.029	20.00	7.00
Q1-1	0 Flow											
25.440	1.96	0.00	1.96	.8354	0.01515	NA	NA	NA	0.18	0.034	20.00	7.00
Q30-	10 Flow											
25.440	4.16	0.00	4.16	.8354	0.01515	NA	NA	NA	0.25	0.025	20.00	7.00

SWP Basin St	tream Code 26798			<u>Stream Name</u> CHEST CREEK	
VOB	26796			CHEST CREEK	
RMI	Total Discharge	Flow (mgd) Anal	ysis Temperature (°C	C) Analysis pH
25.440	0.54	0		20.000	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
26.871	0.67	8		39.632	0.214
Reach CBOD5 (mg/L)	Reach Kc	1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
6.93	1.15			2.42	0.700
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
7.936	30.78	31		Tsivoglou	6
Reach Travel Time (days)		Subreach	Results		
0.029	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.003	6.91	2.42	7.98	
	0.006	6.89	2.41	8.03	
	0.009	6.86	2.41	8.07	
	0.011	6.84	2.40	8.11	
	0.014	6.82	2.40	8.14	
	0.017	6.80	2.39	8.18	
	0.020	6.77	2.39	8.21	
	0.023	6.75	2.38	8.23	
	0.026	6.73	2.38	8.24	
	0.029	6.71	2.37	8.24	

WQM 7.0 D.O.Simulation

WQM 7.0 Wasteload Allocations

	SWP Basin 08B		<u>m Code</u> 6798			ream Name EST CREEK		
NH3-N	Acute Alloc	ation	s					
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
25.44	0 Patton Boro	STP	16.76	50	16.76	50	0	0
NH3-N	Chronic All	ocatio	ons					
RMI	Discharge N		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
25.44	0 Patton Boro	STP	1.89	11.29	1.89	11.29	0	0

Dissolved Oxygen Allocations

		CBC	DD5	NH	3-N	Dissolved	d Oxygen	Critical	Percent
 RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple	Baseline (mg/L)	watupie	Reach	Reduction
25.44 Pa	atton Boro STP	25	25	11.29	11.29	4	4	0	0

SWP Basin 08B					•		
Name		Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
Patton Boro	STP	PA011049	0.000	CBOD5	25		
				NH3-N	11.29	22.58	
				Dissolved Oxygen			4
	08B Name	08B 26798	08B 26798 Name Permit Number	08B 26798 Name Permit Flow Number (mgd)	08B 26798 CHEST CREE Name Permit Number Disc Flow (mgd) Parameter Patton Boro STP PA011049 0.000 CBOD5 NH3-N	08B 26798 CHEST CREEK Name Permit Number Disc Flow (mgd) Parameter 26798 Patton Boro STP PA011049 0.000 CBOD5 25 NH3-N 11.29	08B 26798 CHEST CREEK Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Patton Boro STP PA011049 0.000 CBOD5 25 NH3-N 11.29 22.58

WQM 7.0 Effluent Limits

ATTACHMENT C: WQM MODELING RESULTS (WINTER)

	SWP Basin	Strea Cod		Stre	am Name		RMI	Elevat (ft)		ainage Area sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	08B	267	798 CHEST	CREEK			25.44	172	27.00	44.70	0.00000	0.0	0 🗹
					St	ream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tril</u> Temp	butary pH	Temp	Stream pH	
conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.137	3.06 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000 Di	10.0 ischarge		0.00	5.0	0 7.0 Disc		.00 0.0	00
			Name	Per	mit Number	Disc	Disc Flow (mgd)	Disc Flow	Reserv Factor	e Tem	ip pH		
		Patto	n Boro STF	PA)11049 Pa	0.000 arameter		0 0.540	0 0.0	00 8	5.00	7.00	
			F	Paramete	r Name	c	onc C	onc C	onc (Fate Coef /days)			
	-		CBOD5				25.00	2.00	0.00	1.50			
			Dissolved	Oxygen			4.00	12.51	0.00	0.00			

Input Data WQM 7.0

Input Data WQM 7.0

25.00

0.00

0.00

0.70

NH3-N

	SWF Basi			Stre	am Name		RMI	1	Elevation (ft)	P	inage Area q mi)	Slope (ft/ft)	PWS Withdra (mgd	wal	Apply FC
	08B	267	798 CHES	T CREEK			25.34	40	1719.	00	44.80	0.00000		0.00	
					s	tream Da	ta								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Ro Dep		<u>Trib</u> emp	utary pH	Tem	<u>Stream</u> P	рН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
27-10	0.137	3.06	0.00	0.000	0.000	10.0	0.00		0.00	5.00	7.0	0 (0.00	0.00	
21-10		0.00	0.00	0.000	0.000										
230-10		0.00	0.00	0.000	0.000										

		Dis	scharge D						
	Name	Permit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	serve T actor	Disc 'emp (°C)	Disc pH
			0.0000	0.000	0.0	000	0.000	25.00	7.00
		Par	rameter D	ata					
		Parameter Name	Dis Co		rib onc	Stream Conc	Fate Coef		
		rarameter Name	(mg	/L) (m	g/L)	(mg/L)	(1/days)		
c	BOD5		2	5.00	2.00	0.00	1.50)	
D)issolved	Oxygen		3.00	8.24	0.00	0.00)	
N	IH3-N		2	5.00	0.00	0.00	0.70)	

WQM 7.0 Modeling Specifications

F	Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
١	VLA Method	EMPR	Use Inputted W/D Ratio	
0	Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
0	Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
0	0.0. Saturation	90.00%	Use Balanced Technology	✓
0).O. Goal	6		

WQM 7.0 Hydrodynamic Outputs

		P Basin 08B		<u>m Code</u> 6798				Stream CHEST C				
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
25.440	3.06	0.00	3.06	.8354	0.01515	.678	26.87	39.63	0.21	0.029	5.00	7.00
Q1-1(0 Flow											
25.440	1.96	0.00	1.96	.8354	0.01515	NA	NA	NA	0.18	0.034	5.00	7.00
Q30-	10 Flow											
25.440	4.16	0.00	4.16	.8354	0.01515	NA	NA	NA	0.25	0.025	5.00	7.00

SWP Basin 08B	Stream Code 26798			Stream Name CHEST CREEK	
<u>BMI</u> 25.440 <u>Reach Width (ft)</u> 26.871 <u>Reach CBOD5 (mg/L)</u> 6.93 <u>Reach DO (mg/L)</u>	<u>Total Discharge</u> 0.54 <u>Reach De</u> 0.67 <u>Reach Kc (</u> 1.15 <u>Reach Kr (</u>	0 <u>pth (ft)</u> 8 (<u>1/daγs)</u> 7 1/da <u>ys)</u>	-	lysis Temperature (°C) 5.000 <u>Reach WDRatio</u> 39.632 each NH3-N (mg/L) 5.36 <u>Kr Equation</u>	Analysis pH 7.000 <u>Reach Velocity (fps)</u> 0.214 <u>Reach Kn (1/days)</u> 0.221 <u>Reach DO Goal (mg/L)</u>
10.685 <u>Reach Travel Time (days</u> 0.029	21.56 5) TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	Tsivoglou D.O. (mg/L)	6
	0.003	6.92 6.91	5.36 5.35	10.78 10.86	
	0.009 0.011 0.014	6.90 6.89 6.88	5.35 5.35 5.34	10.94 11.02 11.09	
	0.017 0.020 0.023 0.026	6.86 6.85 6.84 6.83	5.34 5.34 5.33 5.33	11.15 11.22 11.27 11.33	
	0.028	6.83	5.33	11.33	

WQM 7.0 D.O.Simulation

WQM 7.0 Wasteload Allocations

	SWP Basin 08B	26798	de		-	Stream HEST (<u>Name</u> CREEK			
NH3-N	Acute Alloca	tions								
RMI	Discharge N	ame Crit	eline erion g/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	V	iltiple VLA ng/L)	Critical Reach	Percent Reduction	n
25.44	10 Patton Boro S	TP	24.1	50	24.	1	50	0	0	-
NH3-N RMI	Chronic Allo Discharge Nar	Basel	ion	Baseline WLA (mg/L)	Multiple Criterion (mg/L)		iple LA µ/L)	Critical Reach	Percent Reduction	
25.44	10 Patton Boro S	TP	4.36	25	4.3	6	25	0	0	_
Dissolve	ed Oxygen A	llocation	s							
RMI	Discharge	Name	Cl Baselin (mg/L)			<u>N</u> /lultiple mg/L)	<u>Dissolv</u> Baselin (mg/L)		Critical	Percen Reduction

25

25

25

25

4

4

0

0

25.44 Patton Boro STP

	<u>SWP Basin</u> <u>Stream</u> 08B 267			Stream Name CHEST CREE	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
25.440	Patton Boro STP	PA011049	0.000	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

WQM 7.0 Effluent Limits

ATTACHMENT D: TMS RESULTS

0.54

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

100

6.96

Instructions D	ischarge Stream							
Facility: Pat	ton Boro STP			NPDES Per	mit No.: PAO	110469	Outfall	No.: 001
Evaluation Type:	Major Sewage /	Industrial Wast	e	Wastewater	Description:	sewage		
			Discharge	Characterist	ics			
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	ctors (PMFs	5)	Complete Mi	x Times (min)
(MGD)*	maruness (mg/i)	pii (50)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh

					0 if let	t blank	0.5 if k	eft blank	() if left blan	k	1 if lef	blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		322									
5	Chloride (PWS)	mg/L		126									
Group	Bromide	mg/L	٨	0.362									
ē	Sulfate (PWS)	mg/L		35.2									
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L											
	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barium	µg/L											
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L											
	Hexavalent Chromium	µg/L											
	Total Cobalt	µg/L											
	Total Copper	µg/L		2.87									
2	Free Cyanide	µg/L											
Group	Total Cyanide	µg/L											
1 S	Dissolved Iron	µg/L											
ľ	Total Iron	µg/L		0.147									
	Total Lead	µg/L											
	Total Manganese	µg/L											
	Total Mercury	µg/L										<u> </u>	
	Total Nickel	µg/L										<u> </u>	
	Total Phenols (Phenolics) (PWS)	µg/L										<u> </u>	
	Total Selenium	µg/L										<u> </u>	
	Total Silver	µg/L										<u> </u>	
	Total Thallium	µg/L										<u> </u>	
	Total Zinc	µg/L		15.5									
	Total Molybdenum	µg/L		10.0									
\vdash	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform		<										
1	bromolofm	µg/L											

Discharge Information

6/16/2022

				-					
	Carbon Tetrachloride	µg/L	<						
	Chlorobenzene	µg/L							
	Chlorodibromomethane	µg/L	<						
	Chloroethane	µg/L	<						
	2-Chloroethyl Vinyl Ether	µg/L	<						
	Chloroform	µg/L	<				<u> </u>		
	Dichlorobromomethane	µg/L	<	 			<u> </u>		
	1,1-Dichloroethane	µg/L	<						
e	1,2-Dichloroethane	µg/L	<						
Group	1,1-Dichloroethylene	µg/L	<						
ē	1,2-Dichloropropane	µg/L	<						
O	1,3-Dichloropropylene	µg/L	<						
	1.4-Dioxane	µg/L	<						
			<				<u> </u>	<u> </u>	
	Ethylbenzene	µg/L					<u> </u>		
	Methyl Bromide	µg/L	<						
	Methyl Chloride	µg/L	<						
	Methylene Chloride	µg/L	<						
	1,1,2,2-Tetrachloroethane	µg/L	<						
1	Tetrachloroethylene	µg/L	<						
1	Toluene	µg/L	<						
1	1,2-trans-Dichloroethylene	µg/L	<						
1									
	1,1,1-Trichloroethane	µg/L	<						
1	1,1,2-Trichloroethane	µg/L	<						
1	Trichloroethylene	µg/L	<						
	Vinyl Chloride	µg/L	<						
	2-Chlorophenol	µg/L	<						
	2,4-Dichlorophenol	µg/L	<						
	2,4-Dimethylphenol	µg/L	<						
	4.6-Dinitro-o-Cresol		<				<u> </u>	<u> </u>	
4		µg/L							
à	2,4-Dinitrophenol	µg/L	<						
Group	2-Nitrophenol	µg/L	<						
6	4-Nitrophenol	µg/L	<						
	p-Chloro-m-Cresol	µg/L	<						
	Pentachlorophenol	µg/L	<						
	Phenol	µg/L	<						
	2,4,6-Trichlorophenol	µg/L	<						
⊢			<				<u> </u>	<u> </u>	
	Acenaphthene	µg/L					<u> </u>		
	Acenaphthylene	µg/L	<						
	Anthracene	µg/L	<						
	Benzidine	µg/L	<						
	Benzo(a)Anthracene	µg/L	<						
	Benzo(a)Pyrene	µg/L	<						
1	3,4-Benzofluoranthene	µg/L	<						
1	Benzo(ghi)Perylene		<						
1		µg/L							
1	Benzo(k)Fluoranthene	µg/L	<						
1	Bis(2-Chloroethoxy)Methane	µg/L	<						
1	Bis(2-Chloroethyl)Ether	µg/L	<						
1	Bis(2-Chloroisopropyl)Ether	µg/L	<						
1	Bis(2-Ethylhexyl)Phthalate	µg/L	<						
1	4-Bromophenyl Phenyl Ether	µg/L	<						
1	Butyl Benzyl Phthalate	µg/L	<						
1	2-Chloronaphthalene		<						
1		µg/L							
1	4-Chlorophenyl Phenyl Ether	µg/L	<						
1	Chrysene	µg/L	<						
1	Dibenzo(a,h)Anthrancene	µg/L	<						
1	1,2-Dichlorobenzene	µg/L	<						
1	1,3-Dichlorobenzene	µg/L	<						
5	1.4-Dichlorobenzene	µg/L	<						
	3.3-Dichlorobenzidine	µg/L	<						
Group									
5	Diethyl Phthalate	µg/L	<						
-									
1	Dimethyl Phthalate	µg/L							
	Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene	μg/L μg/L μg/L	~ ~ ~						

Discharge Information

6/16/2022

- 1									
	2,6-Dinitrotoluene	µg/L	<						
	Di-n-Octyl Phthalate	µg/L	<						
	1,2-Diphenylhydrazine	µg/L	<						
	Fluoranthene	µg/L	<						
	Fluorene	µg/L	<						
	Hexachlorobenzene	µg/L	<						
	Hexachlorobutadiene	µg/L	<						
	Hexachlorocyclopentadiene	µg/L	<						
	Hexachloroethane	µg/L	<						
	Indeno(1,2,3-cd)Pyrene	µg/L	<						
	Isophorone	µg/L	<						
	Naphthalene	µg/L	<						
	Nitrobenzene	µg/L	<					<u> </u>	
			<						
	n-Nitrosodimethylamine	µg/L							
	n-Nitrosodi-n-Propylamine	µg/L	<						
	n-Nitrosodiphenylamine	µg/L	<						
	Phenanthrene	µg/L	<						
	Pyrene	µg/L	<						
_	1,2,4-Trichlorobenzene	µg/L	<		 				
	Aldrin	µg/L	<						
	alpha-BHC	µg/L	<						
	beta-BHC	µg/L	<						
	gamma-BHC	µg/L	<						
	delta BHC	µg/L	<						
	Chlordane	µg/L	<						
	4.4-DDT	µg/L	<						
	4.4-DDE	µg/L	<						
	4.4-DDD	µg/L	<						
	Dieldrin	µg/L	<						
	alpha-Endosulfan	µg/L	<						
	beta-Endosulfan	µg/L	<						
ا م	Endosulfan Sulfate	µg/L	<						
₽I	Endrin	µg/L	<						
~ 1	Endrin Aldehyde	µg/L	<						
9	Heptachlor	µg/L	<					<u> </u>	
			<						
	Heptachlor Epoxide PCB-1016	µg/L	~						
		µg/L	<						
	PCB-1221 PCB-1232	µg/L	<					<u> </u>	
	PCB-1232 PCB-1242	µg/L							
		µg/L	<						
	PCB-1248	µg/L	<						
	PCB-1254	µg/L	<						
	PCB-1260	µg/L	<						
	PCBs, Total	µg/L	<						
	Toxaphene	µg/L	<						
	2,3,7,8-TCDD	ng/L	<						
	Gross Alpha	pCi/L							
	Total Beta	pCi/L	<						
9	Radium 226/228	pCi/L	<						
ē	Radium 226/228 Total Strontium Total Uranium	µg/L	<						
9	Total Uranium	µg/L	<						
	Osmotic Pressure	mOs/kg							
			-						

Discharge Information

6/16/2022

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Patton Boro STP, NPDES Permit No. PA0110469, Outfall 001

Statewide Criteria O Great Lakes Criteria ORSANCO Criteria

Instructions Discharge	Stream	
------------------------	--------	--

Receiving Surface Water Name: Chest Creek

				_			
Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	026798	25.44	1727	44.7			Yes
End of Reach 1	026798	25.34	1719	44.8			Yes

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location	TXW0	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	25.44	0.068			10							100	7		
End of Reach 1	25.34	0.068			10										

No. Reaches to Model: 1

Qh

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location	TXW0	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	25.44														
End of Reach 1	25.34														

pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION

Patton Boro STP, NPDES Permit No. PA0110469, Outfall 001

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Instructions	Results	RETURN TO INPUTS	SAVE AS PDF	PRINT	All	Inputs	Results	 Limits

Hydrodynamics

Q 7-10

D

	RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
[25.44	3.04		3.04	0.835	0.015	0.678	6.776	10.	0.213	0.029	0.564
[25.34	3.05		3.0464					10.000			

Qh

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
25.44	19.63		19.63	0.835	0.015	1.409	6.776	4.808	0.541	0.011	0.281
25.34	19.671		19.67								

✓ Wasteload Allocations

AFC CC	T (min): 0.9	564	PMF:	1	Ana	lysis Hardne	ss (mg/l):	100 Analysis pH: 6.99
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	13.439	14.0	64.9	Chem Translator of 0.96 applied
Total Iron	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	117.180	120	556	Chem Translator of 0.978 applied
✓ CFC CC	T (min): 0.9	564	PMF:	1	Ana	Ilysis Hardne	ss (mg/l):	100 Analysis pH: 6.99
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	

Model Results

6/16/2022

Sulfate (PWS)	Ō	Ō		0	N/A	N/A	N/A	
Total Copper	0	0		0	8.956	9.33	43.3	Chem Translator of 0.96 applied
Total Iron	0	0		0	1,500	1,500	6,958	WQC = 30 day average; PMF = 1
Total Zinc	0	0		0	118.139	120	556	Chem Translator of 0.986 applied
⊽ тнн сс	PMF:	1	Analysis Hardness (mg/l):			N/A Analysis pH: N/A		
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
CCT (min): 0.281 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A								
Pollutants	Conc (uo/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

0

0

0

N/A

No. Samples/Month: 4

Total Zinc

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (Ibs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

N/A

N/A

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments		
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable		
Chloride (PWS)	N/A	N/A	PWS Not Applicable		

Model Results

6/16/2022

Bromide N/A N/A No WQS Sulfate (PWS) N/A N/A PWS Not Applicable Discharge Conc ≤ 10% WQBEL Total Copper 41.6 µg/L Total Iron 6,958 µg/L Discharge Conc ≤ 10% WQBEL Total Zinc 356 Discharge Conc ≤ 10% WQBEL µg/L