

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0110922
APS ID	666683
Authorization ID	1385925

Applicant and Facility Information

Applicant Name	Camp Allegheny Inc.	Facility Name	Camp Allegheny
Applicant Address	100 Camp Allegheny Drive	Facility Address	100 Camp Allegheny Drive
	Stoystown, PA 15563-8823		Stoystown, PA 15563-8823
Applicant Contact	Dennis Tawney	Facility Contact	Same as applicant
Applicant Phone	(814) 754-5122	Facility Phone	Same as applicant
Client ID	45036	Site ID	237179
Ch 94 Load Status	Not Overloaded	Municipality	Stonycreek Township
Connection Status		County	Somerset
Date Application Recei	ved February 10, 2022	EPA Waived?	Yes
Date Application Accept	ted February 23, 2022	If No, Reason	
Purpose of Application	Renewal of existing NPDES pe	ermit for treated sewage.	

Summary of Review

The applicant has applied for the renewal of NPDES Permit No. PA0110922. The previous permit was issued on August 11, 2017 and expired on August 31, 2022. The permit is currently under administrative extension.

Sewage from this facility is treated with a holding tank, aeration chamber, clarifying tank, settling chamber, sand beds, and a dechlorination tank. Liquid chlorine is used for disinfection. The addition of tablet chlorine was approved by WQM Permit 5678402-A1 on May 4, 2004. Alum is used to remove phosphorus from the effluent.

DEP Biologists conduced a Point of First Use (POFU) survey on August 9, 2022. The POFU survey concluded that the UNT to Calendars Run is not capable of supporting aquatic life. The complete findings of the POFU survey can be found in Appendix G.

The applicant is currently enrolled in and will continue to use eDMR.

The Act 14-PL 834 Municipal Notification was provided by the January 23, 2022 letters and no comments were received.

Below is a summary of changes made to this permit:

- E. Coli monitoring was imposed
- Stricter TRC limits were imposed
- Phosphorus limits were removed (refer to "Development of Effluent Limitations" for more detail and justification)

Sludge use and disposal description and location(s): Piles Concrete and Septic; Friedens, PA 15541

Approve	Deny	Signatures	Date
x		grace Polaboshi	
		Grace Polakoski, E.I.T. / Environmental Engineering Specialist	September 14, 2022
x		MAHBUBA IASMIN	
		Mahbuba lasmin, Ph.D., P.E. / Environmental Engineer Manager	November 29, 2022

Summary of Review

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Info	rmation
Outfall No. 001	Design Flow (MGD)015
Latitude _ 40° 4' 15.8"	Longitude78º 52' 6.7"
Quad Name Central City	Quad Code 40078A7
Wastewater Description: Sewage Effluent	
Receiving Waters UNT Calendars Run (CWF)	Stream Code 45766
NHD Com ID 123716656	RMI1.27
Drainage Area 0.67 sq. mi.	Yield (cfs/mi ²)0.0572
Q ₇₋₁₀ Flow (cfs) 0.0383	Q7-10 Basis USGS StreamStats
Elevation (ft) 2459	Slope (ft/ft)
Watershed No. 18-E	Chapter 93 Class. CWF
Existing Use	Existing Use Qualifier
Exceptions to Use	Exceptions to Criteria
Assessment Status Attaining Use(s)	
Cause(s) of ImpairmentMetals; pH; siltation; T	SS; turbidity; aluminum; iron; manganese; pH, low
Source(s) of Impairment AMD pollutants	
	Kiskiminetas-Conemaugh River
TMDL Status Final	Name Watersheds TMDL
Deckground/Ambient Date	Deta Course
Background/Ambient Data	Data Source
pH (SU)	
Temperature (°F) Hardness (mg/L)	
Other:	
Nearest Downstream Public Water Supply Intake	Hooversville Muni Auth
PWS Waters Stonycreek River	Flow at Intake (cfs)
PWS RMI	Distance from Outfall (mi) 18.87
	Distance from Outrali (mi) 18.87

Changes Since Last Permit Issuance: N/A

Kiskiminetas-Conemaugh River Watershed TMDL

A TMDL for the Kiskiminetas-Conemaugh River Watershed – of which Calendars Run is a part – was completed on January 29, 2010 for the control of acid mine drainage pollutants: aluminum, iron, manganese, sediment, and pH. In accordance with 40 CFR § 122.44(d)(1)(vii)(B), when developing WQBELs, the permitting authority shall ensure that effluent limits developed to protect a narrative water quality criterion, a numeric water quality criterion, or both, are consistent with the assumptions and requirements of any available wasteload allocation (WLA) for the discharge prepared by the State and approved by the EPA pursuant to 40 CFR § 130.7. The Camp Allegheny STP was not assigned wasteload allocations for aluminum, iron and manganese by the Kiskiminetas-Conemaugh River Watershed TMDL (Appendix G) and is listed as a Negligible Discharge Facility (Appendix C).

Effluent concentrations (as found in eDMR records) for Aluminum, Iron and Manganese were less than the most stringent water quality criteria for those pollutants. Reasonable Potential does not exist, the Department will reimpose annual monitoring for Aluminum, Iron, and Manganese.

	Tre	eatment Facility Summa	ry	
reatment Facility Na	me: Camp Allegheny STP			
WQM Permit No.	Issuance Date			
5678402	5/31/1978			
5678402 A-1	5/4/2004			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Extended Aeration	Chlorination	0.015
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa
0.015		Not Overloaded		Other WWTF

Changes Since Last Permit Issuance: This facility now can only be considered secondary treatment, instead of tertiary treatment since there is no need for nutrient removal.

Compliance History

Facility: Camp Allegheny STP NPDES Permit No.: PA0110922 Compliance Review Period: 3/2017 – 3/2022

Inspection Summary:

	INSPECTED			
INSP ID	DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC
<u>3310626</u>	01/06/2022	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted
3310625	01/06/2022	Administrative/File Review	PA Dept of Environmental Protection	No Violations Noted
2950186	10/18/2019	Administrative/File Review	PA Dept of Environmental Protection	Violation(s) Noted
<u>2869503</u>	03/12/2019	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted

Violation Summary:

VIOLATION	VIOLATION		
DATE	TYPE	VIOLATION TYPE DESC	RESOLVED DATE
01/06/2022	92A.44	NPDES - Violation of effluent limits in Part A of permit	01/23/2022
10/18/2019	92A.44	NPDES - Violation of effluent limits in Part A of permit	10/18/2019

Open Violations by Client ID: No open violations for client id 45036

Enforcement Summary:

ENF ID	ENF TYPE	EXECUTED DATE	VIOLATIONS	PENALTY AMOUNT	ENF FINALSTATUS	ENF CLOSED DATE
400807	NOV	01/23/2022	92A.44		Administrative Close Out	03/18/2022
<u>380221</u>	CACP	10/18/2019	92A.44	\$7,500.00	Comply/Closed	10/18/2019

DMR Violation Summary:

DATE	PARAMETER	STAT_BASE_CODE	PERMIT	SAMPLE	UNIT
2/29/20	Fecal Coliform	Geometric Mean	2000	3644	No./100 ml
2/29/20	Total Suspended Solids	Average Monthly	20	27	mg/L
2/28/21	Total Suspended Solids	Average Monthly	20	30.5	mg/L
2/28/21	Total Suspended Solids	Instantaneous Maximum	40	44	mg/L
8/31/21	Ammonia-Nitrogen	Average Monthly	3	15.6	mg/L
8/31/21	Ammonia-Nitrogen	Instantaneous Maximum	6	23.2	mg/L
8/31/21	Fecal Coliform	Instantaneous Maximum	1000	5547	No./100 ml

<u>Compliance Status:</u> In compliance <u>Completed by:</u> John Murphy <u>Completed date:</u> 3/18/2022

Compliance History

DMR Data for Outfall 001 (from February 1, 2021 to January 31, 2022)

Parameter	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21
Flow (MGD)												
Average Monthly	0.006	0.003	0.0025	0.005	0.0076	0.0035	0.0055	0.003	0.0095	0.0075	0.006	0.002
pH (S.U.)												
Minimum	7.06	6.67	6.92	7.04	6.51	6.59	6.64	6.44	6.59	6.96	7.10	7.01
pH (S.U.)												
Maximum	7.92	7.77	7.41	7.62	7.62	7.48	7.82	7.89	7.98	7.85	7.66	8.15
DO (mg/L)												
Minimum	8.27	9.25	8.25	6.39	6.37	6.48	6.54	6.45	7.25	7.51	8.31	7.32
TRC (mg/L)												
Average Monthly	0.10	0.04	0.04	0.04	0.041	0.091	0.041	0.073	0.03	0.06	0.02	0.031
TRC (mg/L)												
Instantaneous												
Maximum	0.35	0.12	0.09	0.09	0.10	0.21	0.10	0.39	0.09	0.18	0.06	0.08
CBOD5 (mg/L)												
Average Monthly	3.5	< 6.0	< 2.0	< 2.0	< 2.0	3.5	< 2.0	< 2.0	2.0	< 2.0	< 2.5	6.0
CBOD5 (mg/L)												
Instantaneous		40.0										
Maximum	4.0	10.0	< 2.0	< 2.0	2.0	4.0	< 2.0	2.0	2.0	< 2.0	3.0	8.0
TSS (mg/L)		10				5.0					0.5	00 5
Average Monthly	5.5	< 4.0	< 2.0	< 2.0	2.0	< 5.0	< 2.0	2.0	2.0	< 2.0	3.5	30.5
TSS (mg/L)												
Instantaneous Maximum	6.0	6.0	< 2.0	< 2.0	2.0	8.0	< 2.0	2.0	2.0	< 2.0	5.0	44.0
Fecal Coliform	0.0	0.0	< 2.0	< 2.0	2.0	0.0	< 2.0	2.0	2.0	< 2.0	5.0	44.0
(No./100 ml)												
Geometric Mean	1967	49.85	1.41	11.13	15.92	74.47	1.0	1.41	10.54	1.0	6.61	537.44
Fecal Coliform	1307	49.00	1.41	11.15	10.92	74.47	1.0	1.41	10.54	1.0	0.01	557.44
(No./100 ml)												
Instantaneous												
Maximum	2586.5	2485	2.0	15.89	26.34	5547	1.0	2.0	111	1.0	43.8	2462.5
Total Nitrogen (mg/L)	2000.0	2100	2.0	10.00	20.01	0011	1.0	2.0		1.0	10.0	2102.0
Average Monthly	3.08	5.92	1.90	11.7	18.0	16.15	22.05	4.15	3.95	4.95	1.5	3.15
Ammonia (mg/L)	0.00	0.0=							0.00			00
Average Monthly	0.99	< 0.71	< 0.4	< 0.10	1.94	15.6	< 0.1	1.20	0.40	0.15	0.09	1.87
Ammonia (mg/L)	0.00								00		0.00	
Instantaneous												
Maximum	1.31	1.32	0.80	< 0.10	3.79	23.2	< 0.1	1.30	0.70	0.2	0.18	2.19

NPDES Permit Fact Sheet Camp Allegheny

NPDES Permit No. PA0110922

Total Phosphorus (mg/L)												
Average Monthly	0.19	0.15	0.155	0.245	0.28	0.452	0.26	0.145	0.18	0.15	0.44	0.55
Total Phosphorus												
(mg/L)												
Instantaneous												
Maximum	0.21	0.18	0.16	0.27	0.33	0.67	0.27	0.16	0.25	0.16	0.71	0.72
Total Aluminum												
(mg/L)												
Daily Maximum		< 0.10										
Total Iron (mg/L)												
Daily Maximum		< 0.05										
Total Manganese												
(mg/L)												
Daily Maximum		0.04										

Compliance History

Effluent Violations for Outfall 001, from: March 1, 2021 To: January 31, 2022

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	08/31/21	IMAX	5547	No./100 ml	1000	No./100 ml
Ammonia	08/31/21	Avg Mo	15.6	mg/L	3.0	mg/L
Ammonia	08/31/21	IMAX	23.2	mg/L	6.0	mg/L

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.015
Latitude	40º 4' 15.8"		Longitude	-78º 52' 6.7"
Wastewater D	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

Due to a discrepancy of information between eMapPA and USGS StreamStats, the discharge to receiving waters was modeled differently for this permit cycle. USGS StreamStats confirms that the outfall from Camp Allegheny STP discharges to an Unnamed Tributary to Calendars Run. This Unnamed Tributary is not listed as a stream on eMapPA and, therefore, does not have a Stream Code assigned to it. Therefore, for the purposes of modeling in WQM7.0, the discharge was assigned the stream code of Calendars Run (45766). The RMI, elevation, Q₇₋₁₀ flow, drainage area, and low-flow yield parameters are all derived from the Unnamed Tributary to Calendars Run, based on the data from USGS StreamStats.

The result of the POFU Survey show that the UNT to Calendars Run is not capable of supporting aquatic life. As such, this facility is subject to DEP Guidance Document "Policy and Procedure for Evaluating Wastewater Dischargers to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers" (391-2000-014, April 12, 2008). Camp Allegheny STP was issued WQM Permit 5678402 on May 31, 1978 and was originally permitted with NPDES Permit PA0110922 on September 12, 1980. Therefore, the facility pre-dates the Department Guidance Document and is considered an "existing discharge." However, an existing discharge may still be subject to the advance treatment requirements (below) if the facility can meet the limits based on the past 5 years of data.

When evaluating an existing discharge, if the advance treatment requirements (below) cannot be achieved, the standards in the Guidance Document do not apply unless the receiving stream is impaired and the point source discharge contributes to the impairment.

Ac	Ivance Treatment Requirement Standa	ards
Parameter	Limit (mg/L)	SBC
CBOD ₅	10	Average Monthly
TSS	10	Average Monthly
Total N	5	Average Monthly
Dissolved Oxygen	6	Minimum
Phosphorus	0.5	Average Monthly

NPDES Permit Fact Sheet Camp Allegheny

The past 5 years of eDMR data for Camp Allegheny STP show that the facility cannot meet the advance treatment requirements for TSS or Total N. The receiving stream is not impaired. Therefore, Camp Allegheny STP is not subject to the advance treatment requirement standards.

The model results, presented in the table below, show technology-based effluent limitations for CBOD₅ are appropriate. The recommended ammonia-nitrogen limits are less stringent than those that were imposed in the previous permit cycle. To comply with anti-backsliding regulations, the more stringent of the limits will be imposed during this permit cycle. Output files from WQM7.0 can be found in Attachments B and C.

The discharge was evaluated using TRC_CALC to analyze total residual chlorine. The model recommended more stringent TRC limits for this permit cycle. Output files from TRC_CALC can be found in Attachment D.

Parameter	Limit (mg/l)	SBC	Model
Dissolved Oxygen	4	Minimum	WQM7.0
Ammonia Nitrogen (Nov 1			
– Apr 30)	11.95	Average Monthly	WQM7.0
Ammonia Nitrogen (May 1			
– Oct 31)	6.12	Average Monthly	WQM7.0
Total Residual Chlorine	0.25	Average Monthly	TRC_CALC

Best Professional Judgment (BPJ) Limitations

Typically, a dissolved oxygen minimum limitation of 4.0 mg/L will be implemented based on the standard in 25 PA Code Chapter 93 and best professional judgment. However, the previous permit set a limit of 5.0 mg/L so the more stringent of the two limits will be imposed in this permit cycle to comply with antibacksliding regulations.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits. However, Total Phosphorus limit was applied based on misinterpretation of previous guidance. Monitoring will be applied during the current permit cycle. Details are discussed below.

Phosphorus Point Source

This facility is identified as point source to Indian Lake in a 2007 Trophic State Index Survey performed by PADEP biologists. In this 2007 Trophic State Index Survey, Indian Lake was identified as mesotrophic, with an average Trophic State Index (TSI) of 36.55. The TSI Results and Study Summary can be found in Appendix E.

NPDES Permit Fact Sheet Camp Allegheny

DEP guidance document "Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments" (391-2000-010) includes a decision matrix for imposing phosphorus limits on point source dischargers (matrix found in Appendix F). According to this matrix, phosphorus controls will not be imposed on mesotrophic lakes (TSI \leq 50). Phosphorus limits will not be imposed on Camp Allegheny STP this permit cycle since the previous limits were based on a misinterpretation of the Clean Water Act and DEP guidance.

Eliminating the previously-imposed Phosphorus limits is acceptable pursuant to Section 402(o)(2)(B)(ii) of the Clean Water Act, which states that a permit may contain a less stringent effluent limit if "the Administrator determines that technical mistakes or mistaken interpretations of law were made in issuing the permit...".

Phosphorus monitoring will be imposed in its place (discussed below) to comply with DEP SOP "Establishing Effluent Limitations for Individual Sewage Permits" (BCW-PMT-003).

Additional Considerations

Sewage discharges will include monitoring, at a minimum, for *E. coli*, in new and reissued permits, with a monitoring frequency of 1/year for design flows 0.002-0.05 MGD.

The receiving stream is not impaired for nutrients, therefore, twice-monthly sampling for nitrogen and phosphorus will be imposed per 25 PA Code §92.61b.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Department's Technical Guidance for the Development and Specification of Effluent Limitations.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)	-	Minimum ⁽²⁾	Required
r arameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	0.015	XXX	ХХХ	xxx	xxx	xxx	2/month	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	ххх	1/day	Grab
TRC	XXX	XXX	ХХХ	0.25	XXX	0.818	1/day	Grab
CBOD5	XXX	XXX	ХХХ	20.0	XXX	40.0	2/month	Grab
TSS	XXX	XXX	XXX	20.0	XXX	40.0	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	xxx	xxx	200 Geo Mean	XXX	1000	2/month	Grab
Total Nitrogen	XXX	XXX	ХХХ	Report	XXX	XXX	2/month	Grab
Ammonia Nov 1 - Apr 30	XXX	XXX	ххх	9.0	XXX	18.0	2/month	Grab
Ammonia May 1 - Oct 31	XXX	XXX	XXX	3.0	XXX	6.0	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	ХХХ	XXX	XXX	Report	1/year	Grab
Total Phosphorus	XXX	XXX	xxx	Report	XXX	xxx	2/month	Grab

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations							
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required			
Faiametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
				Report					
Total Aluminum	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Grab	
				Report					
Total Iron	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Grab	
				Report					
Total Manganese	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Grab	

Compliance Sampling Location: Outfall 001

APPENDIX A: USGS StreamStats Report

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20220321163047093000

 Clicked Point (Latitude, Longitude):
 40.07111, -78.86815

 Time:
 2022-03-21 12:31:06 -0400

Basin Characteris	tics		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.67	square miles
ELEV	Mean Basin Elevation	2563	feet
PRECIP	Mean Annual Precipitation	43	inches

Low-Flow Statist	ics Parameters [Low F	low Region	3]		
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.67	square mi l es	2.33	1720
ELEV	Mean Basin Elevation	2563	feet	898	2700
PRECIP	Mean Annual Precipitation	43	inches	38.7	47.9

Low-Flow Statistics Disclaimers [Low Flow Region 3]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Low Flow Region 3]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0976	ft^3/s
30 Day 2 Year Low Flow	0.14	ft^3/s
7 Day 10 Year Low Flow	0.0383	ft^3/s
30 Day 10 Year Low Flow	0.0519	ft^3/s
90 Day 10 Year Low Flow	0.0784	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. <u>APPENDIX B:</u> WQM7.0 Modeling Results (Summer)

	SWP Basir			Stre	am Name		RMI	Elevat (ft)		rainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgd	wal	Apply FC
	18E	457	766 CALEN	IDARS R	UN		1.27	70 245	59.00	0.67	0.00000		0.00	V
					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Temp	<u>ibutary</u> pH	Tem	<u>Stream</u> p	pН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)			
Q7-10 Q1-10 Q30-10	0.057	0.04 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20.0	00 7.0	0 0	.00	0.00	
			Name	Per	mit Numbe	Existing	Permitte Disc Flow	Disc	Reser Facto		p pł			
		Camp	Allegheny	PA	0110922	0.000	0.000	0 0.015	0 0.0	000 20	0.00	7.00		
					P	arameter	Data							
			F	aramete	r Name				eam onc	Fate Coef				
	_					(n	ng/L) (m	ng/L) (m	ng/L) (1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	9.01	0.00	0.00				

Input Data WQM 7.0

Input Data WQM 7.0

25.00

0.00

0.70

0.00

NH3-N

	SWP Basir			Stre	am Name		RMI		Elevat (ft)	ion	Drain Are (sq	a	Slope (ft/ft)	PW: Withdr (mg	awal	Apply FC
	18E	457	766 CALE	NDARS R	UN		0.01	10	228	35.00		1.63	0.00000		0.00	
	Stream															
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width		ch pth	Tem	<u>Tribut</u> p	ary pH	Tem	Stream	pН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	0	ft)	(°C)		(°C)		
Q7-10	0.060	0.10	0.00	0.000	0.000	0.0	0.00		0.00	2	0.00	7.0	0	0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000											
Q30-10		0.00	0.00	0.000	0.000											

	Dis	charge Da	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Desig Disc Flow (mgd	Rese Fac	erve T stor	Disc emp (°C)	Disc pH
		0.0000	0.0000	0.00	00 0	000.	25.00	7.00
	Par	ameter Da	ata					
	arameter Name	Disc			tream Conc	Fate Coef		
F	arameter Name	(mg	/L) (mg	/L) (mg/L)	(1/days)		
CBOD5		2	5.00 2	2.00	0.00	1.50		
Dissolved (Oxygen	:	3.00 8	8.24	0.00	0.00		
NH3-N		25	5.00 0	0.00	0.00	0.70		

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	
D.O. Goal	6		

WQM 7.0 Hydrodynamic Outputs

		P Basin 18E		m Code 5766				Stream	Name RS RUN			
RMI	Stream Flow	PWS With	Net Stream	Disc Analysis	Reach Slope	Depth	Width	W/D Ratio		Reach Trav	Analysis Temp	Analysis pH
	(cfs)	(cfs)	Flow (cfs)	Flow (cfs)	(ft/ft)	(ft)	(ft)		(fps)	Time (days)	(°C)	
Q7-1	0 Flow											
1.270	0.04	0.00	0.04	.0232	0.02615	.326	3.41	10.46	0.06	1.394	20.00	7.00
Q1-1	0 Flow											
1.270	0.02	0.00	0.02	.0232	0.02615	NA	NA	NA	0.05	1.607	20.00	7.00
Q30-	10 Flow											
1.270	0.05	0.00	0.05	.0232	0.02615	NA	NA	NA	0.06	1.245	20.00	7.00

WQM 7.0 D.O.Simulation

SWP Basin	Stream Code			Stream Name	
18E	45766		c	ALENDARS RUN	
RMI	Total Discharge	Flow (mgd) Anal	ysis Temperature (%	C) Analysis pH
1.270	0.01	5		10.659	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
3.413	0.32	6		10.458	0.055
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
10.68	1.17	-		4.51	0.341
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)
9.299	19.83	23		Owens	6
Reach Travel Time (days	<u>s)</u>	Subreact	Results		
1.394	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.139	9.59	4.30	9.99	
	0.279	8.62	4.10	9.99	
	0.418	7.75	3.91	9.99	
	0.558	6.96	3.73	9.99	
	0.697	6.25	3.56	9.99	
	0.837	5.62	3.39	9.99	
	0.976	5.05	3.23	9.99	
	1.116	4.54	3.08	9.99	
	1.255	4.08	2.94	9.99	
	1.394	3.66	2.80	9.99	

	SWP Basin 18E		am Code 15766			ream Name ENDARS RUN		
H3-N	Acute Allo	catior	IS					
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.2	70 Camp Alleg	heny	16.76	34.46	16.76	34.46	0	0
H3-N	Chronic Al	locati	ons					
NH3-N RMI	Chronic Al		ONS Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

WQM 7.0 Wasteload Allocations

		CBOD5		NH	3-N	Dissolved	d Oxygen	Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple	Daseiine	Multiple (mg/L)	Reach	Reduction	
1.27	Camp Allegheny	25	25	6.12	6.12	4	4	0	0	

WQM 7.0 Effluent Limits

	SWP Basin Stream			Stream Name CALENDARS R	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.270	Camp Allegheny	PA0110922	0.000	CBOD5	25		
				NH3-N	6.12	12.24	
				Dissolved Oxygen			4

APPENDIX C: WQM7.0 Modeling Results (Winter)

Drainage Area SWP PWS Stream RMI Elevation Slope Apply FC Basin Code Stream Name Withdrawal (sq mi) (ft) (ft/ft) (mgd) ☑ 18E 45766 CALENDARS RUN 1.270 2459.00 0.67 0.00000 0.00 Stream Data LFY Trib Stream Rch Rch WD Rch Rch Tributary Stream Temp Design Flow Flow Trav Velocity Ratio Width Depth Temp pH pH Time Cond. (cfsm) (cfs) (cfs) (ft) (ft) (°C) (°C) (fps) (days) Q7-10 7.00 0.00 0.00 0.114 0.04 0.00 0.000 0.000 0.0 0.00 0.00 5.00 Q1-10 0.00 0.00 0.000 0.000 0.00 0.00 0.000 0.000 Q30-10 **Discharge Data** Existing Permitted Design Disc Disc Reserve Disc Flow Disc Disc Temp pH Permit Number Flow Flow Factor Name (mgd) (°C) (mgd) (mgd) Camp Allegheny PA0110922 0.0000 0.0000 0.0150 0.000 20.00 7.00 Parameter Data Fate Disc Trib Stream Conc Conc Conc Coef Parameter Name (mg/L) (mg/L) (mg/L) (1/days)

Input Data WQM 7.0

25.00	0.00	0.00

25.00

4.00

2.00

12.51

0.00

0.00

1.50

0.00

0.70

CBOD5

NH3-N

Dissolved Oxygen

Input Data WQM 7.0

	SWF Basi			Stre	am Name		RMI		Elevati (ft)	on	Draina Area (sq m	a	Slope (ft/ft)	PW Withdr (mg	awal	Apply FC
	18E	457	766 CALE	NDARS R	UN		0.01	10	228	5.00		1.63	0.00000		0.00	
					S	tream Da	ta									
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Ro De		Tem	<u>Tributa</u> p	гу рН	Tem	<u>Stream</u> P	рН	
conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(†	t)	(°C)		(°C)			
Q7-10	0.119	0.10	0.00	0.000	0.000	0.0	0.00		0.00	(5.00	7.0	0 0	.00	0.00	
Q1-10		0.00		0.000	0.000											
Q30-10		0.00	0.00	0.000	0.000											

Dis	charge Da	ata					
Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Rese	erve T ctor	emp	Disc pH
	0.0000	0.0000	0.000	0 0	0.000	25.00	7.00
Par	ameter Da	ata					
aramatar Nama					Fate Coef		
arameter Name	(mg	/L) (mg	/L) (m	ng/L)	(1/days)		
	2	5.00 2	2.00	0.00	1.50		
Dxygen	:	3.00 8	3.24	0.00	0.00		
	2	5.00 0	0.00	0.00	0.70)	
	Permit Number Par arameter Name	Permit Number Flow (mgd) 0.0000 Parameter Da arameter Name (mg 22 Dxygen	Permit Number Disc Flow (mgd) 0.0000 0.0000 Parameter Data Disc Trill Conc Cor (mg/L) (mg 25.00 2 Dxygen 3.00 8	Permit Number Flow Permitted Design Disc Disc Disc Disc Disc Flow (mgd) (mgd) 0.0000 0.0000 0.000 Parameter Data Disc Trib Str Conc Conc Conc Conc (mg/L) (mg/L) (m 25.00 2.00 Dxygen 3.00 8.24	Permit Number Pisc Pisc Disc Disc Disc Disc Disc Pisc Pisc Pisc Pisc Pisc Pisc Pisc P	Existing Disc Permitted Design Disc Reserve Flow Tisc Permit Number Flow Flow Flow 0.0000 0.0000 0.0000 0.000 Parameter Data Disc Trib Stream Conc Conc Conc Conc Conc Conc (mg/L) (mg/L) (mg/L) (1/days) 25.00 2.00 0.00 1.50 Dxygen 3.00 8.24 0.00 0.00	Existing Permit Number Permitted Disc Flow (mgd) Disc Disc Flow (mgd) Reserve Flow (mgd) Disc Temp (%C) 0.0000 0.0000 0.0000 0.0000 0.000 25.00 Parameter Data Disc Flow Trib Conc Stream Conc Fate Conc Conc Conc

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	6		

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code			1	Stream	Name			
	18E		45766			CALENDARS RUN						
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
1.270	0.04	0.00	0.04	.0232	0.02615	.326	3.41	10.46	0.06	1.394	10.66	7.00
Q1-1	0 Flow											
1.270	0.02	0.00	0.02	.0232	0.02615	NA	NA	NA	0.05	1.607	12.29	7.00
Q30-	10 Flow	,										
1.270	0.05	0.00	0.05	.0232	0.02615	NA	NA	NA	0.06	1.245	9.62	7.00

WQM 7.0 D.O.Simulation

SWP Basin S	tream Code			Stream Nam	le	
18E	45766		c	ALENDARS	RUN	
RMI	Total Discharge	Flow (mgd) Ana	lysis Tempera	ture (°C)	Analysis pH
1.270	0.01	5		10.659		7.000
Reach Width (ft)	Reach De	epth (ft)		Reach WDR	atio	Reach Velocity (fps)
3.413	0.32	6		10.458		0.055
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
10.68	1.17	-		4.51		0.341
Reach DO (mg/L)	Reach Kr	(1/days)		Kr Equatio	n	Reach DO Goal (mg/L)
9.299	19.8	23		Owens		6
Reach Travel Time (days)		Subreact	Results			
1.394	TravTime		NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.139	9.59	4.30	9.99		
	0.279	8.62	4.10	9.99		
	0.418	7.75	3.91	9.99		
	0.558	6.96	3.73	9.99		
	0.697	6.25	3.56	9.99		
	0.837	5.62	3.39	9.99		
	0.976	5.05	3.23	9.99		
	1.116	4.54	3.08	9.99		
	1.255	4.08	2.94	9.99		
	1.394	3.66	2.80	9.99		

	SWP Basin 18E		m Code 5766		_	ream Name ENDARS RUN			
NH3-N	Acute Alloc	ation	5						
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	1
1.2	70 Camp Allegt	neny	16.76	34.46	16.76	34.46	0	0	-
NH3-N	Chronic All	ocatic	ne						
RMI	Discharge N	I	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
		lame	Baseline Criterion	WLA	Criterion (mg/L)	WLA			-
1.2	Discharge N	lame heny	Baseline Criterion (mg/L) 1.89	WLA (mg/L)	Criterion (mg/L)	WLA (mg/L)	Reach	Reduction	-

WQM 7.0 Wasteload Allocations

			CBOD5		NH3-N		Dissolved Oxygen		Critical	Percent
	RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple	Baseline	Multiple		Reduction
_	1.27 Camp Allegheny		25	25	6.12	6.12	4	4	0	0

WQM 7.0 Effluent Limits

	SWP Basin Stream		de <u>Stream Name</u> CALENDARS RUN						
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)		
1.270	Camp Allegheny	PA0110922	0.000	CBOD5	25				
				NH3-N	11.95	23.9			
				Dissolved Oxygen			4		

APPENDIX D: TRC_CALC Results

Input appropria	te values in A	3:A9 and D3:D9					
	= Qstream (c		05	=CV Daily			
	= Qdischarg	•		=CV Hourty			
	= no. sample	• •		=AFC Partial I	lix Eactor		
		emand of Stream		=CFC Partial			
		emand of Discharge		-	Compliance Time (min)		
	= BAT/BPJ V	-		-	Compliance Time (min)		
0	= % Factor o	f Safety (FOS)		=Decay Coeffic	• • • •		
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =	0.546	1.3.2.iii	WLA cfc = 0.524		
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRG	5.1b	LTA_afc=	0.203	5.1d	LTA_cfc = 0.305		
Source		Effluer	nt Limit Calcu				
PENTOXSD TRG	5.1f		AML MULT =				
PENTOXSD TRG	5.1g		NLIMIT (mg/l) = 0.250 AFC				
		INSI MAA	LIMIT (mg/l) =	0.010			
WLA afc		C_1c)) + [(AFC_Yc*Qs*.019	-	(_tc))			
	•	_Yc*Qs*Xs/Qd)]*(1-FOS/10	•				
LTAMULT afc		cvh^2+1))-2.326*LN(cvh^2+	1)^0.5)				
LTA_afc	wla_afc*LTAM	IULI_atc					
WLA_cfc		C_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10		_tc))			
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.32	6*LN(cvd^2/n	o_samples+1)^0	.5)		
LTA_cfc	wla_cfc*LTAM	IULT_cfc					
	EXP(2.326*1.0	V((cvd^2/no samples+1)^0.	5)-0.5*LN(cvd	^2/no_samples+	1))		
AML MULT AVG MON LIMIT INST MAX LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfc)*AN	IĹ_MULT)				

APPENDIX E: Trophic Survey for Indian Lake

TSI Results

Results of the water samples collected in 2007 showed nitrogen and phosphorus amounts comparable for both lakes. The highest reading of total nitrogen and phosphorus for Indian Lake was 0.54 mg/l and 0.018 mg/l, respectfully. The highest reading of total nitrogen and phosphorus for Stonycreek Lake was 0.50 mg/l and 0.017 mg/l, respectfully. The average total nitrogen and phosphorus for Indian Lake was 0.35 mg/l and 0.0094 mg/l, respectfully. The average total nitrogen and phosphorus for Indian Lake was 0.35 mg/l and 0.0094 mg/l, respectfully. The average total nitrogen and phosphorus for Stonycreek Lake was 0.38 mg/l and 0.013 mg/l, respectfully. Indian and Stonycreek Lakes are phosphorus limited (See Attachment C).

Secchi disk readings for Indian Lake reached a depth of 5.5 meters during the fall sample at station location 005 and 006. Secchi disk readings for Stonycreek Lake reached a depth of 2.75 meters during the spring sample at station location 009 and 010. Alkalinity was slightly higher in Stonycreek Lake with a total year average of 26.08 mg/l compared to 21.64 mg/l for Indian Lake.

The average Trophic State index (TSI) on total phosphorus for 2007 calculated to 36.55 for Indian Lake and 40.59 for Stonycreek Lake. The average TSI score for chlorophyll a calculated to 47.37 for Indian Lake and 47.56 for Stonycreek Lake and the average TSI on secchi scored 40.12 for Indian Lake and 45.74 for Stonycreek Lake. These TSI results when reviewed together indicate that both lakes are mesotrophic (scores ranging between 40 and 50).

In addition to the lake data collected, the average TSI on phosphorus of Clear Run and Calendar Run combined, calculated to 48.21 (See Attachment C). This TSI score indicates mesotrophic influence.

Summary

The water chemistry profiles collected throughout the year showed mostly normal lake stratification and indicated some evidence of eutrophication with lower dissolve oxygen and higher specific conductivity at bottom depths. All Trophic State Index scores calculated for Indian Lake, Stonycreek Lake, and the streams Clear Run and Calendar Run in 2007 range between 40 and 50. Indian Lake and Stonycreek Lake are presently mesotrophic. Indian Lake is one of the best scoring lakes in the Commonwealth of Pennsylvania.

Source: "Trophic State Index Surveys: Indian Lake and Stonycreek Lake, 2007" by Rick Spear and Gary Kenderes

APPENDIX F: Phosphorus Control Decision Matrix

		I	Lake Status	
		Regular	HQ	EV
Category	TSI Scenario	Discharge has SEJ	Discharge does	n't have SEJ
Mesotrophic	Design TSI <= 50	No PS Controls required at this time.		
			Require more string	ent of
Eutrophic	Design TSI 50-65 and Design Load > 1.2 NPS Load ¹	Require 2 mg/L on all significant discharges.	existing conc. or 2 m	ng/L (*)
Hyper- Eutrophic	Design TSI 65-80 and Design Load > 1.2 NPS Load ¹	Require 1 mg/L on all significant discharges.	Require more string conc. or 1 mg/L (*)	ent of existing
Hyper- Eutrophic	Existing NPS TSI > 80	Place lake on Section 303(d) a Lake Diagnostic Study (TM		al controls unti

TABLE 6-1 PHOSPHORUS CONTROL DECISION MATRIX

(*) Discharges to HQ lakes without SEJ, and all discharges to EV lakes must also provide sufficient treatment to assure no change in existing lake quality, which is defined as a maximum of a 20 percent change in the noncontrollable phosphorus load.

391-2000-010 / March 6, 2003 / Page 16

Source: "Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments" (391-2000-010)

¹ Research to verify these relationships was conducted in 9/98. Original documentation and literature citations from the rationale documents were reviewed along with (M.W. Marsden 1989).

APPENDIX G: POFU Survey

E	DEPARTMENT OF ENVIRONMENTAL PROTECTION

то	Grace Polakoski Environmental Enginering Specialist Clean Water Program	МЕМО
FROM	Richard Spear Aquatic Biologist Supervisor Clean Water Program	
DATE	September 1. 2022	
RE	Point of First Use Survey Unnamed and Undocumetned Tributary to Calendars Run State Water Plan: 18E Hydrologic Unit Code: 05010007 Stream Code: N/A Stonycreek Township, Somerset County, PA	

INTRODUCTION

On August 9, 2022, at the request of Grace Polakoski of the Clean Water Program, a Point of First Surface Water Use (POFU) Survey was attempted in the vicinity of an Unnamed and Undocumented Tributary to Calendars Run. This is a facility named Camp Allegheny STP, permit number PA0110922, that is currently discharging. The property's address is 100 Camp Allegheny Drive, Stoystown, PA 15563 in Stonycreek Township, Somerset County (Figure 1). The sampling location was at latitude 40.071026 and the longitude was -78.868571. I went with Grace Polakoski, and Lisa Milsop of the Clean Water Program.

SAMPLING METHODOLOGY

The POFU is the location at which a body of water can support aquatic life as defined in 25 Pennsylvania Code §93. Guidance for determining the POFU is in the Department's guidance document #391-2000-014, Policy and Procedures for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers (revised April 12, 2008). Specifically, Appendix B of the guidance document provides additional guidance when making a POFU determination.

Unnamed and Undocumented Tributary to Calendars Run did not have any flowing water in it, just some pockets of standing water. At the time of our site visit, only 1 macroinvertebrate taxa, which was a Perlodidae Stonefly was found, but if they were found then the protocol used would have been in accordance to the Department's Qualitative Benthic Macroinvertebrate Data Collection Protocol, found in the Water Quality Monitoring Protocols for Streams and Rivers 2021 (Monitoring Book), which can be found by accessing the following website:

Southwest Regional Office 400 Waterfront Drive | Pittsburgh, PA 16335 | 412.442.4000 | Fax. 412.442.4194 | www.dep.pa.gov https://files.dep.state.pa.us/Water/Drinking Water and Facility Regulation/WaterQualityPortalFiles/Technical Documentation/MONITORING BOOK.pdf

RESULTS, DISCUSSION, AND CONCLUSIONS

The objective of this study was to examine aquatic life in Unnamed and Undocumented Tributary to Calendars Run to determine if and where the stream is capable of supporting an aquatic life use as defined in 25 Pennsylvania Code §93.9q, where water quality standards must be met. Unnamed and Undocumented Tributary to Calendars Run, had one taxon found in it, which was a Perlodidae Stonefly. Only one long-lived taxa was found, and you need two, so Unnamed and Undocumented Tributary to Calendars Run does not have an aquatic life use. Taxa were found in Calendars from a survey done on 05/15/2014, and that makes Calendars the point of first use.

cc: Stream File – Unnamed and Undocumented Tributary to Calendars Run Thomas Flanagan – SWRO Sewage Planning Specialist Supervisor Lisa Milsop – SWRO, Water Quality Specialist Stacey Greenwald – SWRO, Environmental Group Manager Christopher Kriley – SWRO, Environmental Program Manager Mahbuba Iasmin – SWRO, Environmental Group Manager Erika Arnold – CO, Acting Environmental Group Manager

Figure 1. Map showing the Unnamed and Undocumented Tributary to Calendars Run.