

Southwest Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0111201

APS ID 813980

Authorization ID 1267615

oplicant Name	Carrolltown Borough Municipal Authority	Facility Name	Carrolltown Borough	
oplicant Address	PO Box 307	Facility Address	190 Mill Street Extension	
	Carrolltown, PA 15722-0307	_	Carrolltown, PA 15722	
oplicant Contact	Lonnie Batdorf	Facility Contact	Same as Applicant	
plicant Phone	(814) 344-6650	Facility Phone	Same as Applicant	
ent ID	77904	Site ID	262099	
94 Load Status	Not Overloaded	Municipality	East Carroll Township	
nnection Status	No Limitations	County	Cambria	
e Application Rece	ved April 2, 2019	EPA Waived?	Yes	
e Application Accep	oted April 3, 2019	If No, Reason		

Summary of Review

The permittee has applied for a renewal of NPDES Permit No. PA0111201. NPDES Permit No. PA0111201 was previously issued by the PA Department of Environmental Protection (DEP) on September 5, 2014 and expired on September 30, 2019. The application was submitted in a timely manner, so the permit was granted an administrative extension.

Sewage from this facility is treated by extended aeration, final clarification, and chlorination.

The applicant is currently enrolled in and will continue to use eDMR.

Sludge produced at this facility is disposed of Cambria Township Sewer Authority's Revloc STP.

The applicant has complied with Act 14 Notifications and no comments were received.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania*

Approve	Deny	Signatures	Date
х		It al	
		Stephanie Conrad / Environmental Engineering Specialist	April 8, 2022
х		MAHBUBA IASMIN	
		Mahbuba lasmin, Ph.D., P.E. / Environmental Engineer Manager	April 8, 2022

Summary of Review										
Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.										

scharge, Receiving	y Wate	rs and Water Supply Infor	mation			
Outfall No. 001 Latitude 40° 3°	6' 34"		Design Flow (MG Longitude	D) <u>0.2</u> -78° 42' 20"		
	rrolltow	'n	Quad Code	1416		
Wastewater Descrip	otion:	Sewage Effluent				
Receiving Waters	Trib 2	26884 to Little Chest Creek	Stream Code	26884		
NHD Com ID		<i>)</i> 7689	RMI	3.27		
Drainage Area	0.46	1000	Yield (cfs/mi²)	0.21		
Q ₇₋₁₀ Flow (cfs)	0.022		Q ₇₋₁₀ Basis	0.04826		
Elevation (ft)	0.022	- 	Slope (ft/ft)	0.01020		
Watershed No.	8-B		Chapter 93 Class.	CWF		
Existing Use			Existing Use Qualifie	-		
Exceptions to Use			Exceptions to Criteria			
Assessment Status		Attaining	<u> </u>			
Cause(s) of Impairn	nent	Siltation, Total Suspende	d Solids (TSS), Turbidity			
Source(s) of Impair	ment	Acid Mine Drainage				
TMDL Status		Final		reek Watershed Sediment TMDL anch Susquehanna River		
Background/Ambier pH (SU)	nt Data		Data Source			
Temperature (°F)						
Hardness (mg/L)						
Other:						
Nearest Downstream	m Publ	ic Water Supply Intake	Shawville Power Plant			
PWS Waters S	Susque	hanna	Flow at Intake (MGD) 1.953			
PWS RMI			Distance from Outfall (mi) 73.7			

Changes Since Last Permit Issuance: None

Other Comments: None.

Other WWTP

Aerated Holding Tank

Treatment Facility Summary

Treatment Facility Name: Carrolltown Borough STP

417

WQM Permit No.	Issuance Date
566S019	May 23, 1966

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Tertiary	Extended Aeration	Gas Chlorine	0.2
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal

Not Overloaded

Changes Since Last Permit Issuance: None

Other Comments: None

0.2

Compliance History

<u>Facility:</u> Carrolltown Borough STP <u>NPDES Permit No.:</u> PA0111201

Compliance Review Period: 10/2016 - 10/2021

Inspection Summary:

INSP ID	INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC
3155331	03/02/2021	Incident- Response to Accident or Event	PA Dept of Environmental Protection	No Violations Noted
3052142	05/04/2020	Administrative/File Review	PA Dept of Environmental Protection	Violation(s) Noted
2890725	03/13/2019	Chapter 94 Inspection	PA Dept of Environmental Protection	No Violations Noted
2853208	03/13/2019	Chapter 94 Inspection	PA Dept of Environmental Protection	No Violations Noted
2856397	02/08/2019	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted
2767972	08/28/2018	Chapter 94 Inspection	PA Dept of Environmental Protection	No Violations Noted
2692017	02/08/2018	Chapter 94 Inspection	PA Dept of Environmental Protection	No Violations Noted

Violation Summary:

	ounnary.				
VIOL ID	VIOLATION DATE	VIOLATION TYPE	VIOLATION TYPE DESC	RESOLVED DATE	INSP ID
888112	05/04/2020	92A.44	NPDES - Violation of effluent limits in Part A of permit	05/04/2020	3052142

Open Violations by Client ID:

No CW violations for client ID 77904

Enforcement Summary:

ENF ID	ENF TYPE	ENF TYPE DESC	ENF CREATION DATE	EXECUTED DATE	ENF FINALSTATUS	ENF CLOSED DATE
386735	FLNOV	Field Notice of Violation	07/07/2020	05/04/2020	Administrative Close Out	04/08/2021

DMR Violation Summary:

NPDES Permit Fact Sheet Carrolltown Borough Cambria County

MONITORING START DATE	MONITORING END DATE	PARAMETER	SAMPLE VALUE	PERMIT VALUE	STATISTICAL BASE CODE
09/01/2020	09/30/2020	Fecal Coliform	1725	1000	Instantaneous Maximum
02/01/2020	02/29/2020	Total Suspended Solids	53	45	Weekly Average
02/01/2020	02/29/2020	Total Suspended Solids	137.5	75.0	Weekly Average
12/01/2019	12/31/2019	Ammonia- Nitrogen	7.2	5.0	Weekly Average
12/01/2019	12/31/2019	Total Suspended Solids	52	45	Weekly Average
08/01/2019	08/31/2019	Fecal Coliform	4106	1000	Instantaneous Maximum
09/01/2018	09/30/2018	Ammonia- Nitrogen	5.1	3.0	Weekly Average
09/01/2018	09/30/2018	Fecal Coliform	1145	1000	Instantaneous Maximum
09/01/2018	09/30/2018	Flow	0.212	0.20	Average Monthly
09/01/2018	09/30/2018	Ammonia- Nitrogen	6.5	5.0	Weekly Average
02/01/2018	02/28/2018	Fecal Coliform	24200	10000	Instantaneous Maximum
02/01/2018	02/28/2018	Flow	0.217	0.20	Average Monthly
04/01/2017	04/30/2017	Ammonia- Nitrogen	5.2	5.0	Weekly Average
11/01/2016	11/30/2016	Total Residual Chlorine (TRC)	0.080	0.076	Instantaneous Maximum

<u>Compliance Status:</u>

Permittee has had some DMR exceedances. Will monitor and issue CACP as necessary.

<u>Completed by:</u> John Murphy <u>Completed date:</u> 10/8/2021

Compliance History

DMR Data for Outfall 001 (from August 1, 2020 to July 31, 2021)

Parameter	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20
Flow (MGD)												
Average Monthly	0.054	0.075	0.111	0.080	0.206	0.091	0.119	0.128	0.078	0.063	0.064	0.059
Flow (MGD)												
Daily Maximum	0.08	0.134	0.557	0.129	0.885	0.242	0.394	0.507	0.141	0.130	0.091	0.110
pH (S.U.)												
Minimum	6.72	6.51	6.66	6.60	6.57	6.71	6.60	6.66	6.71	6.67	6.57	6.66
pH (S.U.)												
Maximum	7.27	7.26	7.4	7.17	7.16	7.25	7.10	7.17	7.28	7.27	7.7	7.20
DO (mg/L)												
Minimum	6.32	6.06	6.06	6.25	6.17	6.25	6.95	6.47	6.74	6.03	6.14	6.07
TRC (mg/L)												
Average Monthly	0.001	0.010	0.001	0.010	0.001	0.001	0.010	0.010	0.010	0.010	0.001	0.010
TRC (mg/L)												
Instantaneous												
Maximum	0.050	0.020	0.040	0.060	0.040	0.050	0.050	0.040	0.020	0.030	0.020	0.040
CBOD5 (lbs/day)												
Average Monthly	2.9	3.8	7.6	2.8	19.0	< 4.5	7.6	6.4	4.2	< 2.8	3.4	< 2.7
CBOD5 (lbs/day)												
Weekly Average	3.9	4.9	13.8	3.3	41.7	6.6	12.4	8.1	6.2	5.0	4.9	3.3
CBOD5 (mg/L)												
Average Monthly	7	7	8	5	13	< 7	8	7	7	< 6	6	< 6
CBOD5 (mg/L)												
Weekly Average	8	9	9	5	19	9	11	9	7	9	7	7
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	63	87	145	107	< 178	130	< 114	162	90	97	89	71
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	84	138	261	170	341	146	135	198	112	190	103	89
BOD5 (mg/L)												
Raw Sewage Influent												
 Average	400.0	4.500	1.50 4	101		4.5-	400.5	400				
Monthly	163.9	150.3	156.1	191	< 141.1	195	< 139.2	183	148.3	207	154	157
TSS (lbs/day)			0 -	0.0	05.0	0.0	40 -	0.0				6.6
Average Monthly	< 3.5	4.7	8.5	3.6	35.0	8.2	13.5	8.8	4.1	< 3.4	< 4.6	< 2.8

NPDES Permit Fact Sheet Carrolltown Borough Cambria County

Raw Sewage Influent chr/s Average Monthly 42 46 72 54 78 74 84 100 50 76 78 55		Г	Т		Т	1	1	1	1	Т	Т	1	
chr/s Average Monthly 42 46 72 54 78 74 84 100 50 76 78 55 TSS (Bs/day) Raw Sewage Influent chr/s Daily Maximum 57 66 159 113 93 92 100 147 116 162 102 72 TSS (Bs/day) Weekly Average 7.7 5.7 15.9 4.1 60.8 9.9 17.9 14.4 5.2 6.4 7.6 3.9 TSS (mg/L) Average Monthly 4.9 8 9 7 26 12 15 10 7 4.8 4.8 4.6 TSS (mg/L) Maximum 109 81 77 97 65 111 104 118 83 160 136 121 TSS (mg/L) Weekly Average 20 10 14 8 37 16 19 14 9 11 14 8 Fecal Coliform (CFU/100 mi) Instantaneous Maximum 20 75 554 41 1935	TSS (lbs/day)												
Monthly													
TSS (Ibsiday) Raw Sewage Influent -bh/- Deliy Maximum 57 66 159 113 93 92 100 147 116 162 102 72 TSS (Ibsiday) Weekly Average 7.7 5.7 15.9 4.1 60.8 9.9 17.9 14.4 5.2 6.4 7.6 3.9 TSS (rg/L) Raw Sewage Monthly													
Raw Sewage Influent		42	46	72	54	78	74	84	100	50	76	78	55
Self-Solity Maximum													
TSS (Inside)													
Weekly Average		57	66	159	113	93	92	100	147	116	162	102	72
TSS (mg/L) Raw Sewage Influent													
Average Monthly < 9	Weekly Average	7.7	5.7	15.9	4.1	60.8	9.9	17.9	14.4	5.2	6.4	7.6	3.9
TSS (mg/L) Raw Sewage Influent													
Raw Sewage Influent chr/s Average domain dom	Average Monthly	< 9	8	9	7	26	12	15	10	7	< 8	< 8	< 6
cbr/s Average Monthly 109 81 77 97 65 111 104 118 83 160 136 121 TSS (mg/L) Weekly Average 20 10 14 8 37 16 19 14 9 11 14 8 Fecal Coliform (CFU/100 ml) Geometric Mean <12	TSS (mg/L)												
Monthly	Raw Sewage Influent												
TSS (mg/L) Weekly Average 20 10 14 8 37 16 19 14 9 11 14 8 8 8 8 8 8 8 8 8	 br/> Average												
Weekly Average 20 10 14 8 37 16 19 14 9 11 14 8	Monthly	109	81	77	97	65	111	104	118	83	160	136	121
Fecal Coliform CFU/100 ml) Geometric Mean <12													
CFU/100 ml) Geometric Mean < 12 47 < 77 < 14 < 133 < 55 24 < 18 < 37 < 62 < 24 < 4	Weekly Average	20	10	14	8	37	16	19	14	9	11	14	8
Geometric Mean < 12	Fecal Coliform												
Fecal Coliform (CFU/100 ml) Instantaneous Maximum 20 75 554 41 1935 2247 86 52 121 441 1725 10 10 10 10 10 10 10 1	(CFU/100 ml)												
CFU/100 ml Instantaneous Maximum 20 75 554 41 1935 2247 86 52 121 441 1725 10 Total Nitrogen (mg/L) 30.5	Geometric Mean	< 12	47	< 77	< 14	< 133	< 55	24	< 18	< 37	< 62	< 24	< 4
Instantaneous Maximum 20 75 554 41 1935 2247 86 52 121 441 1725 10 Total Nitrogen (mg/L) 20.3 < 0.5 < 0.7 < 0.5 < 1.1 < 0.5 < 0.7 < 0.5 < 0.4 < 0.5 < 0.4 Ammonia (lbs/day) 40.3 40.5 < 1.2 40.5 < 0.5 < 0.7 < 0.5 < 0.7 < 0.5 < 0.4 Ammonia (lbs/day) 40.3 40.5 40.5 40.5 40.5 40.5 40.5 Weekly Average 40.4 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 Ammonia (mg/L) 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 Ammonia (mg/L) 40.5 40.5 40.5 40.5 40.5 40.5 40.5 Ammonia (mg/L) 40.5 40.5 40.5 40.5 40.5 40.5 Ammonia (mg/L) 40.5 40.5 Ammonia (mg/L) 40.5 40.5 40.5 Ammonia (mg/L) 40.5 Ammonia (mg/L) 40.5 Ammonia (mg	Fecal Coliform												
Maximum 20 75 554 41 1935 2247 86 52 121 441 1725 10 Total Nitrogen (mg/L) Daily Maximum 30.5 30.6 30.4 30.5 30.6 30.4 30.6 30.6 30.6 30.7 30.5 30.6 30.6 30.6 30.6 30.6 30.6 30.6 30.6<	(CFU/100 ml)												
Total Nitrogen (mg/L) Daily Maximum 30.5 30	Instantaneous												
Daily Maximum	Maximum	20	75	554	41	1935	2247	86	52	121	441	1725	10
Ammonia (lbs/day) Average Monthly < 0.3 < 0.5 < 0.7 < 0.5 < 0.7 < 0.7 < 0.7 < 0.7 < 0.8 < 0.8<!--</td--><td>Total Nitrogen (mg/L)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td>	Total Nitrogen (mg/L)												
Average Monthly < 0.3	Daily Maximum								30.5				
Ammonia (lbs/day) Weekly Average	Ammonia (lbs/day)												
Weekly Average < 0.4 < 0.5 < 1.2 < 0.5 < 2.3 < 0.6 < 1.2 < 1.0 < 0.7 < 0.5 < 0.6 < 0.4 Ammonia (mg/L) Average Monthly < 0.8	Average Monthly	< 0.3	< 0.5	< 0.7	< 0.5	< 1.1	< 0.5	< 0.7	< 0.7	< 0.5	< 0.4	< 0.5	< 0.4
Ammonia (mg/L) Average Monthly < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0	Ammonia (lbs/day)												
Average Monthly < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8	Weekly Average	< 0.4	< 0.5	< 1.2	< 0.5	< 2.3	< 0.6	< 1.2	< 1.0	< 0.7	< 0.5	< 0.6	< 0.4
Average Monthly < 0.8	Ammonia (mg/L)												
Weekly Average < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8		< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
Weekly Average < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8 < 0.8	Ammonia (mg/L)												
(mg/L) Daily Maximum 3.2 3.2 Total Copper (lbs/day) 0.010 0.020 0.030 0.040 0.030 0.030 0.020 0.020 0.020 Total Copper (lbs/day) Weekly Average 0.020 0.050 0.020 0.040 0.040 0.040 0.050 0.040 0.020 Total Copper (mg/L) Total Copper (mg/L) 0.040 0.040 0.050 0.040 0.030 0.040 0.030 0.040 0.030 0.040 0.020		< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8
(mg/L) Daily Maximum 3.2 3.2 Total Copper (lbs/day) 0.010 0.020 0.030 0.040 0.030 0.030 0.020 0.020 0.020 Total Copper (lbs/day) Weekly Average 0.020 0.050 0.020 0.040 0.040 0.040 0.050 0.040 0.020 Total Copper (mg/L) Total Copper (mg/L) 0.040 0.040 0.050 0.040 0.030 0.040 0.030 0.040 0.030 0.040 0.020	Total Phosphorus												
Daily Maximum 3.2													
Total Copper (lbs/day)									3.2				
Average Monthly 0.010 0.020 0.030 0.040 0.030 0.030 0.020 0.020 0.020 Total Copper (lbs/day) Weekly Average 0.020 0.050 0.020 0.040 0.040 0.050 0.040 0.020 Total Copper (mg/L) Total Copper (mg/L) 0.040 0.040 0.050 0.040													
Total Copper (lbs/day) Weekly Average 0.020 0.020 0.050 0.020 0.060 0.040 0.040 0.050 0.040 0.030 0.040 0.020 Total Copper (mg/L)		0.010	0.020	0.030	0.020	0.040	0.030	0.030	0.030	0.020	0.020	0.030	0.020
Weekly Average 0.020 0.020 0.050 0.020 0.060 0.040 0.040 0.050 0.040 0.030 0.040 0.020 Total Copper (mg/L) Image: Copper (mg/L)													
Total Copper (mg/L)		0.020	0.020	0.050	0.020	0.060	0.040	0.040	0.050	0.040	0.030	0.040	0.020
		-											
7.11-01-0490 THO THE TOTAL TO THE OFFICE OF THE OFFICE OFF	Average Monthly	0.03	0.04	0.04	0.04	0.03	0.05	0.04	0.04	0.04	0.04	0.05	0.04
Total Copper (mg/L)			-	-	-					-	-		
Weekly Average 0.04 0.04 0.05 0.040 0.03 0.057 0.05 0.05 0.05 0.05 0.052 0.04		0.04	0.04	0.05	0.040	0.03	0.057	0.05	0.05	0.05	0.05	0.052	0.04

Compliance History

Effluent Violations for Outfall 001, from: September 1, 2020 To: July 31, 2021

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Flow	03/31/21	Avg Mo	0.206	MGD	0.20	MGD
Fecal Coliform	09/30/20	IMAX	1725	CFU/100 ml	1000	CFU/100 ml

Summary of Inspections: The facility was last inspected by PADEP as a response to an incident on March 2, 2021. There were no violations.

Other Comments:

	Developr	ment of Effluent Limitations	
Outfall No.	001	Design Flow (MGD)	0.2
Latitude	40° 36' 34.00"	Longitude	-78° 42' 20.00"
Wastewater D	Description: Sewage Effluent	<u>-</u>	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD ₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

Pursuant to EPA's approval of Pennsylvania's 2017 Triennial Review of Water Quality Standards and corresponding regulatory changes published in the *Pennsylvania Bulletin* on July 11, 2020, new water quality criteria for ammonia-nitrogen apply to waters of the commonwealth. Therefore, WQBELs for Outfall 001 are re-evaluated even though there have been no changes to the STP.

The effluent was modeled using WQM 7.0 to evaluate the CBOD₅, Ammonia Nitrogen, and Dissolved Oxygen parameters. Modeling confirmed that technology based effluent limitations are appropriate for CBOD₅. The modeling also confirmed that Dissolved Oxygen and Ammonia-Nitrogen limits are necessary to meet in-stream water quality criterion. These limits are not changing from the last permit.

Total Residual Chlorine (TRC) was modeled with PADEP's TRC Spreadsheet, and it was determined that a stricter limit should be imposed. Based on eDMR data, the facility as operating should be able to meet the new, more restrictive TRC limit.

Parameter	Limit (mg/l)	SBC	Model
Total Residual Chlorine	0.019	Average Monthly	TRC Spreadsheet
Dissolved Ovygon		Instantaneous	
Dissolved Oxygen	6.0	Minimum	WQM 7.0
Ammonia-Nitrogen			
(winter)	3.3	Average Monthly	WQM 7.0
Ammonia-Nitrogen			
(summer)	2.0	Average Monthly	WQM 7.0

A "Reasonable Potential Analysis" was conducted using PADEP's Toxic Management Spreadsheet Version 1.3.

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (µg/l)	SBC	Model
Total Copper (µg/L)	9.9	Average Monthly	TMS Version 1.3

A WQBEL for total copper (mass and concentration) was previously imposed on this facility based upon output data from PENTOXSD Version 1.03. DMR data for total copper was reviewed and the Department's TMS Model, Version 1.3 was used to develop an updated WQBEL (mass and concentration) for total copper based upon a design flow of 0.2 MGD. The output files are included in Attachment C. Based on eDMR data, the facility as currently operating is not able to meet the new limit.

In accordance with department policy, a pre-draft survey was sent to the authority on November 10, 2021. The authority returned a copy of the survey on December 13, 2022, and a copy of their response is included in Attachment E. The Authority stated copper is suspected to be coming from corrosion within the public drinking water system. The authority incorporates polyphosphate into their drinking water system to control corrosion. The new limits will require the authority to install additional treatment and the authority estimates that they can achieve the new limits in 2027. A compliance schedule of five years is therefore being implemented. The existing permit limits will expire one month prior to the permit expiration date.

Default stream parameter values were used for modeling the new Copper limits. Because of this, the permittee must collect the site-specific data and a special condition Part C. III. B. was added to the Permit. Additionally, because the facility is receiving a WQBEL for Copper and the source is suspected to be corrosion of drinking water lines, the permittee is required to complete a Toxics Reduction Evaluation (TRE) and a special condition Part B. III. C. was added to the Permit.

The Toxic Management Spreadsheet Version 1.3 modeling results recommends Monitoring for Total Zinc. This monitoring requirement was not part of the previous permit.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Additional Considerations

Sewage discharges will include monitoring, at a minimum, for E. coli, in new and reissued permits, with a monitoring frequency of 1/quarter for design flows >= 0.05 and < 1 MGD.

For pH, Dissolved Oxygen (DO) and TRC, a monitoring frequency 1/day has been imposed. In general, less frequent monitoring may be established only when the permittee demonstrates that there will be no discharge on days where monitoring is not required.

The receiving stream is not impaired for nutrients, therefore, annual sampling for nitrogen and phosphorus will be imposed per 25 PA Code §92a.61.

For POTWs with design flows greater than 2,000 GPD, influent BOD₅ and TSS monitoring must be established in the permit and the monitoring should be consistent with the same frequency and sample type as used for other effluent parameters.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations. Please note that Monitoring Requirements were changed for Flow to 1/week Metered to be consistent with the guidance.

When the source of a toxic pollutant is unknown, or suspected, department policy stipulates that the facility conducts a Toxics Reduction Evaluation (TRE). Additionally, when the pollutant is copper or lead and the source is suspected to be corrosion of water lines, the facility is required to conduct a Corrosion Control Feasibility Study as part of the TRE. Part C.III, Water Quality-Based Effluent Limitations for Toxic Pollutants, and C.IV, Corrosion Control Feasibility Study, have been added to the permit.

Mass Loading

Mass loading limits are applicable for publicly owned treatment works. Current policy requires average monthly mass loading units be established for CBOD $_5$, TSS, and NH3-N. Average monthly mass loading limits (lbs./day) are based on the formula: design flow (MGD) x concentration limit (mg/L) x conversion factor (8.34).

Chest Creek Watershed Sediment TMDL West Branch

Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 of the Code of Federal Regulations Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding water quality criteria for the pollutant. TMDLs also provide a scientific bases for states to establish water quality-based controls for reducing pollution from both point and non-point sources in order to restore and maintain the quality of the state's water resources (USEPA 1991a). Stream reaches within the Chest Creek Watershed are included in the state's 2008 Section 303(d) because of various impairments including siltation, Total Suspended Solids (TSS), and turbidity. A TMDL for this watershed was finalized in August 2011 to address siltation, TSS, and turbidity impairments associated with abandoned mine drainage discharge.

In accordance with 40 CFR § 122.44(d)(1)(vii)(B), when developing WQBELs, the permitting authority shall ensure that effluent limits developed to protect a narrative water criterion, a numeric water quality criterion, or both, are consistent with the assumptions and requirements of any available wasteload allocation (WLA) for the discharge.

The facility permit, PA0111201, was identified in the TMDL. The facility was assigned a WLA that was derived from the permit limit which existed at the time the TMDL was finalized. The WLA is based on a TSS concentration of 30 mg/L and a design flow of 0.2 MGD. The WLA for this facility was adjusted up to 18,275.6 lbs./yr. An instantaneous maximum limit of 60 mg/L was calculated by using a multiplier of two times the average monthly limit in accordance with the Department's Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits (Doc. No. 362-0400-001, Chapter 3, pp. 15 – 16). A weekly average limit of 45 mg/L was imposed to be consistent with 40 CFT 133.102(b)(2) and 25 PA Code §92a.47(a)(b).

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Beginning of Sixtieth (60th) Month Following Permit Issuance through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentra	tions (ug/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
		0.025			15.0			24-Hr
Total Copper (ug/L)	0.017	Daily Max	XXX	9.9	Daily Max	15	1/week	Composite

Compliance Sampling Location:

Other Comments:

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through End of Fifty-Ninth (59th) Month Following Permit Issuance.

		Effluent Limitations								
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentra	tions (µg/L)		Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
		0.166			0.10			8-Hr		
Total Copper	0.083	Wkly Avg	XXX	0.05	Wkly Avg	0.125	1/week	Composite		

Compliance Sampling Location:

Other Comments:

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
	_	Report			_			-
Flow (MGD)	0.20	Daily Max	XXX	XXX	XXX	XXX	1/week	Metered
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	6.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.019	XXX	0.063	1/day	Grab
CBOD₅	41.7	62.5	XXX	25	38	50	1/week	8-Hr Composite
BOD5		Report						8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
TSS	50.0	75.0	XXX	30	45	60	1/week	8-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	8-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	5.5	8.3	XXX	3.3	5.0	6.6	1/week	8-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
raianietei	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Ammonia-Nitrogen				-				8-Hr
May 1 - Oct 31	3.3	5.0	XXX	2.0	3.0	4.0	1/week	Composite
					Report			8-Hr
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Composite
		Report			Report			24-Hr
Total Zinc (ug/L)	Report	Daily Max	XXX	Report	Daily Max	XXX	1/week	Composite

Compliance Sampling Location:

Other Comments:

ATTACHMENT A

WQM 7.0 Modeling Results

Summer

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	08B	268	884 Trib 26	8884 to Lit	ttle Chest C	reek	3.27	70	2600.00	0.46	0.0000	0	0.00	✓
					St	ream Data	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> p pH	Те	<u>Strean</u> mp	n pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°	C)		
Q7-10 Q1-10 Q30-10	0.048	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.0	00 2	0.00 7.	00	0.00	0.00	
		Discharge Data]	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	ic Res w Fa	Dis erve Ten ctor (°C	np	Disc pH		
		Carro	lltown Bor	PAG	0111201	0.2000	0.000	0.0	0000	0.000 2	20.00	7.00		
					Pa	arameter [Data							
				oaramete	r Name	Dis Co		Trib Conc	Stream Conc	Fate Coef				
				aramete	I Ivallie	(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5			2	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			6.00	9.01	0.00	0.00				
			NH3-N				2.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slop (ft/f	With	VS drawal igd)	Apply FC
	08B	268	884 Trib 26	8884 to Lit	ttle Chest C	reek	0.0	01	1800.00	2.8	8 0.00	0000	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary np pi	н	<u>Strea</u> Temp	m pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.048	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.0	00 2	0.00	7.00	0.00	0.00	
					Di	scharge (Data						1	
			Name	Per	mit Number	Disc	Permitt Disc Flow (mgd)	Dis Flo	sc Res	erve T	Oisc emp °C)	Disc pH		
						0.000	0.000	0.0	0000	0.000	25.00	7.00		
					Pa	arameter l	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				aramete	rvaine	(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

		P Basin 08B	Stream Code 26884				Trib 2688					
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-1	0 Flow											
3.270	0.02	0.00	0.02	.3094	0.04635	.457	4.49	9.82	0.16	1.236	20.00	7.00
Q1-1	0 Flow											
3.270	0.01	0.00	0.01	.3094	0.04635	NA	NA	NA	0.16	1.253	20.00	7.00
Q30-	10 Flow	,										
3.270	0.03	0.00	0.03	.3094	0.04635	NA	NA	NA	0.16	1.220	20.00	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	v
D.O. Saturation	90.00%	Use Balanced Technology	v
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

,	08B	26884	ode_			<u>St</u> Trib 26884	tream to Litt		t Creek		
NH3-N	Acute Alloca	tions									
RMI	Discharge N	ame Cri	seline terion ng/L)	Baseline WLA (mg/L)		Multiple Criterion (mg/L)	V	ltiple /LA ng/L)	Critical Reach	Percent Reductio	
3.27	0 Carrolltown Bo	or	16.76		4	16.76		4	0	0	_
NH3-N	Chronic Allo	cations									_
RMI	Discharge Na	Base me Crite (mg	rion	Baseline WLA (mg/L)		Multiple Criterion (mg/L)	Multi WL (mg	A	Critical Reach	Percent Reduction	
3.27	'0 Carrolltown Bo	or	1.89		2	1.89		2	0	0	_
Dissolve	ed Oxygen A	llocatio	ns								_
RMI	Discharge	Name				<u>NH3-N</u> Baseline Mi (mg/L) (n			ved Oxygen ne Multiple) (mg/L)	Unitical	Percent Reduction
3.2	7 Carrolltown Bo	vr.	25	5 2	5	2	2	6	6	0	0

WQM 7.0 D.O.Simulation

SWP Basin S 08B	tream Code 26884		Trib 268	Stream Name 84 to Little Chest	Creek
<u>RMI</u>	Total Discharge	Flow (mgd) Anal	ysis Temperature (°C) Analysis pH
3.270	0.20	0		20.000	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
4.488	0.45	7		9.815	0.162
Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
23.46	1.47	_		1.87	0.700
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
6.202	27.21	17		Owens	6
Reach Travel Time (days)		Subreach	Results		
1.236	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.124	19.55	1.71	7.25	
	0.247	16.29	1.57	7.57	
	0.371	13.57	1.44	7.82	
	0.495	11.31	1.32	8.03	
	0.618	9.42	1.21	8.20	
	0.742	7.85	1.11	8.24	
	0.865	6.54	1.02	8.24	
	0.989	5.45	0.93	8.24	
	1.113	4.54	0.86	8.24	
	1.236	3.79	0.79	8.24	

WQM 7.0 Effluent Limits

		т.		-		
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)
Carrolltown Bo	or PA0111201	0.200	CBOD5	25		
			NH3-N	2	4	
			Dissolved Oxygen			6
	08B Name	08B 26884 Name Permit Number	08B 26884 To	Name Permit Number Disc Flow (mgd) Parameter Carrolltown Bor PA0111201 0.200 CBOD5 NH3-N NH3-N	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Carrolltown Bor PA0111201 0.200 CBOD5 25 NH3-N 2	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Carrolltown Bor PA0111201 0.200 CBOD5 25 NH3-N 2 4

Winter

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI	Elev:		Drainag Area (sq mi		ope v rt)	PWS Vithdrawal (mgd)	Apply FC
	08B	268	884 Trib 26	884 to LI	ttle Chest C	reek	3.27	70 26	500.00	0	.46 0.0	00000	0.00	✓
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributan</u> np	μ pH	<u>s</u> Temp	<u>tream</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(%)	9		(°C)		
Q7-10 Q1-10 Q30-10	0.097	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	10.0	0.00	0.00		5.00	7.00	0.0	0.00)
			Name	Per	DI mit Number	Disc	Data Permitte Disc Flow (mgd)	Disc	Res Fa	serve ictor	Disc Temp (°C)	Disc pH	;	
		Carro	olitown Bor	PAG	0111201	0.200		0.00	00	0.000	15.00	7.	.00	
					Pa	rameter I Di		Inib S	tream	Fate				
				Paramete	r Name				Conc mg/L)	Coef (1/days)			
	-		CBOD5				25.00	2.00	0.00	1.5	0			
			Dissolved	Oxygen			6.00	12.51	0.00	0.0	0			
			NH3-N				3.30	0.00	0.00	0.7	D			

Input Data WQM 7.0

	SWP Basin			Str	eam Name		RMI		ation t)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	08B	268	884 Trib 26	884 to LI	ttle Chest C	reek	0.0	01 1	800.00	2.88	0.0000	0	0.00	V
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Те	<u>Strean</u> emp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(C)		
Q7-10 Q1-10 Q30-10	0.097	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	10.0	0.00	0.00) 5	5.00 7	.00	0.00	0.00	
			Name	Per	DI mit Number	Disc		Flow	Res	erve Te ctor	mp C)	Disc pH		
						0.000		00.00	00 0	0.000	0.00	7.00		
				Paramete		С	isc onc (Conc	tream Conc (mg/L)	Fate Coef (1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved NH3-N	Oxygen			3.00 25.00	8.24 0.00	0.00	0.00				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	Name				
		08B	2	6884		,	Trib 2688	4 to Litt	le Chest	Creek			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-1	0 Flow												
3.270	0.04	0.00	0.04	.3094	0.04635	.463	4.56	9.87	0.17	1.192	13.75	7.00	
Q1-1	0 Flow												
3.270	0.03	0.00	0.03	.3094	0.04635	NA	NA	NA	0.16	1.223	14.16	7.00	
Q30-	10 Flow	,											
3.270	0.06	0.00	0.06	.3094	0.04635	NA	NA	NA	0.17	1.163	13.37	7.00	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	V
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	y
D.O. Saturation	90.00%	Use Balanced Technology	V
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

	08B	Stream Code 26884		Trib 2	Stream 8884 to Lit		Creek		
NH3-N	Acute Alloca	tions							
RMI	Discharge N	Baselin ame Criterio (mg/L	n WLA	Crite	ion 1	ultiple WLA mg/L)	Critical Reach	Percent Reductio	
3.27	70 Carrolltown Bo	r 2	4.1	5.6	24.1	6.6	0	0	_
NH3-N	Chronic Allo	Baseline		Multipi Criterio (mg/L	n W	tiple LA g/L)	Critical Reach	Percent Reduction	
3.27	70 Carrolltown Bo	r 2	.89	3.3	2.89	3.3	0	0	
Dissolv RMI	ed Oxygen A	Name Ba	<u>CBOD5</u> seline Multip ng/L) (mg/L	le Baselin			ed Oxygen Multiple (mg/L)	Critical	Percent Reduction
31	7 Carrolltown Bo	,	25 3	25 3	3 3 3	- 6	6	0	0

WQM 7.0 D.O.Simulation

	26884		Trib 268	84 to Little (<u>me</u> Chest Creek	
RMI	Total Discharge) Ana	lysis Temper	ature (°C)	Analysis pH
3.270	0.20			13.745		7.000
Reach Width (ft) 4.565	Reach De 0.46			Reach WDF 9.869	tatio	Reach Velocity (fps) 0.168
		-		each NH3-N	(mail)	
Reach CBOD5 (mg/L) 22.11	Reach Kc 1.46			2.89	(III)	Reach Kn (1/days) 0.433
	Reach Kr (_		Kr Equation	on	Reach DO Goal (mg/L)
Reach DO (mg/L) 6.817	23.5			Owens		6
Reach Travel Time (days) 1.192	TravTime	Subreact CBOD5				
1.192	(days)	(mg/L)	NH3-N (mg/L)	D.O. (mg/L)		
	(ddjo)	(mg/c)	(g.=/	(g. =)		
	0.119	19.40	2.74	8.61		
	0.238	17.02	2.60	8.89		
	0.358	14.93	2.47	9.06		
	0.477	13.09	2.35	9.21		
	0.596	11.49	2.23	9.33		
	0.715	10.08	2.12	9.33		
	0.835	8.84	2.01	9.33		
	0.954	7.75	1.91	9.33		
	1.073	6.80	1.81	9.33		
	1.192	5.97	1.72	9.33		

WQM 7.0 Effluent Limits

	SWP Basin S 08B	tream Code 26884	т	Stream Name or 1b 26884 to Little Ch	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effi. Limit Minimum (mg/L)
3.270	Carrolltown Bo	PA0111201	0.200	CBOD5	25		
				NH3-N	3.3	6.6	
				Dissolved Oxygen			6

ATTACHMENT B TRC Modeling Results

input appropria	te values in /	A3:A9 and D3:D9			
0.0222	= Q stream (cfs)	0.5	= CV Daily	
0.2	= Q discharg	e (MGD)	0.5	= CV Hourly	
30	= no. sample	s	1	= AFC_Partial N	lix Factor
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial N	lix Factor
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)
0	= % Factor o	of Safety (FOS)		=Decay Coeffici	ent (K)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	0.042	1.3.2.iii	WLA cfc = 0.033
PENTOXSD TRG	5.1a	LTAMULT afc =		5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	0.016	5.1d	LTA_cfc = 0.019
Source		Efflue	nt Limit Calcul	ations	
PENTOXSD TRG	5.1f		AML MULT =	1.231	
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.019	AFC
		INST MAX	LIMIT (mg/l) =	0.063	
WLA afc		FC_tc)) + [(AFC_Yc*Qs*.019/		_tc))	
	+ Xd + (AF	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)	tc))	
WLA afc LTAMULT afc LTA afc	+ Xd + (AFC EXP((0.5*LN)	C_Yc*Qs*Xs/Qd)]*(1-FOS/100 cvh^2+1))-2.326*LN(cvh^2+	0)	to))	
	+ Xd + (AF	C_Yc*Qs*Xs/Qd)]*(1-FOS/100 cvh^2+1))-2.326*LN(cvh^2+	0)	tc))	
LTAMULT afc LTA_afc	+ Xd + (AF0 EXP((0.5*LN) wla_afc*LTA	C_Yc*Qs*Xs/Qd)]*(1-FOS/100 cvh^2+1))-2.326*LN(cvh^2+	0) 1)^0.5)		
LTAMULT afc LTA_afc	+ Xd + (AFC EXP((0.5*LN) wla_afc*LTA (.011/e(-k*Cf	C_Yc*Qs*Xs/Qd)]*(1-FOS/100 (cvh^2+1))-2.326*LN(cvh^2+ MULT_afc	0) 1)^0.5) Qd*e(-k*CFC_1		
LTAMULT afc LTA_afc WLA_cfc	+ Xd + (AFC EXP((0.5*LN) wla_afc*LTA (.011/e(-k*CFC + Xd + (CFC	C_Yc ^a Qs ^a Xs/Qd)] ^a (1-FOS/10/ cvh^2+1))-2.326 ^a LN(cvh^2+ MULT_afc FC_tc) + [(CFC_Yc ^a Qs ^a .011/	0) 1)^0.5) Qd*e(-k*CFC_1 0)	te))	5)
LTAMULT afc LTA_afc WLA_efc LTAMULT_cfc	+ Xd + (AFC EXP((0.5*LN) wla_afc*LTA (.011/e(-k*CFC + Xd + (CFC	C_Yc*Qs*Xs/Qd)]*(1-FOS/10/ cvh^2+1))-2.326*LN(cvh^2+ MULT_afc FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10/ cvd^2/no_samples+1))-2.32/	0) 1)^0.5) Qd*e(-k*CFC_1 0)	te))	.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (AFC EXP((0.5*LN) wla_afc*LTA (.011/e(-k*CF + Xd + (CFC EXP((0.5*LN) wla_cfc*LTA	C_Yc*Qs*Xs/Qd)]*(1-FOS/10/ cvh^2+1))-2.326*LN(cvh^2+ MULT_afc FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10/ cvd^2/no_samples+1))-2.32/	0) 1)^0.5) Qd*e(-k*CFC_t 0) 5*LN(cvd^2/no	tc)) o_samples+1)^0	
LTAMULT afc	+ Xd + (AFC EXP((0.5*LN) wla_afc*LTA (.011/e(-k*Cf + Xd + (CFC EXP((0.5*LN) wla_cfc*LTA EXP(2.326*LI	C_Yc*Qs*Xs/Qd)]*(1-FOS/10/ cvh^2+1))-2.326*LN(cvh^2+ MULT_afc FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10/ cvd^2/no_samples+1))-2.32/ MULT_cfc	0) 1)^0.5) Qd*e(-k*CFC_t 0) 5*LN(cvd^2/no 5)-0.5*LN(cvd/	tc)) o_samples+1)^0	

ATTACHMENT C

TMS Spreadsheet Output

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Inst	ructions D	ischarge Stream												
Fac	lity: Car	rolltown Borough				NPI	DES Pen	mit No.:	PA0111	201		Outfall I	No.: 001	
Eva	luation Type:					Wa	stewater	Descript	ion:					
_					D: 1									
<u> </u>					Discha	rge Cha	racterist	ICS						
De	sign Flow	Handanan (maille	-11/	ern+		Parti	al Mix Fa	actors (F	MFs)		Comp	olete Mi	x Times	(min)
	(MGD)*	Hardness (mg/l)*	pn (SU)*	AFC	:	CFC	THE	ı	CRL	Q,	-10	G	l _h
	0.2	100		7										
						0 If let	t blank	0.5 If le	ft blank	0	if left blan	k	1 If left	blank
	Disch	arge Pollutant	Units		scharge onc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl

					0 If let	t blank	0.5 lf le	ft blank	0	if left blan	k	1 if left	blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	
\Box	Total Dissolved Solids (PWS)	mg/L		449									
7	Chloride (PWS)	mg/L		114									
	Bromide	mg/L		0.06									
ច	Sulfate (PWS)	mg/L		27.5									
	Fluoride (PWS)	mg/L											
Г	Total Aluminum	µg/L											
	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barlum	µg/L											
	Total Beryllum	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L											
	Hexavalent Chromium	µg/L											
	Total Cobalt	µg/L											
	Total Copper	µg/L		47									
N	Free Cyanide	µg/L											
Group	Total Cyanide	µg/L	\vdash										
18	Dissolved Iron	µg/L	\vdash										
-	Total Iron	µg/L											
	Total Lead	µg/L	<	0.33									
	Total Manganese	µg/L											
	Total Mercury	µg/L											
	Total Nickel	µg/L											
	Total Phenois (Phenolics) (PWS)	µg/L											
	Total Selenium	µg/L	\vdash										
	Total Silver	µg/L	\vdash										
	Total Thallium	µg/L	\vdash										
	Total Zinc	µg/L		47									
	Total Molybdenum	µg/L											
\vdash	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

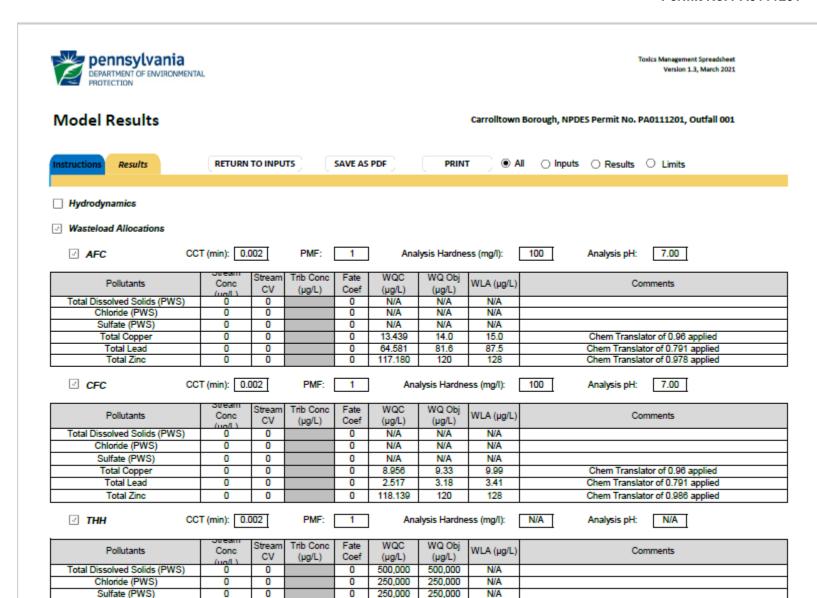
Discharge Information 10/13/2021 Page 1

Cancon Tetrachloride 1991.	
Chicrocitivomomehane	
Chrorostane	
Chiorotom 1991.	
Chicrotrotromomethane	
Dictioncotromomehane	
1.1-Dichioroethane	
1.1-Dichisropripane	
1.3-Dichloropropries 195L	
Bart	
1,4-Dioxinospheripe	
1,4-Dioxinospheripe	
1.4-Dioxane	
Ethyperzene	
Methyl Chioride	
Methyl Chloride µg/L	
Methylene Chloride µg/L Int. 22-Telrachioroethane µg/L Int. 22-Telrachioroethylene Int. 22-Telrachioroethylene	
1.1.2.2-Tetrachioroethane	
Totuene	
Toluene 1,2-trans-Dichloroethylene 1,9/L	
1,2-trans-Dichloroethylene	
1,1,1-Trichtoroethane	
1,1,2-Trichloroethylene	
Trichioroethylene	
Vinyl Chloride	
2-Chlorophenol	
2,4-Dinethylphenol	
2,4-Dinethylphenol	
2.4-Dimethylphenol	
4.6-Dintro-o-Cresol	
2,4-Dinitrophenol	
2-Ntrophenol	
P-Chloro-m-Cresol μg/L	
P-Chloro-m-Cresol μg/L	
Pentachiorophenol µg/L	
Phenol	
2,4,6-Trichiorophenol µg/L Acenaphthene µg/L Acenaphthylene µg/L Anthracene µg/L Benzolaline µg/L Benzola/pyrene µg/L Benzo(a)Anthracene µg/L Benzo(a)Pyrene µg/L 3,4-Benzofluoranthene µg/L Benzo(k)Fluoranthene µg/L Benzo(k)Fluoranthene µg/L Bis(2-Chloroethoxy)Methane µg/L Bis(2-Chloroethoxy)Methane µg/L Bis(2-Chloroethyl)Ether µg/L Bis(2-Chloroethyl)Ether µg/L Bis(2-Chloroethyl)Ether µg/L Bis(2-Ethylhexyl)Phthalate µg/L Bis(2-Ethylhexyl)Phthalate µg/L Butyl Benzyl Phenyl Ether µg/L Butyl Benzyl Phthalate µg/L 2-Chloronaphthalene µg/L	
Acenaphthene	
Acenaphthylene μg/L Anthracene μg/L Benzidine μg/L Benzo(a)Anthracene μg/L Benzo(a)Pyrene μg/L Benzo(gh)Perylene μg/L Benzo(k)Fluoranthene μg/L Benzo(k)Fluoranthene μg/L Bis(2-Chioroethoxy)Methane μg/L Bis(2-Chioroethoxy)Bither μg/L Bis(2-Chioroethoxy)Pithalate μg/L Bis(2-Chioroethalate μg/L Bis(2-Chioroethalate μg/L Bis(2-Chioroethalate μg/L <td< td=""><td></td></td<>	
Anthracene	
Benzidine	
Benzo(a)Anthracene	
Benzo(a)Pyrene	
3,4-Benzofluoranthene	
Benzo(ghl)Perylene	
Benzo(ghi)Perylene	
Benzo(k)Fluoranthene	
Bis(2-Chloroethoxy)Methane	
Bis(2-Chloroethyl)Ether	
Bis(2-Chloroisopropyl)Ether	
Bis(2-Ethylhexyl)Phthalate	
4-Bromophenyl Phenyl Ether	
Butyl Benzyl Phthalate	
2-Chioronaphthalene	
4-Chlorophenyl Phenyl Ether	
Chrysene μg/L Dibenzo(a,h)Anthrancene μg/L 1,2-Dichlorobenzene μg/L 1,3-Dichlorobenzene μg/L 1,4-Dichlorobenzene μg/L 3,3-Dichlorobenzidine μg/L Diethyl Phthalate μg/L Dimethyl Phthalate μg/L	
Dibenzo(a,h)Anthrancene	
1,2-Dichiorobenzene	
1,3-Dichlorobenzene	
1,4-Dichlorobenzene	
9 3,3-Dichlorobenzidine	
9 3,3-Dichlorobenzidine	
Differing Printerior	
Differily Philadate pyr.	
2,4-Dinitrotoluene µg/L <	

Discharge Information 10/13/2021 Page 2

- 1								
	2,6-Dinitrotoluene	µg/L	<					
	Di-n-Octyl Phthalate	µg/L	•					
	1,2-Diphenyihydrazine	µg/L	•					
	Fluoranthene	μg/L	<					
	Fluorene	μg/L	•					
	Hexachlorobenzene	µg/L	*					
	Hexachlorobutadiene	µg/L	<					
	Hexachiorocyclopentadiene	µg/L	*					
	Hexachloroethane	µg/L	<					
	Indeno(1,2,3-cd)Pyrene	µg/L	<					
	Isophorone	µg/L	<					
	Naphthalene	µg/L	<					
	Nitrobenzene	µg/L	<					
	n-Nitrosodimethylamine	µg/L	<					
	n-Nitrosodi-n-Propylamine	µg/L	<					
			-					
	n-Nitrosodiphenylamine	µg/L	<					
	Phenanthrene	µg/L	<					
	Pyrene	µg/L	<					
	1,2,4-Trichiorobenzene	µg/L	<					
	Aldrin	µg/L	<					
	alpha-BHC	µg/L	*					
	beta-BHC	µg/L	*					
	gamma-BHC	µg/L	٧					
	delta BHC	µg/L	<					
	Chlordane	µg/L	<					
	4.4-DDT	µg/L	<					
- 1	4,4-DDE	µg/L	<					
	4,4-DDD	µg/L	<					
- 1	Dieldrin	µg/L	*					
- 1			۷					
	alpha-Endosulfan beta-Endosulfan	µg/L	-					
_		µg/L	<					
₽.	Endosulfan Sulfate	µg/L	<					
P 1	Endrin	µg/L	•					
	Endrin Aldehyde	µg/L	<					
	Heptachlor	μg/L	<					
	Heptachior Epoxide	µg/L	<					
	PCB-1016	μg/L	~					
	PCB-1221	μg/L	<					
	PCB-1232	μg/L	<					
	PCB-1242	µg/L	<					
	PCB-1248	µg/L	<					
	PCB-1254	µg/L	<					
- 1	PCB-1260	µg/L	<					
	PCBs, Total	µg/L	٧					
	Toxaphene		٧					
	2,3,7,8-TCDD	µg/L	-					
_	1-1-1-	ng/L	<					
	Gross Alpha	pCl/L						
	Total Beta	pCl/L	<					
	Radium 226/228	pCl/L	<					
Æ 1	Total Strontium	µg/L	<					
- 1	Total Uranium	µg/L	<					
	Osmotic Pressure	mOs/kg						

Discharge Information 10/13/2021 Page 3



Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Carrolltown Borough, NPDES Permit No. PA0111201, Outfall 001

Receiving Surface V	Vater Name: UN	IT of Little (Chest Creek	t		No. Reaches	o Model:	1	_	tewide Criter			
Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi²)	Slope (ft/ft)	PWS Withdr (MGD)	awal Apply Crite		_	SANCO Crite			
Point of Discharge	026884	3.27	2600	0.46		, ,	Ye	s					
End of Reach 1	026884	0.01	1800	2.88			Ye	5					
2 ₇₋₁₀	PMI	LFY	Flow (c		W/D Width	Depth Veloc	it Time	Tribut	ary	Strea	m	Analys	sis
Location	3	:fs/mi²)*			W/D Width Ratio (ft)	Depth Veloc (ft) y (fp:	It Time	Tribut Hardness	ary pH	Hardness*	m pH'	Analy:	
	(c	_		-			Time					-	sis p

Model Results 10/13/2021 Page 5

Total Copper	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	

☑ CRL CCT (min): 0.061 Analysis Hardness (mg/l): N/A Analysis pH: N/A

Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
	Conc (ug/L) 0 0 0	Conc CV CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Conc (µg/L) CV (µg/L) CV (µg/L) CV (µg/L) CV (µg/L) CV (µg/L)	Conc (unil) CV (ug/L) Coef (unil) C (unil)	Conc (μg/L) Stream CV Ind Conc (μg/L) Fate Coef 0 WQC (μg/L) 0 0 0 N/A 0 0 0 N/A	Conc (μg/L) Stream CV Ind Conc (μg/L) Fale Coef (μg/L) WQC Us (μg/L) WQC Us (μg/L) 0 0 0 N/A N/A N/A 0 0 0 N/A N/A N/A	Conc (µg/L) Steam CV Inb Conc (µg/L) Fate (µg/L) WQ C (µg/L) WQ Obj (µg/L) WLA (µg/L) 0 0 0 N/A N/A N/A N/A 0 0 0 N/A N/A N/A N/A

✓ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.017	0.025	9.99	15.0	15.0	μg/L	9.99	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	120	AFC	Discharge Conc > 10% WQBEL (no RP)

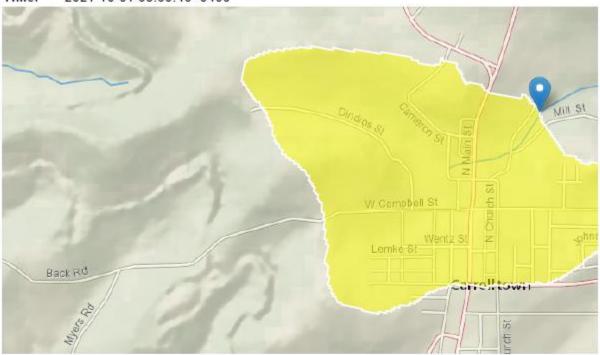
Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Lead	N/A	N/A	Discharge Conc < TQL

ATTACHMENT D USGS Stream Stats Output

At Discharge Point


StreamStats Report

Region ID: PA

Workspace ID: PA20211001125026276000

Clicked Point (Latitude, Longitude): 40.60927, -78.70556

Time: 2021-10-01 08:50:45 -0400

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.46	square miles
ELEV	Mean Basin Elevation	2157	feet
PRECIP	Mean Annual Precipitation	43	inches

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.46	square miles	2.33	1720
ELEV	Mean Basin Elevation	2157	feet	898	2700
PRECIP	Mean Annual Precipitation	43	inches	38.7	47.9

Low-Flow Statistics Disclaimers [Low Flow Region 3]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

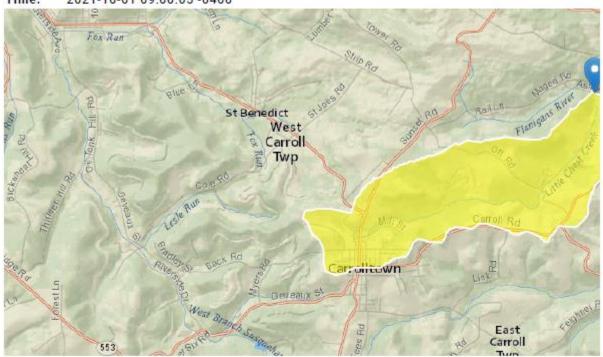
Low-Flow Statistics Flow Report [Low Flow Region 3]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0583	ft*3/s
30 Day 2 Year Low Flow	0.0855	ft^3/s
7 Day 10 Year Low Flow	0.0222	ft*3/s
30 Day 10 Year Low Flow	0.0312	ft*3/s
90 Day 10 Year Low Flow	0.0474	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Downstream of Discharge


StreamStats Report

Region ID: PA

Workspace ID: PA20211001125946385000

Clicked Point (Latitude, Longitude): 40.62916, -78.66222

Time: 2021-10-01 09:00:05 -0400

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	2.88	square miles
ELEV	Mean Basin Elevation	2039	feet
PRECIP	Mean Annual Precipitation	43	inches

ATTACHMENT E

Carrolltown Borough Municipal Authority Pre-Draft Survey Response

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PRE-DRAFT PERMIT SURVEY FOR TOXIC POLLUTANTS

Perr	nittee Name:	Carrolltown Cambria Cou	Borough inty	Municipal	Authority	Perm	it No,:	PA01	11201			
Pollutant(s) identified by DEP that may require WQBELs: Copper												
Is the permittee aware of the source(s) of the pollutant(s)?												
If Yes or Suspected, describe the known or suspected source(s) of pollutant(s) in the effluent. The primary source of copper is suspected to be corrosion of piping (including institutional boilers) within the public drinking water system. 2019 Lead/Copper Testing resulted in a 90th percentile copper concentration of 0.413 mg/l. That level meets drinking water standards but is well in excess of the proposed WQBEL.												
Has the permittee completed any studies in the past to control or treat the pollutant(s)? ■ Yes ■ No												
If Yes, describe prior studies and results: The Authority has incorporated polyphosphate treatment into the drinking water system to control corrosion, Occasional exceedances of the existing copper effluent limit still occur.												
Does the permittee believe it can achieve the proposed WQBELs now? ☐ Yes 🕱 No ☐ Uncertain												
If No, describe the activities, upgrades or process changes that would be necessary to achieve the WQBELs, if known. More stringent copper effluent limits will require the installation of tertiary treatment, likely in the form of adsorption or filtration units.												
Estir	mated date by	which the pern	nittee could a	chieve the pro	posed WQB	ELs:	202	27		Uncertain		
Will the permittee conduct additional sampling for the pollutant(s) to supplement the application?												
Check the appropriate box(es) below to indicate site-specific data that have been collected by the permittee in the past. If any of these data have <u>not</u> been submitted to DEP, please attach to this survey.												
X	Discharge po	ollutant concent	ration coeffici	ent(s) of varia	ability	Ye	ear(s) St	tudied:	2021 to d	ate		
	Discharge ar	nd background	Total Hardnes	ss concentrati	ions (metals)	Ye	ear(s) St	tudied:				
	Background	/ ambient pollut	ant concentra	ations		Ye	ear(s) Si	tudied:				
	Chemical tra	nslator(s) (meta	als)			Y	ear(s) S	tudied:				
	Slope and wi	idth of receiving	waters			Ye	ear(s) S	tudied:				
	Velocity of re	eceiving waters	at design con	ditions		Y	ear(s) St	tudied:				
	Acute and/or	chronic partial	mix factors (r	mixing at design	gn conditions	s) Ye	ear(s) Si	tudied:				
	Volatilization	rates (highly vo	olatile organic	s)		Y	ear(s) St	tudied:				
X	Site-specific	criteria (e.g., W	ater Effect R	atio or related	study)	Y	ear(s) S	tudied:	2008			

Please submit this survey to the DEP regional office that is reviewing the permit application within 30 days of receipt.