

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0112747
APS ID	1022693
Authorization ID	1326021

Mahaffey Borough Municipal Authority

Applicant and Facility Information

Applicant Name	Mahaffey Borough Municipal Authority	Facility Name	Wastewater Treatment Plant
Applicant Address	PO Box 202	Facility Address	SR0. 219
	Mahaffey, PA 15757-0202		Mahaffey, PA 15757
Applicant Contact	Edward Depp	Facility Contact	Roy Markle
Applicant Phone	(814) 277-6659	Facility Phone	(814) 591-3159
Client ID	72795	Site ID	1141
Ch 94 Load Status	Not Overloaded	Municipality	Mahaffey Borough
Connection Status	No Prohibitions	County	Clearfield
Date Application Rece	ived September 1, 2020	EPA Waived?	Yes
Date Application Acce	pted September 21, 2020	If No, Reason	
Purpose of Application	Renewal of an existing NPDES perr	nit for the discharge of	treated sewage.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
x		<i>Derek S. Garner</i> Derek S. Garner / Project Manager	January 25, 2021
x		Nicholas W. Hartranft Nicholas W. Hartranft	January 26, 2021

Outfall No. <u>001</u>		Design Flow (MGD)	0.07
Latitude <u>40° 52' 57.78</u>	, II	Longitude	-78º 43' 55.65"
Quad Name Mahaffey	_	Quad Code	
Wastewater Description:	Sewage		
Receiving Waters <u>West</u>	Branch Susquehanna River	Stream Code	18668
NHD Com ID61833	285	RMI	206.85
Drainage Area 299	_	Yield (cfs/mi ²)	0.141
Q ₇₋₁₀ Flow (cfs) <u>42.1</u>	_	Q7-10 Basis	Streamgage No. 01541000
Elevation (ft) 1260	_	Slope (ft/ft)	0.0004
Watershed No. 8-B	_	Chapter 93 Class.	WWF
Existing Use <u>n/a</u>	_	Existing Use Qualifier	n/a
Exceptions to Use <u>n/a</u>	_	Exceptions to Criteria	n/a
Assessment Status	Attaining Use(s)		
Cause(s) of Impairment	_n/a		
Source(s) of Impairment	_n/a		
TMDL Status	Final, 07/09/2009	Name West Branch	<u>Susquehanna</u>
Nearest Downstream Publi	c Water Supply Intake	Shawville Power LLC	
PWS Waters West Bra	anch Susquehanna River	Flow at Intake (cfs)	131
PWS RMI 163		Distance from Outfall (mi)	43.85

Discharge, Receiving Waters and Water Supply Information

Treatment Facility Summary

The Mahaffey Borough Municipal Authority Wastewater Treatment Plant consists of one comminutor, one bar screen, three aerated lagoons (operated in series), and two chlorine contact tanks. Sonic wave transducers are used in two of three lagoons from Match to October to prevent algae blooms. The facility has an average annual flow and hydraulic capacity of 0.07 MGD and an organic design capacity of 123 lbs/day. The lagoon's sludge blankets are measured annually and pumped on an as-needed basis in accordance with the Authority's Standard Operation Procedure for Determination of Sludge Removal (March 2016). When necessary sludge will be hauled to another wastewater treatment plant for disposal.

The facility is operated under WQM Permit No. 1785403, issued on May 19, 1986. The permit was amended on August 12, 2009 to include use of the abovementioned sonic wave transducers. The permit was most recently amended again on December 30, 2020 to approve construction and operation of a mechanical bar screen, electromagnetic flow meter, and an ultraviolet light disinfection system. The existing chlorine disinfection system will be kept for redundancy during emergency purposes. As of the date of this fact sheet, a post-construction certification has not been received for these upgrades/modifications.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.07
Latitude	40º 52' 57.78"		Longitude	-78º 43' 55.65"
Wastewater D	escription: Sev	vage		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD ₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

A "Reasonable Potential Analysis" (attached) was completed to assess the applicability of water quality-based effluent limits.

The parameters CBOD5, ammonia-n, and dissolved oxygen were assessed in WQM 7.0 v1.0b. The results are as follows:

Parameter	Monthly Avg	Maximum	Minimum
CBOD5	25		
NH3-N	25	50	
Dissolved Oxygen			3

As demonstrated by the above table, the existing effluent limitations and monitoring requirements for CBOD5, dissolved oxygen, and ammonia-n are protective of the receiving water.

The facility discharges to the West Branch Susquehanna River at river mile 206.85. This segment of the River is included in the West Branch Susquehanna River Watershed TMDL. The TMDL was developed to address the River's impairment caused by Total Iron, Total Aluminum, and Total Manganese. The Mahaffey Borough Municipal Authority WWTP is not assigned a load allocation in the TMDL; however, annual reporting for TMDL parameters (AI, Fe, Mn) were established in the previous renewal to characterize the effluent. The results are as follows:

Due Date	Parameter	Units	Value	Limit	SBC	Sample Frequency
1/28/2018	Aluminum, Total	mg/L	< 0.1	Monitor and Report	Daily Maximum	1/year
1/28/2019	Aluminum, Total	mg/L	< 0.0500	Monitor and Report	Daily Maximum	1/year
1/28/2020	Aluminum, Total	mg/L	1	Monitor and Report	Daily Maximum	1/year
1/28/2021	Aluminum, Total	mg/L	0.1	Monitor and Report	Daily Maximum	1/year

Due Date	Parameter	Units	Value	Limit	SBC	Sample Frequency
1/28/2018	Iron, Total	mg/L	0.155	Monitor and Report	Daily Maximum	1/year
1/28/2019	Iron, Total	mg/L	0.229	Monitor and Report	Daily Maximum	1/year
1/28/2020	Iron, Total	mg/L	2	Monitor and Report	Daily Maximum	1/year
1/28/2021	Iron, Total	mg/L	0.307	Monitor and Report	Daily Maximum	1/year

NPDES Permit Fact Sheet Mahaffey Borough Municipal Authority WWTP

Due Date	Parameter	Units	Value	Limit	SBC	Sample Frequency
1/28/2018	Manganese, Total	mg/L	0.164	Monitor and Report	Daily Maximum	1/year
1/28/2019	Manganese, Total	mg/L	0.0791	Monitor and Report	Daily Maximum	1/year
1/28/2020	Manganese, Total	mg/L	0.0677	Monitor and Report	Daily Maximum	1/year
1/28/2021	Manganese, Total	mg/L	0.124	Monitor and Report	Daily Maximum	1/year

The maximum concentrations for each parameter were entered into the Toxics Management Spreadsheet v1.1 to assess the possibility of establishing effluent limits. The spreadsheet's recommendations are as follows:

Parameter	Governing WQBEL	Units	Comments
Total Aluminum	26,486	µg/l	Discharge Conc ≤ 10% WQBEL
Total Iron	585,474	µg/l	Discharge Conc ≤ 10% WQBEL
Total Manganese	375.756	µg/l	Discharge Conc ≤ 10% WQBEL

As demonstrated by the above table, the spreadsheet does not recommend any further monitoring or establishing effluent limits for the TMDL parameters because there does not appear to be any reasonable potential to exceed water quality criteria. Accordingly, DEP has proposed to remove the monitoring requirements for AI, Fe, and Mn.

An analysis of the existing total residual chlorine limits in the TRC_CALC spreadsheet indicates that they are protective of the West Branch Susquehanna River. No changes are proposed.

Best Professional Judgment (BPJ) Limitations

The existing reporting requirements for dissolved oxygen and ammonia-n are proposed to remain in the permit to continue to help characterize the effluent.

As stated in the Treatment Summary section above, the facility's WQM permit was recently amended to approve construction and operation of a UV light disinfection system while maintaining the existing TRC disinfection system for emergency purposes. A letter from JHA Companies on behalf of the Mahaffey Borough Municipal Authority, dated January 6, 2021, indicates the UV system will be operational by October 1, 2021 and will report intensity. Accordingly, DEP proposes that UV intensity reporting begin on October 1, 2021. Additionally, since TRC will only be for emergency purposes only, on October 1, 2021, TRC will only need reported when the system in use.

Additional Considerations

Existing influent monitoring requirements for BOD5 and TSS are proposed to remain in the permit to help with Chapter 94 reporting.

Chesapeake Bav

The permittee previously completed 48 months of sampling from January 2007 to December 2010 and the results were summarized in the previous fact sheet developed in 2015. Nothing further is required from the permittee to satisfy Pennsylvania's Chesapeake Bay Watershed Implementation Plan.

Compliance History

The following effluent violations occurred during the existing permit's term:

Non-compliance Date	Non-compliance Type	Non-compliance Category	Parameter	Sample Value	Violation Condition	Permit Value	Units	SBC
4/11/2017	Violation of permit condition	Conc. 2 Effluent Violation	TSS	32	~	30	mg/L	Avg Mo

No chronic exceedances have been documented. The compliance history should not impact the development of effluent limitations for the facility.

There are no open violations associated with the permittee.

The facility was last inspected by DEP on January 13, 2020. The inspection report concludes that the facility is operating normally, there is no visible impact below Outfall 001, and eDMRs are be submitted on time.

Existing Effluent Limitations and Monitoring Requirements

The existing effluent limits are monitoring requirements are as follows:

		Monitoring Requirement						
Parameter	Mass Unit	ts (lbs/day)		Concentrat	ions (mg/L)		Minimum	Required
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	ххх	xxx	XXX	ххх	Continuous	Metered
pH (S.U.)	ххх	ххх	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	ххх	ХХХ	Report	xxx	XXX	ххх	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	14	23 Wkly Avg	xxx	25	40	50	2/month	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	xxx	Report	XXX	ххх	2/month	Grab
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	XXX	ХХХ	2/month	Grab
Total Suspended Solids	17	26 Wkly Avg	XXX	30	45	60	2/month	8-Hr Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	ХХХ	XXX	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	ххх	ххх	xxx	2,000 Geo Mean	XXX	10,000	2/month	Grab
Ammonia-Nitrogen	Report	Report Wkly Avg	xxx	Report	Report	ххх	2/month	8-Hr Composite
Total Aluminum	xxx	Report	xxx	xxx	Report Daily Max	ххх	1/year	8-Hr Composite
Total Iron	ххх	Report	xxx	xxx	Report Daily Max	ххх	1/year	8-Hr Composite
Total Manganese	ххх	Report	xxx	xxx	Report Daily Max	ххх	1/year	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	xxx	Report	xxx	ххх	2/month	8-Hr Composite
TSS Raw Sewage Influent	Report	Report	XXX	Report	ХХХ	XXX	2/month	8-Hr Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001. Effective Period: Permit Effective Date through September 30. 2021.

			Effluent L	imitations			Monitoring Requireme	
Parameter	Mass Units	s (Ibs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	xxx	Continuous	Metered
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	xxx	Report Inst Min	XXX	ххх	ххх	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	14	23	xxx	25.0	40.0	50	2/month	8-Hr Composite
TSS	17	26	XXX	30.0	45.0	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Ammonia	Report	Report	XXX	Report	Report	XXX	2/month	8-Hr Composite

Proposed Effluent Limitations and Monitoring Requirements

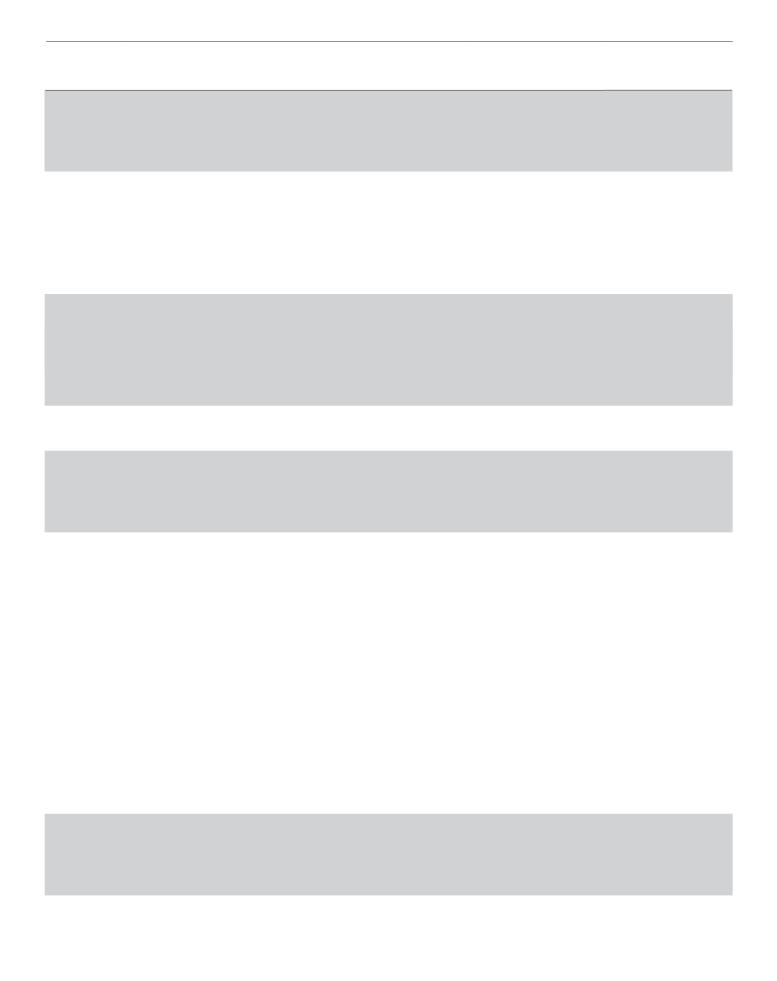
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001. Effective Period: October 1. 2021 through Permit Expiration Date.

				Monitoring Requireme				
Parameter	Mass Unit	s (lbs/day)		Concentration	ons (mg/L)		Minimum	Required
Farameter	Average Weekly Monthly Average			Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	xxx	Continuous	Metered
pH (S.U.)	ххх	ххх	6.0	XXX	XXX	9.0	1/day	Grab
DO	ХХХ	xxx	Report	XXX	XXX	XXX	1/day	Grab
TRC	xxx	xxx	xxx	0.5	XXX	1.6	See Permit (1)	Grab
CBOD5	14	23	XXX	25.0	40.0	50	2/month	8-Hr Composite
TSS	17	26	XXX	30.0	45.0	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ххх	xxx	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
UV Intensity (mW/cm ²)	ххх	ХХХ	Report	XXX	XXX	ххх	1/day	Metered
Ammonia	Report	Report	XXX	Report	Report	ххх	2/month	8-Hr Composite

⁽¹⁾ Total Residual Chlorine shall be sampled daily when the system is in use.

Proposed Effluent Limitations and Monitoring Requirements


The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001. Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Unit	s (lbs/day)		Concentrat	ions (mg/L)		Minimum	Required	
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
BOD5								8-Hr	
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	Composite	
TSS								8-Hr	
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	Composite	

DFLOW Results

All available data from Apr 1, 1989 through Mar 31, 2019 are included in analysis.

Gage	Period	Days in Record	Zero/Missing	1B3	Percentile	Excur per 3 yr	1Q10	Percentile	Excur per 3 yr	1Qy Type	xQy	Percentile	Harmonic	Percentile
01541000 - West Branch Susquehanna River at Bower, PA	1988/04/01 - 2019/04/01	11,322	0/0	41.6	0.09%	0.97	41.7	0.10%	0.77	1Q11	25.5	0.00%	2.11E+02	33.27%
Gage	Period	Days in Record	Zero/Missing	1B3	Percentile	Excur per 3 yr	7Q10	Percentile	Excur per 3 yr	7Qy Type	xQy	Percentile	Harmonic	Percentile
01541000 - West Branch Susquehanna River at Bower, PA	1988/04/01 - 2019/04/01	11,322	0/0	41.6	0.09%	0.97	44.4	0.35%	1.84	7Q11	28.2	0.00%	2.11E+02	33.27%
Gage	Period	Days in Record	Zero/Missing	1B3	Percentile	Excur per 3 yr	30Q10	Percentile	Excur per 3 yr	30Qy Type	xQy	Percentile	Harmonic	Percentile
01541000 - West Branch Susquehanna River at Bower, PA	1988/04/01 - 2019/04/01	11,322	0/0	41.6	0.09%	0.97	53.9	1.85%	3.97	30Q11	35.7	0.00%	2.11E+02	33.27%

	SWP Basin	Strea Coc		Stre	am Name		RMI	Elevat (ft)	A	ainage rea sq mi)	With	WS ndrawal mgd)	Apply FC
	10D	186	68 WEST	BRANCH	SUSQUE	IANNA RI	206.85	0 126	60.00	299.00	0.00000	0.00	✓
					St	ream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Trib</u> Temp	<u>outary</u> pH	<u>Strea</u> Temp	am pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.141	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	25.00) 7.00	0.00	0.00	
					D	ischarge	Data						
			Name	Per	mit Numbe	Disc	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc e Temp (ºC)	Disc pH		
		Maha	ffeyBoroMA	A PAC	0112747	0.070	0 0.0700	0 0.070	0.00	0 25	.00 7.00	_	
					Pa	arameter	Data						
			F	arameter	Name	С	onc C	onc C	onc C	ate Coef			
	_					(m	ng/L) (m	ig/L) (m	ıg/L) (1/da	ays)			
			CBOD5				25.00	2.00	0.00	1.50			

3.00

25.00

8.24

0.00

0.00

0.00

0.00

0.70

Dissolved Oxygen

NH3-N

Input Data WQM 7.0

	SWP Basii			Stre	am Name		RMI	Eleva (ft)		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgd	wal	Apply FC
	10D	186	68 WEST	BRANCH	SUSQUE	HANNA RI	206.40	10 12	59.00	300.00	0.00000		0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ıp pH	Terr	<u>Stream</u> np	pН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C	;)		
27-10 21-10 230-10	0.141	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	5.00 7.0	00	0.00	0.00	
					D	ischarge	Data							
						Eviation	Dormittod	Decian		Die		~~		

Input Data WQM 7.0

	Name	Permit Number	Existing Pe Disc Flow (mgd)	ermitted I Disc Flow (mgd)	Design Disc Flow (mgd)		e Te	isc emp PC)	Disc pH
			0.0000	0.0000	0.00	0.0	00	0.00	7.00
		Par	ameter Da	ta					
			Disc Cone				Fate Coef		
_		Parameter Name	(mg/l	_) (mg	ı/L) (ı	mg/L) (1/d	ays)		
	CBOD5		25	.00	2.00	0.00	1.50		
	Dissolved	Oxygen	3	.00	8.24	0.00	0.00		
	NH3-N		25	.00	0.00	0.00	0.70		

	SW	P Basin	<u>Strea</u>	<u>im Code</u>				Stream	Name			
		10D	1	8668		WES	T BRAN	CH SUS	QUEHAN	NA RIVE	R	
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
206.850	42.16	0.00	42.16	.1083	0.00042	.991	107.37	108.37	0.40	0.069	25.00	7.00
Q1-1	0 Flow											
206.850	39.63	0.00	39.63	.1083	0.00042	NA	NA	NA	0.38	0.072	25.00	7.00
Q30-	10 Flow											
206.850	51.01	0.00	51.01	.1083	0.00042	NA	NA	NA	0.44	0.062	25.00	7.00

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.94	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.21	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

		W	/QM 7.	<u>0 Was</u>	st	<u>eload</u>	Α	lloo	catio	ns			
	SWP Basin	Stream	Code	Stream Name									
	10D	186	68	WEST BRANCH SUSQUEHANNA RIVER									
NH3-N	Acute Alloca	tions											
RMI	Discharge N		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	•	Multiple Criterio (mg/L)	n	V	ltiple VLA ng/L)	Critical Reach	Percent Reductio		
206.8	50 MahaffeyBorol	MA	6.76	Ę	50	6.	76		50	0	0		
NH3-N	Chronic Allo	catior	าร										
RMI	Discharge Na	me C	aseline Criterion (mg/L)	Baseline WLA (mg/L)		Multiple Criterion (mg/L)		Multi WL (mg	A	Critical Reach	Percent Reduction		
206.8	50 MahaffeyBorol	MA	1.34	2	25	1.	34		25	0	0	_	
Dissolv	ed Oxygen A	llocat	ions										
RMI	Discharge	Name	<u>C</u> Baselir (mg/L			<u>NH3</u> Baseline (mg/L)	Mu	ltiple g/L)	<u>Dissolv</u> Baseline (mg/L)		Critical Reach	Percent Reduction	
206.	85 MahaffeyBorol	MA	2	25 2	5	25		25	3	3	0	0	

_

SWP Basin	Stream Code			Stream Name								
10D	18668	w	EST BRAN	EST BRANCH SUSQUEHANNA RIVER								
RMI	Total Discharge		l <u>) Ana</u>	ysis Temperature								
206.850	0.07	-		25.000	7.000							
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)							
107.374	0.99		_	108.371	0.397							
Reach CBOD5 (mg/L)	Reach Kc (<u>R</u>	each NH3-N (mg/l								
2.06	0.04			0.06	1.029							
Reach DO (mg/L)	<u>Reach Kr (</u>			Kr Equation	<u>Reach DO Goal (mg/L)</u>							
8.230	0.87	8		Tsivoglou	5							
Reach Travel Time (days)	<u>)</u>	Subreach	Results									
0.069	TravTime	CBOD5	NH3-N	D.O.								
	(days)	(mg/L)	(mg/L)	(mg/L)								
	0.007	2.06	0.06	7.54								
	0.014	2.06	0.06	7.54								
	0.021	2.06	0.06	7.54								
	0.028	2.06	0.06	7.54								
	0.035	2.06	0.06	7.54								
	0.042	2.05	0.06	7.54								
	0.048	2.05	0.06	7.54								
	0.055	2.05	0.06	7.54								
	0.062	2.05	0.06	7.54								
	0.069	2.05	0.06	7.54								

WQM 7.0 D.O.Simulation

	<u>SWP Basin</u> <u>Stream</u> 10D 186		WEST	<u>Stream Name</u> BRANCH SUSQUE			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
206.850	MahaffeyBoroMA	PA0112747	0.070	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			3

WQM 7.0 Effluent Limits

Discharge Information

Instructions Discharge Stream

Facility: Mahaffey Borough Municipal Authority WWTP

NPDES Permit No.: PA0112747

Outfall No.: 001

Evaluation Type

Major Sewage / Industrial Waste

Wastewater Description: Sewage

	Discharge Characteristics											
Design Flow	Hardnoog (mg/l)*		Partial Mix Factors (PMFs) Complete Mix Times (n									
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h				
0.07	100	7										

					0 if lef	ft blank	0.5 if l	eft blank	() if left blan	k	1 if lef	t blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	
	Total Dissolved Solids (PWS)	mg/L											
o 1	Chloride (PWS)	mg/L											mm
Group 1	Bromide	mg/L											///////
Ğ	Sulfate (PWS)	mg/L											
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L		1000									<u></u>
	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barium	µg/L											
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L			777777								
	Hexavalent Chromium	µg/L											
	Total Cobalt	µg/L											
	Total Copper	µg/L											
2	Free Cyanide	µg/L											mm
dno	Total Cyanide	µg/L											
Group 2	Dissolved Iron	µg/L											******
•	Total Iron	µg/L		2000									
	Total Lead	µg/L											
	Total Manganese	µg/L		164									
	Total Mercury	µg/L											
	Total Nickel	µg/L											
	Total Phenols (Phenolics) (PWS)	µg/L											777777
	Total Selenium	µg/L											
	Total Silver	µg/L											
	Total Thallium	µg/L			anana a								
	Total Zinc	µg/L											
	Total Molybdenum	µg/L											
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

								-	
	Carbon Tetrachloride	µg/L	<						<u> MANA A</u>
	Chlorobenzene	µg/L		(((((()))))))					
	Chlorodibromomethane	µg/L	<						
	Chloroethane	µg/L	<						
	2-Chloroethyl Vinyl Ether	µg/L	<						///////
	Chloroform	µg/L	<						
	Dichlorobromomethane	µg/L	<						
	1,1-Dichloroethane	µg/L	<						
	1,2-Dichloroethane		<	(1111111) (1111111)					
3	-	µg/L							
Group	1,1-Dichloroethylene	µg/L	<						
č	1,2-Dichloropropane	µg/L	<						<u>MMM</u>
Ŭ	1,3-Dichloropropylene	µg/L	<						<u>MMM</u>
	1,4-Dioxane	µg/L	<						1111111
	Ethylbenzene	µg/L	<						
	Methyl Bromide	µg/L	<						
	Methyl Chloride	µg/L	<						
	Methylene Chloride	µg/L	<						
	1,1,2,2-Tetrachloroethane	µg/L	<						
	Tetrachloroethylene	µg/L	<						
	Toluene			1111111111 111111111					
		µg/L	<						
	1,2-trans-Dichloroethylene	µg/L	<						<u> </u>
	1,1,1-Trichloroethane	µg/L	<						<u>MMM</u>
	1,1,2-Trichloroethane	µg/L	<						111111
	Trichloroethylene	µg/L	<						MMMM.
	Vinyl Chloride	µg/L	<						
	2-Chlorophenol	µg/L	<						
	2,4-Dichlorophenol	µg/L	<						
	2,4-Dimethylphenol	µg/L	<						
	4,6-Dinitro-o-Cresol	µg/L	<						
4	2,4-Dinitrophenol	µg/L	<		<u> </u>				
Group	-								
ro	2-Nitrophenol	µg/L	<						
G	4-Nitrophenol	µg/L	<						<u>/////////////////////////////////////</u>
	p-Chloro-m-Cresol	µg/L	<						
	Pentachlorophenol	µg/L	<						MAN
	Phenol	µg/L	<						////////
	2,4,6-Trichlorophenol	µg/L	<	00000					<i>MMM</i>
	Acenaphthene	µg/L	<						
	Acenaphthylene	µg/L	<						///////
	Anthracene	µg/L	<						
	Benzidine	µg/L	<						
	Benzo(a)Anthracene	µg/L	<						
	Benzo(a)Pyrene		<	414141414 617171717					
		µg/L			<u> </u>				
	3,4-Benzofluoranthene	µg/L	<						
	Benzo(ghi)Perylene	µg/L	<						<u>MMM</u>
	Benzo(k)Fluoranthene	µg/L	<						<u>IIIIII</u>
	Bis(2-Chloroethoxy)Methane	µg/L	<						
	Bis(2-Chloroethyl)Ether	µg/L	<						IIIIIII
	Bis(2-Chloroisopropyl)Ether	µg/L	<						
	Bis(2-Ethylhexyl)Phthalate	µg/L	<						
	4-Bromophenyl Phenyl Ether	µg/L	<						////////
	Butyl Benzyl Phthalate	µg/L	<						
	2-Chloronaphthalene	µg/L	<						///////////////////////////////////////
	4-Chlorophenyl Phenyl Ether	µg/L	<						
			<						
	-	µg/L							
	Dibenzo(a,h)Anthrancene	µg/L	<						<u> Millin</u>
	1,2-Dichlorobenzene	µg/L	<	<i>MAND</i>					<u>MMM</u>
	1,3-Dichlorobenzene	µg/L	<						11111111111111111111111111111111111111
S	1,4-Dichlorobenzene	µg/L	<						MMA
dn	3,3-Dichlorobenzidine	µg/L	<						
Group	Diethyl Phthalate	µg/L	<						
G	Dimethyl Phthalate	µg/L	<						111111
	Di-n-Butyl Phthalate	µg/L	<						
	2,4-Dinitrotoluene	µg/L	<						
		10-		ANTITIAN.					<u>, , , , , , , , , , , , , , , , , , , </u>

2,6-Dinitrotoluene	ug/l	1	GI FIFT					////////
Di-n-Octyl Phthalate	μg/L	<						
	µg/L	<						
1,2-Diphenylhydrazine	μg/L	<						
Fluoranthene	µg/L	<		2	-			
Fluorene	µg/L	<				_		
Hexachlorobenzene	µg/L	<		2				
Hexachlorobutadiene	μg/L	<		4				
Hexachlorocyclopentadiene	μg/L	<		0				<u>aaaa</u>
Hexachloroethane	μg/L	<		2				
Indeno(1,2,3-cd)Pyrene	μg/L	<		1				<i>MMM</i>
Isophorone	µg/L	<						
Naphthalene	µg/L	٨		Û				
Nitrobenzene	μg/L	<						
n-Nitrosodimethylamine	µg/L	<		2				
n-Nitrosodi-n-Propylamine	µg/L	<		2				
n-Nitrosodiphenylamine	µg/L	<		2				
Phenanthrene	μg/L	<		9				
Pyrene	μg/L	<		2 7				
1,2,4-Trichlorobenzene	μg/L	<		0 0				
Aldrin								
	μg/L	<						<u> MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA</u>
alpha-BHC	µg/L	<						
beta-BHC	µg/L	<		4				<u>MAM</u>
gamma-BHC	µg/L	<						
delta BHC	µg/L	<		2				
Chlordane	μg/L	<		2				 <u>anna</u>
4,4-DDT	μg/L	<		2				
4,4-DDE	μg/L	<						
4,4-DDD	µg/L	<						11111
Dieldrin	μg/L	۸		2				
alpha-Endosulfan	μg/L	٨		9				
beta-Endosulfan	μg/L	<		0				
Endosulfan Sulfate	μg/L	<		2				
Endrin	µg/L	<		2				
Endrin Aldehyde	µg/L	<		0				
Heptachlor	μg/L	<						
Heptachlor Epoxide	μg/L	<		4				
PCB-1016	μg/L	<		0				
PCB-1221	μg/L	<		7				
PCB-1232	μg/L	<		0 0				
PCB-1232 PCB-1242								
	μg/L	<						
PCB-1248	µg/L	<		2				
PCB-1254	µg/L	<		4		_		
PCB-1260	µg/L	<		9				
PCBs, Total	µg/L	<						<u> ann a</u>
Toxaphene	μg/L	<		0				<u>ann</u>
2,3,7,8-TCDD	ng/L	<		2				
Gross Alpha	pCi/L							<i>MMM</i>
Total Beta	pCi/L	<						
Radium 226/228	pCi/L	<		1				
Total Strontium	μg/L	<						
Total Uranium	μg/L	<		1				mm
Osmotic Pressure	mOs/kg			Ű.				
				1				*2#1#1#1
				1				

Stream / Surface Water Information

Mahaffey Borough Municipal Authority WWTP, NPDES Permit No. PA0112747, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: West Branch Susquehanna river

No. Reaches to Model:

1

- Statewide Criteria
 Great Lakes Criteria
- ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	018668	206.85	1260	299			Yes
End of Reach 1	018668	206.4	1259	300			Yes

Q₇₋₁₀

Location	RMI	LFY	Flow	r (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location	IZIMI	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	рΗ	Hardness*	pH*	Hardness	рΗ
Point of Discharge	206.85	0.141										100	1		
End of Reach 1	206.4	0.141		anna anna anna anna anna anna anna ann											

 \boldsymbol{Q}_h

ł	h		

Location	RMI	LFY	Flow	r (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ıry	Strea	n	Analys	sis
Location	RIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	рΗ	Hardness	рН	Hardness	рН
Point of Discharge	206.85	11111111111111111111111111111111111111		//////////////////////////////////////							111111				
End of Reach 1	206.4														

Model Results

Mahaffey Borough Municipal Authority WWTP, NPDES Permit No. PA0112747, Outfall 001

Instructions Results	RETURN TO INP	UTS SAVE AS	PDF	PRINT) (A	II 🔿 Inputs	○ Results	⊖ Limits
Hydrodynamics								
Wasteload Allocations								
✓ AFC	CCT (min): 15	PMF: 0.139	Ana	lysis Hardnes	s (mg/l):	100	Analysis pH:	7.00
Pollutants	Conc (µg/L)	(µg/L) Coef	WQC (µg/L)	(µg/Ľ)	WLA (µg/L)		Со	mments
Total Aluminum Total Iron	0 0	0	750 N/A	750 N/A	41,319 N/A			
Total Manganese	0 0	0	N/A	N/A	N/A			
CFC	CCT (min): 720	PMF: 0.963		Ilysis Hardnes	ss (mg/l):	100	Analysis pH:	7.00
Pollutants	Conc (µg/L)	n Trib Conc Fate (μg/L) Coef	WQC (µg/L)	(µg/Ľ)	WLA (µg/L)		Co	mments
	0 0	0	N/A	N/A	N/A			
Total Iron	0 0	0	1,500	1,500	585,474		MQC = 30 day	v average; PMF = 1
Total Manganese	0 0	0	N/A	N/A	N/A			
✓ THH	CCT (min): 720	PMF: 0.963	Ana	Ilysis Hardnes	ss (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc (µg/L)	n Trib Conc Fate (μg/L) Coef	WQC (µg/L)	(µg/Ľ)	WLA (µg/L)		Со	mments
	0 0	0	N/A	N/A	N/A			
Total Iron	0 0	0	N/A	N/A	N/A			
Total Manganese	0 0	0	1,000	1,000	375,756			
CRL	CCT (min): ######	PMF: 1	Ana	Ilysis Hardnes	ss (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Stream Conc (μg/L) 0 0	(µg/L) Coef	WQC (µg/L) N/A	WQ Obj (µg/L) N/A	WLA (µg/L) N/A		Co	mments
	0 0	0	11/7		11/7			

Total Iron	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

4

No. Samples/Month:

	Mass	Limits		Concentra	ation Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Aluminum	26,483	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	585,474	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	375,756	µg/L	Discharge Conc ≤ 10% WQBEL

В	С	D	Е	F	G	
TRC EVALI	JATION					
Input appropr	riate values in	B4:B8 and E4:E7				
42.1 = Q stream (cfs)		0.5	= CV Daily			
0.07 = Q discharge (MGD)		0.5	= CV Hourly			
30 = no. samples		0.139 = AFC_Partial Mix Factor				
0.3 = Chlorine Demand of Stream 0 = Chlorine Demand of Discharge		0.963 = CFC_Partial Mix Factor				
		emand of Discharge			Compliance Time (min)	
0.5 = BAT/BPJ Value		720 = CFC_Criteria Compliance Time (min)				
0 = % Factor of Safety (FOS) Source Reference AFC Calculations		0 =Decay Coefficient (K)				
Source	Reference	AFC Calculations		Reference	CFC Calculations	
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 116.445	
PENTOXSD TR		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581	
PENTOXSD TR	G 5.1b	LTA_afc=	6.431	5.1d	LTA_cfc = 67.696	
Source		Effluent	Limit Calc	ulations		
PENTOXSD TR	RG 5.1f AML MULT = 1.231					
PENTOXSD TR	G 5.1g	AVG MON LIMI			BAT/BPJ	
		INST MAX LIMI	. (
WLA afc	• •	FC_tc)) + [(AFC_Yc*Q C_Yc*Qs*Xs/Qd)]*(1-F		l*e(-k*AFC_tc))		
LTAMULT afc	EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)					
LTA_afc	wla_afc*LTAMULT_afc					
WLA_cfc	• •	FC_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F		*e(-k*CFC_tc))		
LTAMULT_cfc	+ Xd + (CF EXP((0.5*LN	C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1	OS/100)			
	+ Xd + (CF	C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1	OS/100)			
LTAMULT_cfc	+ Xd + (CF EXP((0.5*LN wla_cfc*LTA	C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1	'OS/100)))-2.326*L	N(cvd^2/no_sar	nples+1)^0.5)	
LTAMULT_cfc LTA_cfc	+ Xd + (CF EXP((0.5*LN wla_cfc*LTA EXP(2.326*L	C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1 MULT_cfc	'OS/100)))-2.326*L +1)^0.5)-0	N(cvd^2/no_sar).5*LN(cvd^2/nc	nples+1)^0.5)	