

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0113051

 APS ID
 1040445

 Authorization ID
 1357179

Applicant and Facility Information

Applicant Name	City of DuBois	Facility Name	DuBois Water Treatment Plant				
Applicant Address	16 W Scribner Avenue PO Box 408	Facility Address	5656 Home Camp Road				
	DuBois, PA 15801-2210	—	DuBois, PA 15801				
Applicant Contact	Chris Nasuti	Facility Contact	Ben O'Shane				
Applicant Phone (814) 371-2000		Facility Phone	(814) 371-6885				
Client ID	75158	Site ID	237918				
SIC Code	4941	Municipality	Sandy Township				
SIC Description	Water Supply	County	Clearfield				
Date Application Rec	eived June 3, 2021	EPA Waived?	Yes				
Date Application Acc	epted June 14, 2021	If No, Reason					
Purpose of Application	on <u>Renewal of an existing NPDES po</u>	ermit for the emergency of	lischarge of water treatment plant effluent.				

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date				
x		Derek S. Garner	December 2, 2021				
		Derek S. Garner / Project Manager					
x		Nícholas W. Hartranft	December 3, 2021				
		Nicholas W. Hartranft, P.E. / Environmental Engineer Manager					

Discharge, Receiving Waters and Water Supply Information

Latitude _ <u>41° 6' 19.27"</u> Quad Name <u>Luthersburg</u> Wastewater Description: <u>Water Treatment Effluent</u>	Design Flow (MGD) Longitude Quad Code	n/a – emergency outfall -78º 41' 20.76" 1016			
Receiving WatersLaborde Branch (CWF)NHD Com ID123860918Drainage Area (mi²)7.37Q7-10 Flow (cfs)0.48Elevation (ft)1445Watershed No.17-CExisting Usen/a	Stream Code RMI Yield (cfs/mi ²) Q ₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier	48803 4.3 0.065 Streamgage No. 03032500 n/a CWF n/a			
Exceptions to Use n/a Assessment Status Impaired Cause(s) of Impairment Metals Source(s) of Impairment Abandoned Mine Drainage TMDL Status Final Nearest Downstream Public Water Supply Intake	Hawthorn Area Water Authority Flow at Intake (cfs)	n/a and Laborde Branch <u>/</u> 31.1 50			

Facility Summary

The DuBois Water Treatment Plant treats water for potable consumption. The wastewater generated through the treatment process is conveyed to an onsite settling lagoon. During routine operation the lagoon does not discharge. However, during emergencies the lagoon may discharge via Outfall 001 to Laborde Branch.

Compliance History

A review of eDMR submissions indicates the facility had one discharge event during the existing permit's term in March 2017. There were no effluent limit exceedances during the discharge.

The facility was most recently inspected on October 5, 2021. No violations were noted during the inspection.

There are no open violations associated with the permittee.

Development of Effluent Limitations

Outfall No.	001	
Latitude	41º 6' 31.90)"
Wastewater D	Description:	Water Treatment Effluent

Design Flow (MGD)	n/a – emergency outfall
Longitude	<u>-78º 41' 18.80"</u>

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	State Regulation	DEP Guidance No.
Iron, Dissolved ⁽¹⁾	7.0	IMAX	95.2(4)	
Oil and Grease (1)	15	Average Monthly	95.2(2)(ii)	
Oli and Grease ()	30	IMAX	95.2(2)(ii)	
Total Residual Chlorine	0.5	IMAX	92a.48(b)(3)	
pH ⁽²⁾	6.0 – 9.0 S.U.	Min – Max	95.2(1)	362-2183-003
	30	Average Monthly		362-2183-003
Total Suspended Solids ⁽²⁾	60	Daily Maximum		362-2183-003
Iron, Total ⁽²⁾	2.0	Average Monthly		362-2183-003
	4.0	Daily Maximum		362-2183-003
Aluminum Total (2)	4.0	Average Monthly		362-2183-003
Aluminum, Total ⁽²⁾	8.0	Daily Maximum		362-2183-003
Manganaga Tatal (2)	1.0	Average Monthly		362-2183-003
Manganese, Total ⁽²⁾	2.0	Daily Maximum		362-2183-003

- ⁽¹⁾ Since this is an emergency-only outfall, sampling was unable to be completed for the application. Typical water treatment plant sludge lagoon supernatant does not contain appreciable amounts of Dissolved Iron or Oil and Grease. Establishing limits or monitoring requirements for these parameters is not necessary to protect the receiving surface water.
- ⁽²⁾ These effluent limits are recommended best practicable control technology currently available (BPT) for water treatment plant wastewater by DEP guidance "*Technology-Based Control Requirements for Water Treatment Plant Wastes*" (362-2183-003, 10/1/97). These effluent limits reflect lagoon or settling tank treatment of different types of sludges (e.g., presettling, coagulant settling, softening sludge) and filter backwash wastewater. A higher degree of treatment such as best conventional pollutant control technology (BCT) or best available technology economically achievable (BAT) is only appropriate when recycle and/or reuse is employed by the permittee.

Water Quality-Based Limitations

The Luthersburg and Laborde Branch TMDL was finalized on February 12, 2007 to address metals (aluminum, iron, and manganese) and high pH in acidic discharge water from abandoned coalmines throughout the watershed. The TMDL does not assign a wasteload allocation to the DuBois Water Treatment Plant discharge, but it is still necessary to establish limits for aluminum, iron, manganese, and pH to ensure the discharge does not contribute to the impairment. Existing limits for aluminum, iron, and manganese are as follows:

Parameter	Average Monthly	Daily Maximum			
Aluminum, Total ⁽¹⁾	0.75	0.75			
Iron, Total	1.5	3.0			
Manganese, Total	1.0	2.0			

⁽¹⁾ Total aluminum is unique in that its only criterion is acute based, whereas iron and manganese are chronic based. Since the criterion is acute based, applying a multiplier to would result in the daily maximum limit not being protective.

A "Reasonable Potential Analysis" conducted in the Toxics Management Spreadsheet v1.3 (attached) confirms that the limits based off criteria are protective.

NPDES Permit Fact Sheet DuBois Water Treatment Plant

The Total Residual Chlorine (TRC) Evaluation spreadsheet was used to evaluate the existing WQBEL effluent limits. The spreadsheet (attached) indicates the existing limits of 0.46 mg/l average monthly and 1.51 mg/l instantaneous maximum are protective.

Anti-Backsliding

No limits are proposed to be made less stringent.

Existing Effluent Limitations and Monitoring Requirements

The existing effluent limitations and monitoring requirements are as follows:

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

				Monitoring Requirements				
Deremeter	Mass Unit	s (lbs/day)		Concentrat	Minimum	Required		
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	2/month	Measured
рН (S.U.)	XXX	XXX	6.0	XXX	9.0 Max	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	ххх	XXX	0.46	xxx	1.51	1/day	Grab
Total Suspended Solids	XXX	ххх	XXX	30.0	60.0	75	1/month	Composite (1)
Aluminum, Total	XXX	ххх	XXX	0.75	0.75	0.75	1/month	Composite (1)
Iron, Total	XXX	ххх	xxx	1.5	3.0	3.75	1/month	Composite (1)
Manganese, Total	XXX	XXX	XXX	1.0	2.0	2.5	1/month	Composite (1)

Compliance Sampling Location: Outfall 001

⁽¹⁾ Three grab samples collected at the beginning, middle, and end of back wash discharge cycle.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements			
Parameter	Mass Unit	s (lbs/day)		Concentrat	Minimum	Required				
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	2/month	Measured		
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	xxx	9.0	1/day	Grab		
TRC	xxx	ххх	xxx	0.46	XXX	1.51	1/day	Grab		
TSS	xxx	ххх	XXX	30.0	60.0	75	1/month	Composite (1)		
Total Aluminum	ххх	XXX	xxx	0.75	0.75	0.75	1/month	Composite (1)		
Total Iron	ххх	XXX	XXX	1.5	3.0	3.75	1/month	Composite (1)		
Total Manganese	xxx	XXX	XXX	1.0	2.0	2.5	1/month	Composite (1)		

Compliance Sampling Location: Outfall 001

⁽¹⁾ Three grab samples collected at the beginning, middle, and end of back wash discharge cycle.

Discharge Information

	ility: <u>Dul</u>	Discharge Stream Bois Water Treatmer				NPI	DES Perr	nit No.:	PA0113	051		Outfall	No.: 001	
Ēva	luation Type	: Major Sewage /	<mark>Industri</mark>	al Wast	e	Wa	stewater	Descrip	tion: <mark>Wa</mark> t	er Treat	ment Ef	fluent		
					Discha	rge Cha	racterist	ics						
De	sign Flow					Parti	al Mix Fa	actors (F	PMFs)		Com	plete Mi	x Times	(min)
	(MGD)*	Hardness (mg/l)*	pH (50)"	AFC	;	CFC	THF	ł	CRL	Q ₇	7-10	C	2 _h
	0.1	100	-	7										
						0 if lei	ft blank	0.5 if le	eft blank	() if left blan	k	1 if lef	ft blank
	Disch	arge Pollutant	Units		scharge onc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Che Tran
-	Total Dissolved Solids (PWS)		mg/L											
d L	Chloride (PW	/S)	mg/L											
Group	Bromide		mg/L											
פ	Sulfate (PWS	,	mg/L											
	Fluoride (PW	,	mg/L		750									
	Total Aluminu Total Antimor		μg/L μg/L		750									
	Total Arsenic		μg/L										+	
	Total Barium		μg/L											<u> </u>
	Total Berylliu		μg/L											
	Total Boron		µg/L											
	Total Cadmiu	ım	µg/L											
	Total Chromi	um (III)	μg/L											
	Hexavalent C		µg/L											
	Total Cobalt		µg/L											
	Total Copper		µg/L											
D D	Free Cyanide		µg/L											
dnois	Total Cyanide		µg/L											
	Dissolved Iro	n	ua/l				1							1

0 2	Free Cyanide	µg/L							
Group	Total Cyanide	µg/L							
9 C	Dissolved Iron	µg/L							
	Total Iron	µg/L		1500					
	Total Lead	µg/L							
	Total Manganese	µg/L		1000					
	Total Mercury	µg/L							
	Total Nickel	µg/L							
	Total Phenols (Phenolics) (PWS)	µg/L							
	Total Selenium	µg/L							
	Total Silver	µg/L							
	Total Thallium	µg/L							
	Total Zinc	µg/L							
	Total Molybdenum	µg/L							
	Acrolein	µg/L	<						
	Acrylamide	µg/L	<						
	Acrylonitrile	µg/L	<						
	Benzene	µg/L	<						
	Bromoform	µg/L	<						

1	-		_					
	Carbon Tetrachloride	µg/L	<			 		
	Chlorobenzene	µg/L						
	Chlorodibromomethane	µg/L	<					
	Chloroethane	µg/L	<					
	2-Chloroethyl Vinyl Ether	µg/L	<					
	Chloroform	μg/L	<					
	Dichlorobromomethane	μg/L	<					
	1,1-Dichloroethane	μg/L	<					
	1,2-Dichloroethane	μg/L	<			 		
33	1,1-Dichloroethylene					 		
Group		μg/L	<					
55	1,2-Dichloropropane	µg/L	<	 ļ				
Ŭ	1,3-Dichloropropylene	µg/L	<					
	1,4-Dioxane	µg/L	<					
	Ethylbenzene	µg/L	<					
	Methyl Bromide	µg/L	<					
	Methyl Chloride	µg/L	<					
	Methylene Chloride	μg/L	<					
	1,1,2,2-Tetrachloroethane	μg/L	<			 		
	Tetrachloroethylene	μg/L	<			 		
	Toluene					 		
		μg/L	<					
	1,2-trans-Dichloroethylene	µg/L	<					
	1,1,1-Trichloroethane	µg/L	<					
	1,1,2-Trichloroethane	µg/L	<					
	Trichloroethylene	µg/L	<					
	Vinyl Chloride	µg/L	<					
	2-Chlorophenol	µg/L	<					
	2,4-Dichlorophenol	µg/L	<					
	2,4-Dimethylphenol	μg/L	<					
	4,6-Dinitro-o-Cresol	μg/L	<					
4	2,4-Dinitrophenol	μg/L	` ~			 		
Group			_			 		
2	2-Nitrophenol	μg/L	<			 		
G	4-Nitrophenol	µg/L	<					
	p-Chloro-m-Cresol	µg/L	<			 		
	Pentachlorophenol	µg/L	<					
	Phenol	µg/L	<					
	2,4,6-Trichlorophenol	µg/L	<					
	Acenaphthene	µg/L	<					
	Acenaphthylene	μg/L	<			 		
	Anthracene	μg/L	<					
	Benzidine	μg/L	<					
	Benzo(a)Anthracene	μg/L	` 、					
	Benzo(a)Pyrene	µg/L	<					
	3,4-Benzofluoranthene	µg/L	<			 		
	Benzo(ghi)Perylene	µg/L	<					
	Benzo(k)Fluoranthene	µg/L	<					
	Bis(2-Chloroethoxy)Methane	µg/L	<					
	Bis(2-Chloroethyl)Ether	µg/L	<					
	Bis(2-Chloroisopropyl)Ether	µg/L	<					
	Bis(2-Ethylhexyl)Phthalate	μg/L	<					
	4-Bromophenyl Phenyl Ether	μg/L	<					
	Butyl Benzyl Phthalate	μg/L	` ~					
	2-Chloronaphthalene		 					
		µg/L						
	4-Chlorophenyl Phenyl Ether	µg/L	<					
	Chrysene	µg/L	<					
	Dibenzo(a,h)Anthrancene	µg/L	<					
	1,2-Dichlorobenzene	µg/L	<					
	1,3-Dichlorobenzene	µg/L	<					
5	1,4-Dichlorobenzene	µg/L	<					
	3,3-Dichlorobenzidine	μg/L	<					
Group	Diethyl Phthalate	μg/L	<					
ū	Dimethyl Phthalate	μg/L	<					
	Di-n-Butyl Phthalate	μg/L	` <					
	2,4-Dinitrotoluene	μg/L	` 、					
		µy/∟	`					

1								
	2,6-Dinitrotoluene	µg/L	<					
	Di-n-Octyl Phthalate	μg/L	<					
	1,2-Diphenylhydrazine	µg/L	<					
	Fluoranthene	µg/L	<					
	Fluorene	µg/L	۷					
	Hexachlorobenzene	µg/L	<					
	Hexachlorobutadiene	µg/L	۷					
	Hexachlorocyclopentadiene	µg/L	<					
	Hexachloroethane	μg/L	<					
	Indeno(1,2,3-cd)Pyrene	μg/L	<					
	Isophorone	μg/L	<					
	Naphthalene	μg/L	/ /					
	Nitrobenzene	µg/L	<					
	n-Nitrosodimethylamine	µg/L	<					
	n-Nitrosodi-n-Propylamine	µg/L	<					
	n-Nitrosodiphenylamine	μg/L	<					
	Phenanthrene	µg/L	<					
	Pyrene	µg/L	<					
	1,2,4-Trichlorobenzene	µg/L	۷					
	Aldrin	µg/L	<					
	alpha-BHC	µg/L	<					
	beta-BHC	μg/L	<					
	gamma-BHC	μg/L	<					
	delta BHC	μg/L	<					
	Chlordane	μg/L	<					
	4,4-DDT	μg/L	<					
	4,4-DDF							
		µg/L	<					
	4,4-DDD	µg/L	<					
	Dieldrin	µg/L	<					
	alpha-Endosulfan	μg/L	<					
	beta-Endosulfan	μg/L	<					
Group 6	Endosulfan Sulfate	µg/L	<					
no	Endrin	µg/L	<					
G	Endrin Aldehyde	µg/L	<					
	Heptachlor	µg/L	<					
	Heptachlor Epoxide	µg/L	<					
	PCB-1016	µg/L	۷					
	PCB-1221	µg/L	<					
	PCB-1232	μg/L	<					
	PCB-1242	μg/L	<					
	PCB-1248	μg/L	<					
	PCB-1254	μg/L	<					
	PCB-1260							
		μg/L	<					
	PCBs, Total	μg/L	<					
	Toxaphene	µg/L	<					
	2,3,7,8-TCDD	ng/L	<					
	Gross Alpha	pCi/L						
7	Total Beta	pCi/L	<					
_	Radium 226/228	pCi/L	<					
ŝro	Total Strontium	µg/L	<					
U	Total Uranium	µg/L	<					
	Osmotic Pressure	mOs/kg						

Stream / Surface Water Information

DuBois Water Treatment Plant, NPDES Permit No. PA0113051, Outfall 001

• Statewide Criteria

Great Lakes Criteria
 ORSANCO Criteria

Instructions Discharge Stream

Receiving Surface Water Name: Laborde Branch

No. Reaches to Model: 1

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	048803	4.3	1445	7.37			Yes
End of Reach 1	048803	3.42	1432	7.99			Yes

Q₇₋₁₀

Location	RMI	LFY	Flow	/ (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strear	n	Analys	sis
Location	IXIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	4.3	0.065										100	6.5		
End of Reach 1	3.42	0.065													

 \boldsymbol{Q}_h

Location	RMI	LFY	Flow	r (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ıry	Stream	n	Analys	sis
Location	IXIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	рΗ	Hardness	pН
Point of Discharge	4.3														
End of Reach 1	3.42														

Model Results

DuBois Water Treatment Plant, NPDES Permit No. PA0113051, Outfall 001

Instruc	tions	Results		SAVE AS PDF	PRINT	$\overline{}$) All	⊖ Inputs	⊖ Results	⊖ Limits	

✓ Hydrodynamics

Q 7-10

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
4.3	0.48		0.48	0.155	0.003	0.484	13.095	27.04	0.1	0.538	7.534
3.42	0.52		0.519								

\boldsymbol{Q}_h

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
4.3	3.91		3.91	0.155	0.003	1.096	13.095	11.943	0.283	0.19	3.581
3.42	4.191		4.19								

☑ Wasteload Allocations

✓ AFC	CCT (min): 7.534	PMF: 1	Ana	lysis Hardnes	ss (mg/l):	100 Analysis pH: 6.58
Pollutants	Conc (μg/L)	m Trib Conc Fate (µg/L) Coef	WQC (µg/L)	(µg/L)	WLA (µg/L)	Comments
Total Aluminum	0 0	U	750	750	3,072	
Total Iron	0 0	0	N/A	N/A	N/A	
Total Manganese	0 0	0	N/A	N/A	N/A	
✓ CFC	CCT (min): 7.534	PMF: 1	Ana WQC	lysis Hardne WQ Obj		100 Analysis pH: 6.58
Pollutants	μg/L) CV	(µg/L) Coef	(µg/L)	(µg/L)	WLA (µg/L)	Comments
l otal Aluminum	0 0	0	N/A	N/A	N/A	
Total Iron	0 0	0	1,500	1,500	6,145	WQC = 30 day average; PMF = 1
Total Manganese	0 0	0	N/A	N/A	N/A	
✓ THH	CCT (min): 7.534	PMF: 1	Ana	lysis Hardne	ss (mg/l):	N/A Analysis pH: N/A

Pollutants	Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
i otal Aluminum	ŰŰ	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	4,097	
CRL CC		581	PMF:	1	Ana	lysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
l otal Aluminum	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

4

No. Samples/Month:

	Mass	Limits		Concentra	ation Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	µg/L	1,969	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Iron	Report	Report	Report	Report	Report	µg/L	6,145	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Manganese	Report	Report	Report	Report	Report	µg/L	4,097	THH	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments

IA	В	С	D	Е	F	G
2 T	RC EVALU	ATION				
3 In			B4:B8 and E4:E7			
4	0.48	s = Q stream (cfs)	0.5	= CV Daily	
5		= Q discharg			= CV Hourly	
6) = no. sample			= AFC_Partial N	
7			emand of Stream		= CFC_Partial N	
8			emand of Discharge			Compliance Time (min)
9		i = BAT/BPJ V				Compliance Time (min)
_			f Safety (FOS)	0	=Decay Coeffic	
10	Source	Reference	AFC Calculations		Reference	CFC Calculations
11		1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 0.976
	ENTOXSD TRO		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581
13 PI 14	ENTOXSD TRO	6 5.1b	LTA_afc=	0.376	5.1d	LTA_cfc = 0.567
15	Source			Limit Calc		
	ENTOXSD TRO			L MULT =		
	ENTOXSD TRO	6 5.1g	AVG MON LIMI			AFC
18			INST MAX LIMI	i (mg/i) =	1.513	
w	LA afc	•	FC_tc)) + [(AFC_Yc*Q :C_Yc*Qs*Xs/Qd)]*(1-F		J*e(-k*AFC_tc)).	
LT	AMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(d	cvh^2+1)^	0.5)	
LT	A_afc	wla_afc*LTA	MULT_afc			
w	/LA_cfc	• •	FC_tc) + [(CFC_Yc*Qs 		*e(-k*CFC_tc)).	
	AMULT_cfc		(cvd^2/no_samples+1)))-2.326*L	N(cvd^2/no_sar	nples+1)^0.5)
LT	ſA_cfc	wla_cfc*LTA	MULT_cfc			
	IL MULT	-	N((cvd^2/no_samples [.]			o_samples+1))
	/G MON LIMIT ST MAX LIMIT	MIN(BAT_BP 1.5*((av_mor				