

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0113093
APS ID	1056176
Authorization ID	1384126

Applicant and Facility Information

Applicant Name	Christ	Wesleyan Church	Facility Name	Christ Wesleyan Church Sewer System
Applicant Address	363 Sta	amm Road	Facility Address	363 Stamm Road
	Milton,	PA 17847-7569	-	Milton, PA 17847-7569
Applicant Contact	Ken Pa	ulhamus	Facility Contact	Keith Pfleegor
Applicant Phone	(570) 7	42-8987	Facility Phone	(570) 742-8987
Client ID	43867		Site ID	480713
Ch 94 Load Status	Not Ov	erloaded	Municipality	Turbot Township
Connection Status	No Exc	eptions Allowed	County	Northumberland
Date Application Recei	ved	February 7, 2022	EPA Waived?	No
Date Application Accepted		February 10, 2022	If No, Reason	Chesapeake Bay Discharger, DEP Discretion
Purpose of Application		Renewal of a NPDES Permit		

Summary of Review

The subject facility is a sewage treatment plant serving the church, Meadowbrook Christian School, coffee shop, wellness gym, and other community facilities in Turbot Township, Northumberland County.

A map of the discharge location is attached.

Sludge use and disposal description and location(s): The facility's sludge is disposed at other WWTPs for further processing. Per the application, 0.55 dry tons were disposed in the previous year.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
x		Keith C. Allison Keith C. Allison / Project Manager	August 11, 2022
x		Nicholas W. Hartranft Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	August 12, 2022

Discharge, Receivin	g Waters and Water Supply Inform	nation	
Outfall No. 001		Design Flow (MGD)	0.0035
Latitude 41°	1' 25.25"	Longitude	-76º 49' 19.11"
Quad Name Mi	ilton, PA	Quad Code	
Wastewater Descri	iption: Sewage Effluent		
	Unnamed Tributary to Limestone		
Receiving Waters	Run (WWF)	Stream Code	19095
NHD Com ID	66919589	RMI	0.85
Drainage Area	0.7	Yield (cfs/mi ²)	0.125
			USGS Gage 01555000
Q ₇₋₁₀ Flow (cfs)	0.088	Q ₇₋₁₀ Basis	(Penns Creek, 1931-2008)
Elevation (ft)	500	Slope (ft/ft)	0.007
Watershed No.	_10-D	Chapter 93 Class.	WWF
Existing Use	N/A	Existing Use Qualifier	N/A
Exceptions to Use	None	Exceptions to Criteria	N/A
Assessment Status	s Impaired		
Cause(s) of Impair	ment SILTATION		
Source(s) of Impai	rment AGRICULTURE		
TMDL Status	Final	Name Limestone R	un TMDL
Nearest Downstrea	am Public Water Supply Intake	PA American White Deer @ M	lilton, PA
PWS Waters	West Branch Susquehanna River	Flow at Intake (cfs)	680
PWS RMI	10.66	Distance from Outfall (mi)	Approx. 3

Changes Since Last Permit Issuance: None. The above stream and drainage characteristics were determined for the previous review and remain adequate.

Other Comments: The facility has received no Wasteload Allocation (WLA) under the Limestone Run TMDL. The TMDL included a 1% bulk reserve allocation for TSS or 29,142 pounds of sediment per year. The discharge is typically below detection for TSS. Assuming an average concentration of 5 mg/L at the maximum annual average flow rate of 0.0035 MGD the facility would discharge 0.15 lbs/day or 53.3 lbs/yr TSS which is well within the sediment bulk reserve allocation.

No downstream water supply is expected to be affected by the discharge at this time with the limitations and monitoring proposed.

reatment Facility Na	me: Christ Wesleyan Church	n Sewer System		
WQM Permit No.	Issuance Date		Permit Covered:	
4986404	July 28, 1986	Original pe	rmitting for Cromaglass syste	em
4986404 A-1	September 1990	Incor	poration of anoxic cycles	
4986404 A-3	June 20, 2018	Plant	t upgrade and expansion	
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annua Flow (MGD)
Sewage	Secondary	Activated Sludge	Hypochlorite	0.0035
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposa

Changes Since Last Permit Issuance: Upgrades under WQM Permit No. 4986404 Amendment No. 3 were completed 2019.

Other Comments: The treatment consists of influent pump station, 5,000-gallon equalization tank, 15,000-gallon CromaFlow CF150 unit including aeration and sedimentation, NetaFim disc filters, tablet chlorinator, 750-gallon chlorine contact tank, 1,300-gallon sludge holding tank, and 3,000-gallon sludge holding tank.

Compliance History

DMR Data for Outfall 001 (from July 1, 2021 to June 30, 2022)

Parameter	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21
Flow (MGD)												
Average Monthly	0.001532	0.002524	0.002375	0.00243	0.002472	0.002158	0.001647	0.001882	0.002466	0.002561	0.001426	0.001109
Flow (MGD)												
Daily Maximum	0.001909	0.002774	0.002641	0.002819	0.002613	0.002506	0.002384	0.002433	0.002742	0.003062	0.001959	0.0011263
pH (S.U.)												
Minimum	6.3	6.2	6.4	6.3	6.3	6.1	6.3	6.3	6.1	6.2	6.2	6.3
pH (S.U.)												
Maximum	7.5	7.1	7.1	7.0	7.5	7.4	7.4	7.1	7.0	6.9	7.2	7.1
DO (mg/L)												
Minimum	4.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	3.0	3.0	3.0	3.0
TRC (mg/L)												
Average Monthly	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
TRC (mg/L)												
Instantaneous												
Maximum	0.8	0.6	0.8	0.9	0.7	0.6	0.6	0.7	0.8	0.6	0.6	0.5
CBOD5 (mg/L)												
Average Monthly	< 2.0	< 2.0	< 2.0	3.0	6.0	3.0	3.0	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0
TSS (mg/L)												
Average Monthly	6.0	< 4.0	< 8.0	5.0	7.0	< 4.0	< 5.0	< 4.0	< 4.0	< 6.0	< 8.0	< 5.0
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 1.0	< 1.0	< 1.0	< 7.0	2.0	< 11	< 1.0	< 2.0	< 1.0	< 6.0	< 1.0	< 1.0
Fecal Coliform												
(No./100 ml)												
Instantaneous	1.0	. 1 0	1.0			100.0	1.0	2.4		44.4	1.0	1.0
Maximum	1.0	< 1.0	1.0	55.4	4.1	129.6	1.0	3.1	2.0	41.4	1.0	1.0
Nitrate-Nitrite (mg/L)	20.4	88.6	102.0	26.6	76.7	102.0	117.0	114	34.7	14.7	70.4	60.4
Average Monthly Nitrate-Nitrite (lbs)	39.4	0.00	102.0	36.6	/0./	102.0	117.0	114	34.7	14.7	72.4	60.4
Total Monthly	13.9	63.5	67.4	21.3	45.7	38.3	35.6	69.4	20.4	7.6	26.0	15.4
Total Nitrogen (mg/L)	13.9	03.5	07.4	21.3	40.7	30.3	35.0	09.4	20.4	1.0	20.0	10.4
Average Monthly	40.8	90.7	104.8	39.8	94.8	109.0	126.6	< 115	< 35.7	< 15.7	76.1	< 61.4
Total Nitrogen (lbs)	40.0	30.7	104.0	59.0	34.0	109.0	120.0	\$ 110	< JJ.1	< 10. <i>1</i>	10.1	<u> </u>
Total Monthly	14.4	65.0	69.2	23.1	56.5	40.9	38.5	< 70	< 21	< 8.2	27.4	< 15.7
Total Nitrogen (lbs)	14.4	00.0	03.2	20.1	50.5	40.3	50.5	~ 70	<u> </u>	< 0.Z	21.4	< 13. <i>1</i>
Effluent Net Total												
Annual										151		
Annual										101		

NPDES Permit No. PA0113093

Total Nitrogen (lbs)										000		
Total Annual										< 268		
Ammonia (mg/L)												
Average Monthly	< 0.1	0.91	< 0.1	1.4	15.5	4.9	9.6	0.94	< 0.12	0.41	3.0	< 0.1
Ammonia (lbs)												
Total Monthly	< 0.04	0.7	< 0.07	0.8	9.2	1.8	2.9	0.6	< 0.1	0.2	1.1	< 0.03
Ammonia (lbs) Total Annual										< 4		
TKN (mg/L)												
Average Monthly	1.4	2.1	2.8	3.2	18.1	7.0	3.4	< 1.0	< 1.0	< 1.0	3.7	< 1.0
TKN (lbs)												
Total Monthly	0.5	1.5	1.9	1.9	10.8	2.6	1.0	< 0.6	< 0.6	< 0.5	1.3	< 0.03
Total Phosphorus												
(lbs/day)												
Average Monthly	0.1	0.2	0.2	0.2	0.2	0.2	0.1	0.3	0.2	0.2	0.1	0.1
Total Phosphorus												
(mg/L)												
Average Monthly	10.9	7.9	10.1	9.4	8.2	13.1	11.9	13.1	10.7	11.1	9.4	12.7
Total Phosphorus (lbs)												
Total Monthly	3.8	5.7	6.7	5.5	4.9	4.9	3.6	8	6.3	5.8	3.4	3.2
Total Phosphorus (lbs)												
Effluent Net Total												
Annual										< 22		
Total Phosphorus (lbs)												
Total Annual										55		

Compliance History, Cont'd										
Summary of Inspections:	The facility has been inspected annually over the past permit term. The most recent inspection on June 9, 2022 identified no violations at the time of inspection.									
Other Comments:	A query in WMS found an open violation in eFACTS for Christ Wesleyan Church for effluent violations.									

Existing Effluent Limitations and Monitoring Requirements – Outfall 001										
			Monitoring Requirements							
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)	•	Minimum ⁽²⁾	Required		
r arameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	XXX	1/week	Estimate		
pH (S.U.)	XXX	xxx	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab		
Dissolved Oxygen	XXX	xxx	Report Inst Min	xxx	XXX	ххх	1/day	Grab		
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab		
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	xxx	xxx	25.0	XXX	50	2/month	Grab		
Total Suspended Solids	XXX	XXX	XXX	30.0	XXX	60	2/month	Grab		
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	xxx	2000 Geo Mean	XXX	10000	2/month	Grab		
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	xxx	200 Geo Mean	XXX	1000	2/month	Grab		
Ammonia-Nitrogen	xxx	xxx	xxx	Report	xxx	xxx	1/month	Grab		
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	1/month	Grab		

	Existing Effluent Limitations and Monitoring Requirements – Chesapeake Bay										
			Monitoring Re	quirements							
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)	•	Minimum ⁽²⁾	Required			
	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type			
AmmoniaN	Report	Report	xxx	Report	xxx	ххх	1/month	Grab			
KjeldahlN	Report	XXX	xxx	Report	xxx	ххх	1/month	Grab			
Nitrate-Nitrite as N	Report	XXX	xxx	Report	xxx	ххх	1/month	Grab			
Total Nitrogen	Report	Report	XXX	Report	XXX	ХХХ	1/month	Calculation			
Total Phosphorus	Report	Report	xxx	Report	XXX	ХХХ	1/month	Grab			
Net Total Nitrogen	XXX	152	xxx	xxx	xxx	ххх	1/year	Calculation			
Net Total Phosphorus	XXX	24	XXX	XXX	XXX	ххх	1/year	Calculation			

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.0035
Latitude	41º 1' 25.20"		Longitude	-76º 49' 19.10"
Wastewater De	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	_	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: The above limitations are applicable and included in the existing permit.

Water Quality-Based Limitations

DO, CBOD5 and NH3-N

The WQM7.0 model allows the Department to evaluate point source discharges of dissolved oxygen (DO), carbonaceous BOD (CBOD₅), and ammonia-nitrogen (NH₃-N) into free-flowing streams and rivers. To accomplish this, the model simulates two basic processes: the mixing and degradation of NH₃-N in the stream and the mixing and consumption of DO in the stream due to the degradation of CBOD₅ and NH₃-N. WQM7.0 modeling was performed showing the CBOD₅ technology-based limits noted above and no necessary NH₃-N limits are adequate to protect the receiving stream. The modeling run is attached (Attachment B).

Total Residual Chlorine

The Department uses a modeling spreadsheet to analyze the toxicity of a discharge's TRC in a receiving stream, accounting for available dilution. TRC modeling was performed showing that the existing BAT limit of 0.5 mg/L is adequate to protect the receiving stream. See Attachment C.

Toxics Management

No further "Reasonable Potential Analysis" was conducted to determine additional toxic pollutants as candidates for limitations for this minor treatment facility.

Chesapeake Bay/Nutrient Requirements

A portion of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the Water Pollution Control Act, 33 U.S.C. §1313(d). Total Nitrogen and Total Phosphorus cap loads have been established for significant dischargers in Pennsylvania in order to reduce the total nutrient load to the Bay and meet State of Maryland Water Quality Standards. The Christ Wesleyan Church treatment facility is considered a Phase 5, Insignificant Chesapeake Bay discharger. Nutrient cap loadings were established in the previous review for this facility due to expansion.

The discharge's cap loadings as well as the Total Nitrogen and Total Phosphorus loadings for the past two cycle years are listed in the table below. The permittee has purchased credits for both Total Nitrogen and Total Phosphorus to meet cap loads.

Nutrient	Total Nitrogen	Total Phosphorus
Nutrient Cap Loads for PA0113093	152	24
10/1/19 – 9/30/20 Total Loadings	232	< 50
Credits Purchased	81	28
10/1/19 – 9/30/20 Net Loadings	151	< 22
10/1/20 – 9/30/21 Total Loadings	< 268	55
Credits Purchased	117	33
10/1/20 – 9/30/21 Net Loadings	< 151	22

Best Professional Judgment (BPJ) Limitations

Comments: No additional BPJ limitations are necessary at this time.

Anti-Backsliding

No limitations have been made less stringent consistent with the anti-backsliding requirements of the Clean Water Act and 40 CFR 122.44(I).

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Red	quirements
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	xxx	1/week	Estimate
pH (S.U.)	XXX	xxx	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	xxx	Report Inst Min	xxx	xxx	xxx	1/day	Grab
Total Residual Chlorine (TRC)	XXX	xxx	xxx	0.5	XXX	1.6	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	xxx	xxx	25.0	XXX	50	2/month	Grab
Total Suspended Solids	XXX	xxx	xxx	30.0	XXX	60	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	xxx	xxx	2000 Geo Mean	xxx	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Ammonia-Nitrogen	XXX	xxx	xxx	Report	XXX	XXX	1/month	Grab
Total Phosphorus	Report	xxx	xxx	Report	xxx	xxx	1/month	Grab
E. Coli (No./100 ml)	XXX	xxx	xxx	xxx	Report Daily Max	xxx	1/year	Grab

Compliance Sampling Location: Outfall 001

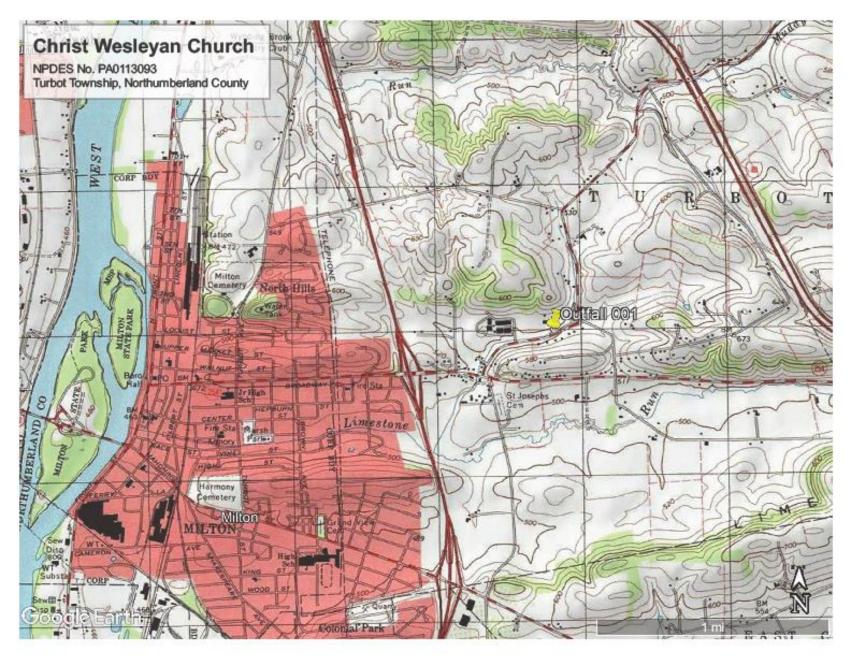
Other Comments: E. Coli monitoring is new consistent with changes to Chapter 93 of the Department's regulations and Department policy.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Faranieter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	xxx	Report	xxx	xxx	1/month	Grab
KjeldahlN	Report	XXX	XXX	Report	XXX	xxx	1/month	Grab
Nitrate-Nitrite as N	Report	XXX	xxx	Report	xxx	xxx	1/month	Grab
Total Nitrogen	Report	Report	XXX	Report	XXX	xxx	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	xxx	1/month	Grab
Net Total Nitrogen	XXX	152	XXX	xxx	XXX	xxx	1/year	Calculation
Net Total Phosphorus	XXX	24	XXX	XXX	XXX	XXX	1/year	Calculation


Compliance Sampling Location: Outfall 001

The above Chesapeake Bay limits and monitoring is unchanged.

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment B
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment C)
Temperature Model Spreadsheet (see Attachment C)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP: Establishing Effluent Limitations for Individual Sewage Permits, rev. 8/23/13;
Other:

Attachments:

- A. Discharge Location Map B. WQM7.0 Model C. TRC Model

	SWP Basir			Stre	am Name		RMI		ation ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	10D	190	94 LIMES	TONE RU	JN		0.8	50	575.40	0.70	0.00000	0.00	V
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Terr	<u>Tributary</u> 1p pH	Tem	<u>Stream</u> p pH	
Cond	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°C)	
Q7-10	0.125	0.00	0.00	0.000	0.000	0.0	0.00	0.00	2	0.00 7.0	00 (0.00 0.00	
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	scharge Da	ta					
Name	Permit Number	E xisting Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Rese Fac	erve T ctor	Disc Femp (°C)	Disc pH
Christ Wesleyan	PA0113093	0.0035	0.0000	0.000) (.000	25.00	7.00
	Pa	rameter Da	ka					
D	ameter Name	Disc Cor			eam onc	Fate Coef		
Pan	ameter Name	(mg/	L) (mg	/L) (m	g/L)	(1/days))	
CBOD5		25	.00 2	2.00	0.00	1.5	D	
Dissolved Ox	ygen	3	.00 8	8.24	0.00	0.0	D	
NH3-N		25	.00 0	0.00	0.00	0.7	D	

	SWP Basir			Stre	am Name		RMI		/ation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	10D	190	94 LIMES	STONE RU	IN		0.00	00	562.30	1.08	0.00000	0.00	V
					s	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np pH	Tem	<u>Stream</u> 1p pH	
Conta	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)	(°C)	
Q7-10	0.125	0.00	0.00	0.000	0.000	0.0	0.00	0.0) 2	20.00 7.	00	0.00 0.0	D
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	scharge Da	ata					
Name	Permit Number	E xisting Disc Flow (mgd)	Permi Dis Flo (mg	ec Di w Fl	sc Re		Disc Temp (°C)	Disc pH
		0.0000	0.0	000 0.	0000	0.000	25.00	7.00
	Pa	rameter Da	ata					
D	arameter Name	Disc Con		Trib Conc	Stream Conc	Fate Coef		
F C	nameter Name	(mg/	L)	(mg/L)	(mg/L)	(1/days))	
CBOD5		25	i.00	2.00	0.00) 1.5	0	
Dissolved O	xygen	3	8.00	8.24	0.00	0.0	0	
NH3-N		25	. 00	0.00	0.00	0.7	0	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

	SW	P Basin	Strea	m Code				Stream	Name			
		10D	1	9094			LI	ME STO	NE RUN			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.850	0.09	0.00	0.09	.0054	0.00292	.356	4.54	12.74	0.06	0.904	20.29	7.00
Q1-1	0 Flow											
0.850	0.06	0.00	0.06	.0054	0.00292	NA	NA	NA	0.05	1.140	20.44	7.00
Q30-	10 Flow	,										
0.850	0.12	0.00	0.12	.0054	0.00292	NA	NA	NA	0.07	0.768	20.22	7.00

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 D.O.Simulation

SWP Basin St	tream Code			Stream Name	•	
10D	19094		L	IMESTONE RU	IN	
RML	Total Discharge) Anal	ysis Temperatu	re (°C)	Analysis pH
0.850	0.00	4		20.291		7.000
Reach Width (ft)	<u>Reach De</u>	pth (ft)		Reach WDRat	io	Reach Velocity (fps)
4.539	0.35	6		12.738		0.057
Reach CBOD5 (m g/L)	Reach Kc ((1/days)	<u>R</u>	each NH3-N (m	q/L)	Reach Kn (1/days)
3.34	0.43	-		1.46		0.716
Reach DO (mg/L)	<u>Reach Kr (</u>			KrEquation		Reach DO Goal (mq/L)
7.937	21.73	36		Owens		6
Reach Travel Time (days)		Subreact	n Results			
0.904	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(m g/L)		
	0.090	3.21	1.37	8.20		
	0.181	3.09	1.28	8.20		
	0.271	2.97	1.20	8.20		
	0.362	2.85	1.12	8.20		
	0.452	2.74	1.05	8.20		
	0.543	2.64	0.99	8.20		
	0.633	2.53	0.93	8.20		
	0.723	2.44	0.87	8.20		
	0.814	2.34	0.81	8.20		
	0.904	2.25	0.76	8.20		

0.85 Christ Wesleyan

		WG	QM 7.	0 Wast	teload	Allo	catio	ns		
	SWP Basin	Stream C	ode		1	Stream	Name			
	10D	19094	ţ		LI	MESTO	NE RUN			
NH3-NA	Acute Alloca	tions								
RMI	Discharge N	ame Cr	seline iterion mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	V	Iltiple VLA ng/L)	Critical Reach	Percent Reduction	n
0.85	0 Christ Wesley	an	16.16	50	16.1	6	50	0	0	_
NH3-N Chronic Allocations										
RMI	Discharge Nar		eline erion g/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)		iple LA g/L)	Critical Reach	Percent Reduction	
0.85	0 Christ Wesley	an	1.86	25	i 1.8	6	25	0	0	-
Dissolve	ed Oxygen A	llocatio	ns							_
RMI	Discharge	Name	<u>C</u> Baselin (mg/L)			<u>N</u> /lultiple (mg/L)			Critical	Percent Reduction

WQM 7.0 Effluent Limits

	<u>SWP Basin</u> <u>Stream</u> 10D 190			Stream Name	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.850	Christ Wesleyan	PA0113093	0.004	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			3

TRC_CALC

Input appropriate values in A3:A9 and D3:D9 0.088 = Q stream (cfs) 0.5 0.0035 = Q discharge (MGD) 0.5 30 = no. samples 1 0.3 = Chlorine Demand of Stream 1 0 = Chlorine Demand of Discharge 15 0 = W Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations TRC 1.3.2.iii WLA afc = 5.204 YENTOXSD TRG 5.1a LTA_ufc = 1.939 PENTOXSD TRG 5.1b LTA_afc = 1.939 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 INS	66 81							
0.0035 = Q discharge (MGD) 0.5 = CV Hourly 30 = no. samples 1 = AFC_Partial Mix Factor 0.3 = Chlorine Demand of Stream 1 = CFC_Partial Mix Factor 0 = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min) 0.5 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0 = % Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 5.204 1.3.2.iii WLA cfc = 5.0 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.5 PENTOXSD TRG 5.1b LTA_afc= 1.939 5.1d LTA_cfc = 2.9 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 INST MAX LIMIT (mg/l) = 1.635 INST MAX LIMIT (mg/l) = 1.635	66 81							
30 = no. samples 1 = AFC_Partial Mix Factor 0.3 = Chlorine Demand of Stream 1 = AFC_Partial Mix Factor 0 = Chlorine Demand of Discharge 15 = AFC_Partial Mix Factor 0 = Chlorine Demand of Discharge 15 = AFC_Partial Mix Factor 0 = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min) 0.5 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0 = % Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 5.204 1.3.2.iii WLA cfc = 5.0 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.5 PENTOXSD TRG 5.1b LTA_afc= 1.939 5.1d LTA_cfc = 2.9 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 INST MAX LIMIT (mg/l) = 1.635	66 81							
0.3 = Chlorine Demand of Stream 1 = CFC_Partial Mix Factor 0 = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min) 0.55 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0 = % Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 5.204 1.3.2.iii WLA cfc = 5.0 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.5 PENTOXSD TRG 5.1b LTA_afc= 1.939 5.1d LTA_cfc = 2.9 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 INST MAX LIMIT (mg/l) = 1.635 INST MAX LIMIT (mg/l) = 1.635	66 81							
0 = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min) 0.5 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0 = % Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations TRC 1.3.2.iii WLA afc = 5.204 1.3.2.iii WLA cfc = 5.0 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.5 PENTOXSD TRG 5.1b LTA_afc= 1.939 5.1d LTA_cfc = 2.5 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 INST MAX LIMIT (mg/l) = 1.635 INST MAX LIMIT (mg/l) = 1.635	66 81							
0.5 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0 = % Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 5.204 1.3.2.iii WLA cfc = 5.0 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.5 PENTOXSD TRG 5.1b LTA_afc= 1.939 5.1d LTA_cfc = 2.5 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635	66 81							
0 = % Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 5.204 1.3.2.iii WLA cfc = 5.0 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.5 PENTOXSD TRG 5.1b LTA_afc= 1.939 5.1d LTA_cfc = 2.5 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 INST MAX LIMIT (mg/l) = 1.635 BAT/BPJ	66 81							
Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 5.204 1.3.2.iii WLA cfc = 5.0 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.9 PENTOXSD TRG 5.1b LTA_afc= 1.939 5.1d LTA_cfc = 2.9 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 INST MAX LIMIT (mg/l) = 1.635 INST MAX LIMIT (mg/l) = 1.635	81							
TRC 1.3.2.iii WLA afc = 5.204 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 PENTOXSD TRG 5.1b LTA_afc = 1.939 Source Effluent Limit Calculations PENTOXSD TRG 5.1f PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 1.635	81							
PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.9 PENTOXSD TRG 5.1b LTA_afc= 1.939 5.1d LTA_cfc = 2.9 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 INST MAX LIMIT (mg/l) = 1.635 BAT/BPJ	81							
PENTOXSD TRG 5.1b LTA_afc= 1.939 5.1d LTA_cfc = 2.9 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635								
Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 INST MAX LIMIT (mg/l) = 1.635 BAT/BPJ	45							
PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 INST MAX LIMIT (mg/l) = 1.635 BAT/BPJ								
PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635								
INST MAX LIMIT (mg/l) = 1.635								
WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))								
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)								
	EXP((0.5*LN(cvh*2+1))-2.326*LN(cvh*2+1)*0.5)							
LTA_afo wla_afc*LTAMULT_afc	wla_afc*LTAMULT_afc							
WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))								
+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)								
LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)								
LTA_cfc wla_cfc*LTAMULT_cfc								
AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))								
AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)								
INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)								

Page 1