

Application Type	Renewal
Facility Type	Non- Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0113182
APS ID	1043755
Authorization ID	1362458

Applicant and Facility Information

Applicant Name	Nittany Grove Condominium Comm Association	Facility Name	Nittany Grove Condominium Comm Association
Applicant Address	204 Timberwood	Facility Address	Timberwood Trail
	Centre Hall, PA 16828	_	Boalsburg, PA 16827
Applicant Contact	Thomas Bettle	Facility Contact	Thomas Bettle
Applicant Phone	(814) 355-2021	Facility Phone	(814) 355-2021
Client ID	342082	Site ID	238308
Ch 94 Load Status	Not Overloaded	Municipality	Harris Township
Connection Status	No Limitations	County	Centre
Date Application Recei	vedJuly 20, 2021	EPA Waived?	Yes
Date Application Accept	oted August 9, 2021	If No, Reason	
Purpose of Application	Renewal of an existing NPDES pe	ermit for the discharge of	treated sewage.

Summary of Review

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
х		Jonathan P. Peterman	
~		Jonathan P. Peterman / Project Manager	September 8, 2022
х		Nickolas W. Hartranft	
Λ		Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	September 9, 2022

Discharge, Receivi	ng Water	s and Water Supply Inform	nation	
Outfall No. 001			Design Flow (MGD)	0.0105
Latitude 40°	47' 3.85"		Longitude	-77º 43' 54.16"
Quad Name C	Centre Ha		Quad Code	1224
Wastewater Desc	ription:	Sewage Effluent		
	Unna	med Tributary to Spring		
Receiving Waters	Creek	(HQ-CWF, MF)	Stream Code	22966 (Spring Creek)
				0.172 @ UNT
NHD Com ID	67180)188 	RMI	23.5 @ Spring Creek
Drainage Area	0.054 1.8 m	i ² @ ONI	Yield (cfs/mi ²)	0.239
-	0@l	JNT		
Q ₇₋₁₀ Flow (cfs)	0.14 (② Spring Creek	Q7-10 Basis	Gauge No. 01546400
Elevation (ft)	1205		Slope (ft/ft)	0.033 (UNT) 0.00182 (Spring Creek)
Watershed No.	9-C		Chapter 93 Class.	HQ-CWF, MF
Existing Use	N/A		Existing Use Qualifier	N/A
Exceptions to Use	e None		Exceptions to Criteria	None
Assessment Statu	JS	Impaired		
Cause(s) of Impai	irment	HABITAT ALTERATIONS,	SILTATION	
		HABITAT MODIFICATION	- OTHER THAN HYDROMOD	IFICATION, HABITAT
Source(s) of Impa	irment	MODIFICATION - OTHER	THAN HYDROMODIFICATION	١
TMDL Status			Name	
Nearest Downstre	am Publi	c Water Supply Intake	PA American Water Company	1
PWS Waters	West Rr	anch Susquehanna River	Flow at Intake (cfs)	752
	10.6		Distance from Outfall (mi)	Approx 100
	10.0			

Changes Since Last Permit Issuance: None.

Other Comments: The discharge is to a road-side ditch that ultimately drains to Spring Creek. The updated Q₇₋₁₀ data was obtained from the updated stream gage information obtained from *Stuckey, M.H., and Roland, M.A., 2011, Selected Streamflow Statistics for Streamgage Locations In and Near Pennsylvania*. A comparative stream analysis was previously conducted using a comparative stream gage based on basin characteristics. The Q₇₋₁₀ calculations indicate that the Q₇₋₁₀ is 23.5 cfs at Spring Creek.

Treatment Facility Summary

Treatment Facility Name: Nittany Grove MHP Sewer System

WQM Permit No.	Issuance Date	Comments			
1474401 T-1	7/20/06	Transfer.			
1474401	4/30/74	Original construction,			
1409402	7/13/16	Expan	sion of sewer system.		
	Degree of			Avg Annual	
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)	
Sewage	Secondary	Extended Aeration	Hypochlorite	0.0105	
Hydraulic Capacity	Organic Capacity			Biosolids	
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal	
0.0105	24	Not Overloaded	Aerobic Digestion		

Treatment System Components for Outfall 001:

- One (1) Influent Screen.
- One (1) Equalization Tank.
- Two (2) Aeration Basins.
- One (1) Secondary Clarifier.
- Two (2) Sand Filters.
- One (1) Tablet Chlorine disinfection system with contact tank.
- One (1) Outfall 001.
- One (1) Aerobic digester.

Changes Since Last Permit Issuance: None. Other Comments: None.

Anti-Backsliding

In accordance with 40 CFR 122.44(I)(1) and (2), this permit does not contain effluent limitations, standards, or conditions that are less stringent than the previous permit.

Chesapeake Bay Requirements

Since this facility's hydraulic design capacity is 0.0105 MGD, the permittee previously monitored and reported TN and TP concentrations over the last permit term. In accordance with the Phase II WIP Chesapeake Bay Strategy for Phase V facilities (0.002 MGD to 0.2 MGD), yearly monitoring requirements for nutrients is not required if this monitoring has been conducted and documented in the previous fact sheet. The previous the monitoring results are as follows:

DUE DATE	DMR RECEIVED DATE	PARAMETER	LOAD UNITS	LOADING	CONCENTRATION VALUE	CONC LIMIT	CONC 3 SBC
01/28/2018	10/22/2017	Total Nitrogen	lbs/day	< 26.8	< 26.8	Monitor and Report	Daily Maximum
01/28/2019	11/26/2018	Total Nitrogen	lbs/day	< 0.42	< 9.31	Monitor and Report	Daily Maximum
01/28/2020	12/09/2019	Total Nitrogen	lbs/day	0.41	49.4	Monitor and Report	Daily Maximum
01/28/2021	01/07/2021	Total Nitrogen	lbs/day	2.07	51.1	Monitor and Report	Daily Maximum
01/28/2022	07/09/2021	Total Nitrogen	lbs/day	0.718	19.94	Monitor and Report	Daily Maximum
01/28/2018	10/22/2017	Total Phosphorus	lbs/day	5.89	5.89	Monitor and Report	Daily Maximum
01/28/2019	11/26/2018	Total Phosphorus	lbs/day	0.09	2.06	Monitor and Report	Daily Maximum
01/28/2020	12/09/2019	Total Phosphorus	lbs/day	0.06	7.93	Monitor and Report	Daily Maximum
01/28/2021	01/07/2021	Total Phosphorus	lbs/day	0.18	4.40	Monitor and Report	Daily Maximum
01/28/2022	07/09/2021	Total Phosphorus	lbs/day	0.17	4.80	Monitor and Report	Daily Maximum

Existing Effluent Limitations and Monitoring Requirements

Existing Limits – Outfall 001

					Monitoring			
			Effluent	Limitations	5		Requirem	nents
Paramotor	Mass	Units						
Falameter	(lbs/d	lay) ⁽¹⁾		Concentra	tions (mg/L)		Minimum ⁽²⁾	Required
	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
		Report						
	_	Daily						
Flow (MGD)	Report	Max	XXX	XXX	XXX	XXX	1/week	Weir
pH (S.U.)	XXX	xxx	6.0	ххх	9.0	XXX	1/dav	Grab
Dissolved								
Oxygen	XXX	XXX	Report	XXX	XXX	XXX	1/day	Grab
Total Residual							•	
Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Carbonaceous								
Biochemical								
Oxygen Demand								
(CBOD5)	XXX	XXX	XXX	10.0	XXX	20	2/month	Grab
Total Suspended			~~~~	40.0			0/22.21	
Solids	XXX	XXX	XXX	10.0	XXX	20	2/month	Grab
Fecal Collform				200				
(CFU/100 mi) May 1 San 20	~~~	vvv	~~~	Geo	~~~	1000	2/month	Grah
Fecal Coliform	~~~	~~~		2000		1000	2/1101101	Grab
(CEU/100 ml)				Geo				
Oct 1 - Apr 30	xxx	xxx	XXX	Mean	xxx	10000	2/month	Grab
		Report	7000		7000		_,	0.00
		Daily			Report			
Total Nitrogen	XXX	Max	XXX	XXX	Daily Max	XXX	1/year	Grab
Ammonia-							•	
Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/month	Grab
		Report						
		Daily			Report			
Total Phosphorus	XXX	Max	XXX	XXX	Daily Max	XXX	1/year	Grab

*The existing effluent limits for Outfall 001 were based on a design flow of 0.105 MGD.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.0105
Latitude	40° 47' 3.85"		Longitude	-77º 43' 54.16"
Wastewater D	escription:	Sewage Effluent	-	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

To establish whether or not water-quality based effluent limitations (WQBELs) are required, the Department models instream conditions. In order to determine limitations for CBOD5, ammonia-N and dissolved oxygen, the Department utilizes the WQM 7.0 v1.0b model and in order to determine limitations for toxics, the Department utilizes the Toxics Management Spreadsheet. This spreadsheet was not utilized for this review.

WQM 7.0 for Windows, Version 1.0b, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen

The previous model was run using the latest information on Q7-10 stream flow, background water quality, average annual design flow, and other discharge characteristics. There were no changes to the facility or watershed since the previous review. The existing technology-based effluent limit for $CBOD_5$ (10 mg/l) and NH3-N (25 mg/l) were used as inputs for the modeling. The DO minimum daily average criterion from §93.7 (5.0 mg/L for CWF) was used for the in-stream objective for the model. The summary of the output is as follows:

Denemeter	Effluent Limit				
Parameter	30 Day Average	Maximum	Minimum		
CBOD5	10	N/A	N/A		
Ammonia-N	25	50	N/A		
Dissolved Oxygen	N/A	N/A	3		

The model does not recommend water-quality based effluent limitations with regards to CBOD5, ammonia-nitrogen, and dissolved oxygen.

Best Professional Judgment (BPJ) Limitations See the Dissolved Oxygen section below. Additional Considerations None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst the abovementioned technology, water quality, and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or BPJ.

Proposed Limits - Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

			Effluent	limitations			Monitor	ing
Demonster	Mass	Units	Entuent				Kequirei	
Parameter	(lbs/d	lay) ⁽¹⁾		Concentra	tions (mg/L)		Minimum ⁽²⁾	Required
	Average	Average	M.:	Average	N /	Instant.	Measurement	Sample
	wonthiy	Report	winimum	wonthiy	waximum	waximum	Frequency	туре
		Daily						
Flow (MGD)	Report	Max	XXX	XXX	XXX	XXX	1/week	Weir
pH (S.U.)	ххх	xxx	6.0	xxx	9.0	xxx	1/day	Grab
Dissolved							,	
Oxygen	XXX	XXX	Report	XXX	XXX	XXX	1/day	Grab
Total Residual								
Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Carbonaceous								
Ovvgen Demand								
(CBOD5)	ХХХ	ХХХ	XXX	10.0	XXX	20	2/month	Grab
Total Suspended								
Solids	XXX	XXX	XXX	10.0	XXX	20	2/month	Grab
Fecal Coliform				200				
(No./100 ml)			2007	Geo		1000		
May 1 - Sep 30	XXX	XXX	XXX	Mean	XXX	1000	2/month	Grab
(No. (100 ml)				2000				
(N0.7100 III)	XXX	XXX	XXX	Mean	xxx	10000	2/month	Grab
Ammonia-	/////	/////	,,,,,,	ivicun	,,,,,,	10000	2/1101101	Giub
Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/month	Grab
E. Coli								
(No./100 ml)	XXX	XXX	XXX	Report	XXX	XXX	1/month	Grab

*The proposed effluent limits for Outfall 001 were based on a design flow of 0.105 MGD.

Effluent Limit Determination for Outfall 001

General Information

All effluent limits were then rounded down in accordance with the rounding rules established in the *Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001)*, Chapter 5 - Specifying Effluent Limitations in NPDES Permits. The existing monitoring frequencies and sample types for these parameters generally correspond with the *Technical Guidance for the Development and Specification of Effluent Limitations of Effluent Limitations* (362-0400-001). Table 6-3 and will remain.

Flow

Reporting of the average monthly flow and daily maximums is consistent with monitoring requirements for other treatment plants and will remain.

NPDES Permit Fact Sheet Nittany Grove MHP

Carbonaceous Biochemical Oxygen Demand (CBOD₅)

The results of the WQM 7.0 model showed that the previously applied advanced treatment requirements of the Department's Dry Streams guidance (Document No. 391-2000-014, 4/12/08) of 10 mg/l for CBOD₅ were protective of water quality and will remain.

Total Suspended Solids (TSS)

The previously applied advanced treatment requirements of the Department's Dry Streams guidance (Document No. 391-2000-014, 4/12/08) of 10 mg/l for TSS will remain as well.

рH

CFR Title 40 §133.102(c) and 25 PA Code §95.2(1) provide the basis of effluent limitations for pH.

Fecal Coliforms

The existing fecal coliform limits with I-max limits were previously updated from the previous Chapter 92 code to correspond with what is specified in the updated 25 PA Code § 92a.47 (a)(4)&(5). The existing effluent limits will remain.

Ammonia-Nitrogen (NH3-N)

The results of the WQM 7.0 model show that the existing monitoring requirement for ammonia-nitrogen is appropriate and will remain.

Dissolved Oxygen (DO)

25 PA Code §93.7 provides specific water quality criteria for DO and monitoring for this parameter will ensure that the facility is not creating or contributing to an in-stream excursion below these water quality standards. Additionally, the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001) lists DO under the self-monitoring requirements for sewage discharges and monitoring of DO is consistent with other discharges of this size and type.

<u>E. Coli</u>

25 PA Code § 92a.61 provide the basis of monitoring requirements for E. Coli. Monthly monitoring will be required going forward.

Total Residual Chlorine (TRC)

The attached TRC model indicates that the existing effluent limits of 0.5 mg/L (Average Monthly) and 1.6 mg/L (Instantaneous Maximum) are protective of water quality and will remain.

Compliance History

<u>Summary of Inspections</u> - The last inspection of the facilities was conducted by the Department on 5/4/21 which reveals the facility was operating normally, but effluent violations had occurred in the previous year.

<u>WMS Query Summary</u> - A WMS Query was run at *Reports* - *Violations & Enforcements* – *Open Violations for Client Report* to determine whether there are any unresolved violations associated with the client that will affect issuance of the permit (per CSL Section 609). This query revealed that there were no unresolved violations.

DMRs Summary -Upon review of the DMR's, the facility generally appears to be operating within the given concentration limits. However, minor exceedances were noted over the last permit term for CBOD and TSS.

Compliance History

DMR Data for Outfall 001 (from April 1, 2021 to March 31, 2022)

Parameter MA	AR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21
Flow (MGD)												
Average Monthly 0.0	00540	0.01221	0.00475	0.00472	0.00544	0.00729	0.00686	0.00463	0.00432	0.00453	0.00460	0.00747
Flow (MGD)												
Daily Maximum 0.0	00864	0.05832	0.00864	0.00810	0.01350	0.02430	0.02106	0.01080	0.00702	0.01188	0.00756	0.01242
pH (S.U.)												
Instantaneous												
Minimum 6	6.57	6.84	6.70	6.67	6.50	6.50	6.39	6.40	6.46	6.72	6.43	6.59
pH (S.U.)												
Instantaneous												
Maximum 7	7.30	7.34	7.32	7.00	7.18	6.88	6.99	6.78	7.04	6.97	7.08	7.04
DO (mg/L)												
Instantaneous												
Minimum 3	3.08	4.44	4.15	3.5	3.33	2.26	1.74	11.86	1.44	1.21	1.10	1.05
TRC (mg/L)												
Average Monthly 0	0.34	0.39	0.38	0.36	0.48	0.50	0.38	0.45	0.18	0.17	0.27	0.21
TRC (mg/L)												
Instantaneous												
Maximum 0	0.73	0.99	1.45	1.11	1.20	1.45	1.17	1.21	0.98	0.55	0.72	0.48
CBOD5 (mg/L)									/			
Average Monthly 28	8.85	22.15	11.72	9.5	3.00	3.00	3.56	3.00	5.21	6.7	14.3	17.35
CBOD5 (mg/L)												
Instantaneous			17.0	10.1						4.0.4		
Maximum 4	40.8	23.2	17.9	10.1	3.00	3.00	4.12	3.00	5.23	10.4	24.9	20.3
ISS (mg/L)	7.0	10.0	7.0		7.0	4 40	4 40	0.00	45.0	10.0	45.0	00.75
Average Monthly	7.9	12.8	7.0	8.2	7.8	4.40	4.40	2.30	15.0	16.2	15.8	30.75
ISS (mg/L)												
Instantaneous	0.0	11.0	7.0	0.00	40.0	4.00	4.00	2.00	45.0	10.0		40 F
	8.8	14.8	0.1	8.80	12.0	4.80	4.80	3.60	15.2	19.6	10.5	43.5
Fecal Collform												
(NO./100 mi)	1 76	1	1	25	1	1	1	1	1	6.07	1	1
Georifettic Mean I	1.70	I	I	2.3	1	1	1	I	I	0.07	1	1
Maximum	31	1	1	62	1	1	1	1	1	36.8	1	1

Total Nitrogen												
(lbs/day)												
Daily Maximum				0.718								
Total Nitrogen (mg/L)												
Daily Maximum				19.94								
Ammonia (mg/L)												
Average Monthly	26.68	29.11	24.21	22.03	2.265	16.1	7.149	4.488	23.18	8.01	32.74	4.892
Total Phosphorus												
(lbs/day)												
Daily Maximum				0.17								
Total Phosphorus												
(mg/L)												
Daily Maximum				4.80								

Compliance History

Effluent Violations for Outfall 001, from: May 1, 2021 To: March 31, 2022

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
CBOD5	02/28/22	Avg Mo	22.15	mg/L	10.0	mg/L
CBOD5	03/31/22	Avg Mo	28.85	mg/L	10.0	mg/L
CBOD5	01/31/22	Avg Mo	11.72	mg/L	10.0	mg/L
CBOD5	05/31/21	Avg Mo	14.3	mg/L	10.0	mg/L
CBOD5	05/31/21	IMAX	24.9	mg/L	20.0	mg/L
CBOD5	02/28/22	IMAX	23.2	mg/L	20.0	mg/L
CBOD5	03/31/22	IMAX	40.8	mg/L	20.0	mg/L
TSS	07/31/21	Avg Mo	15.0	mg/L	10.0	mg/L
TSS	02/28/22	Avg Mo	12.8	mg/L	10.0	mg/L
TSS	07/31/21	Avg Mo	15.0	mg/L	10.0	mg/L
TSS	06/30/21	Avg Mo	16.2	mg/L	10.0	mg/L

NPDES Permit No. PA0113182

755	05/31/21	Ανα Μο	15.8	ma/l	10.0	ma/l
100	00/01/21	Avgino	10.0	ing/∟	10.0	ing/∟

	Tools and References Used to Develop Permit
	WOM for Windows Model (see Attachment
	Toxics Management Spreadsheet (see Attachment
\square	TRC Model Spreadsheet (see Attachment B)
	Temperature Model Spreadsheet (see Attachment
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\boxtimes	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
\boxtimes	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\square	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
\boxtimes	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\square	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
<u> Ц </u>	SOP:
	Other:

Prepared in cooperation with the Pennsylvania Department of Environmental Protection

Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Open-File Report 2011-1070

U.S. Department of the Interior U.S. Geological Survey

Table 1 13

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued

[Latitude and Longitude in decimal degrees; mi2, square miles]

Steenen				Drainage	
number	Streamgage name	Latitude	Longitude	area (mi²)	Regulated ¹
01541303	West Branch Susquehanna River at Hyde, Pa.	41.005	-78.457	474	Y
01541308	Bradley Run near Ashville, Pa.	40.509	-78.584	6.77	N
01541500	Clearfield Creek at Dimeling, Pa.	40.972	-78.406	371	Y
01542000	Moshannon Creek at Osceola Mills, Pa.	40.850	-78.268	68.8	N
01542500	WB Susquehanna River at Karthaus, Pa.	41.118	-78.109	1,462	Y
01542810	Waldy Run near Emporium, Pa.	41.579	-78.293	5.24	N
01543000	Driftwood Branch Sinnemahoning Creek at Sterling Run, Pa.	41.413	-78.197	272	N
01543500	Sinnemahoning Creek at Sinnemahoning, Pa.	41.317	-78.103	685	N
01544000	First Fork Sinnemahoning Creek near Sinnemahoning, Pa.	41.402	-78.024	245	Y
01544500	Kettle Creek at Cross Fork, Pa.	41.476	-77.826	136	N
01545000	Kettle Creek near Westport, Pa.	41.320	-77.874	233	Y
01545500	West Branch Susquehanna River at Renovo, Pa.	41.325	-77.751	2,975	Y
01545600	Young Womans Creek near Renovo, Pa.	41.390	-77.691	46.2	N
01546000	North Bald Eagle Creek at Milesburg, Pa.	40.942	-77.794	119	N
01546400	Spring Creek at Houserville, Pa.	40.834	-77.828	58.5	N
01546500	Spring Creek near Axemann, Pa.	40.890	-77.794	87.2	N
01547100	Spring Creek at Milesburg, Pa.	40.932	-77.786	142	N
01547200	Bald Eagle Creek below Spring Creek at Milesburg, Pa.	40.943	-77,786	265	N
01547500	Bald Fagle Creek at Blanchard, Pa.	41.052	-77.604	339	Y
01547700	Marsh Creek at Blanchard, Pa.	41.060	-77.606	44.1	N
01547800	South Fork Beech Creek near Snow Shoe, Pa.	41.024	-77.904	12.2	N
01547950	Beech Creek at Monument, Pa	41.112	-77.702	152	N
01548005	Bald Fagle Creek near Beech Creek Station Pa	41.081	-77 549	562	v
01548500	Pine Creek st Cedar Run. Pa	41 522	-77 447	604	N
01549000	Pine Creek near Waterville Pa	41 313	-77 379	750	N
01549500	Blockhouse Creek near English Center Pa	41.010	-77 231	37.7	N
01549700	Dine Creek helow Little Dine Creek near Waterville. Da	41.274	-77 324	044	v
01550000	Lucomina Creak near Trout Pun. Pa	41.418	77.033	173	N
01551500	WD Suemahanna Divar at Williamenart Da	41.736	76.007	5 6 8 7	v
01551500	w D Susquenamia Kiver at wimanispon, ra.	41.230	-76.012	3,062	1 N
01552500	Loyalsock Creek at Loyalsockville, ra.	41.323	-70.912	433	N
01552500	Sand Spring Pup page White Daar, Dr.	41.557	-70.333	4.02	IN N
01555150	Sand Spring Kun near white Deer, Pa.	41.059	-//.0//	4.93	N
01555500	Chilliamanus Caala at Washingtonilla, Pa.	40.908	-/0.8/0	0,847	I N
01555700	Chillisquaque Creek at washingtonville, Pa.	41.002	-76.680	51.5	N
01554000	Susquenanna River at Sundury, Pa.	40.835	-70.827	18,300	T NI
01554500	Snamokin Creek near Snamokin, Pa.	40.810	-/0.584	54.2	N
01555000	Penns Creek at Penns Creek, Pa.	40.867	-77.048	301	N
01555500	East Mahantango Creek near Dalmatia, Pa.	40.611	-76.912	162	N
01556000	Frankstown Branch Juniata River at Williamsburg, Pa.	40.463	-78.200	291	N
01557500	Bald Eagle Creek at Tyrone, Pa.	40.684	-78.234	44.1	N
01558000	Little Juniata River at Spruce Creek, Pa.	40.613	-78.141	220	N
01559000	Juniata River at Huntingdon, Pa.	40.485	-78.019	816	LF
01559500	Standing Stone Creek near Huntingdon, Pa.	40.524	-77.971	128	N
01559700	Sulphur Springs Creek near Manns Choice, Pa.	39.978	-78.619	5.28	N
01560000	Dunning Creek at Belden, Pa.	40.072	-78.493	172	N

26 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

[ft3/s; cubic feet per second; ---, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01546000	1912-1934	17	1.8	2.2	6.8	3.7	12.1	11.2
01546400	1986-2008	23	13.5	14.0	19.6	15.4	22.3	18.7
01546500	1942-2008	67	26.8	29.0	41.3	31.2	44.2	33.7
01547100	1969-2008	40	102	105	128	111	133	117
01547200	1957-2008	52	99.4	101	132	106	142	115
01547500	21971-2008	38	28.2	109	151	131	172	153
01547500	³ 1956–1969	14	90.0	94.9	123	98.1	131	105
01547700	1957-2008	52	5	.6	2.7	1.1	3.9	2.2
01547800	1971-1981	11	1.6	1.8	2.4	2.1	2.9	3.5
01547950	1970-2008	39	12.1	13.6	28.2	17.3	36.4	23.8
01548005	21971-2000	25	142	151	206	178	241	223
01548005	31912-1969	58	105	114	147	125	165	140
01548500	1920-2008	89	21.2	24.2	50.1	33.6	68.6	49.3
01549000	1910-1920	11	26.0	32.9	78.0	46.4	106	89.8
01549500	1942-2008	67	.6	.8	2.5	1.4	3.9	2.6
01549700	1959-2008	50	33.3	37.2	83.8	51.2	117	78.4
01550000	1915-2008	94	6.6	7.6	16.8	11.2	24.6	18.6
01551500	² 1963-2008	46	520	578	1,020	678	1,330	919
01551500	31901-1961	61	400	439	742	523	943	752
01552000	1927-2008	80	20.5	22.2	49.5	29.2	69.8	49.6
01552500	1942-2008	67	.9	1.2	3.1	1.7	4.4	3.3
01553130	1969-1981	13	1.0	1.1	1.5	1.3	1.8	1.7
01553500	² 1968-2008	41	760	838	1,440	1,000	1,850	1,470
01553500	31941-1966	26	562	619	880	690	1,090	881
01553700	1981-2008	28	9.1	10.9	15.0	12.6	17.1	15.2
01554000	21981-2008	28	1,830	1,990	3,270	2,320	4,210	3,160
01554000	°1939–1979	41	1,560	1,630	2,870	1,880	3,620	2,570
01554500	1941-1993	53	16.2	22.0	31.2	25.9	35.7	31.4
01555000	1931-2008	78	33.5	37.6	58.8	43.4	69.6	54.6
01555500	1931-2008	78	4.9	6.5	18.0	9.4	24.3	16.6
01556000	1918-2008	91	43.3	47.8	66.0	55.1	75.0	63.7
01557500	1946-2008	03	2.8	3.2	0.3	4.2	8.1	5.8
01558000	1940-2008	69	50.5	59.0	79.8	65.7	80.2	73.7
01559000	1943-2008	00	104	177	249	198	2/9	227
01559500	1951-1958	28	9.3	10.5	15.0	12.4	17.8	15.8
01559700	1903-1978	10	.1	1.	.4	12.0		.4
01560000	1941-2008	08	8.5	9.4	15.0	12.0	20.2	16.2
01561000	1932-1938	27	.4	.5	1.0	-0	122	1.7
01562000	1913-2008	90	0.4.1	07.1	100	2.2	5.4	34.5
01562300	21074 2009	27	1.1	1.0	3.6	112	3.4	120
01563200	31048_1073	35	10.3	28.2	86.1	64.5	113	05.5
01563500	21074_2009	25	384	415	510	4.5	580	403
01563500	31030-1072	34	153	242	343	278	300	333
01564500	1940-2008	69	3.6	4.2	10.0	62	14.4	10.6
01004000	1240-2008	09	2.0	· · · · ·	10.0	U.fr	7.47.4	10.0

1A	В	С	D	E	F	G			
2	TRC EVALU	ATION		Nittany	/ Grove MHP	PA0113182			
3	Input appropri	ate values in	B4:B8 and E4:E7						
4	0.172	2 = Q stream (cfs)	0.5	CV Daily				
5	0.0105	= Q discharg	je (MGD)	0.5	CV Hourly				
6	30	= no. sample	8	1 = AFC_Partial Mix Factor					
7	0.3	0.3 = Chlorine Demand of Stream			1 = CFC_Partial Mix Factor				
8	0 = Chlorine Demand of Discharge				AFC_Criteria	Compliance Time (min)			
9	0.5 = BAT/BPJ Value				CFC_Criteria	Compliance Time (min)	I		
40		= % Factor o	of Safety (FOS)	0	Decay Coeffici	ent (K)			
10	Source	Reference	AFC Calculations		Reference	CFC Calculations			
11	TRC	1.3.2.11	WLA afc =	3.397	1.3.2.11	WLA cfc = 3.3	304		
12	PENTOXSD TRO	5 5.18	LIAMULI atc =	0.373	5.10		081		
14	FENTONSDIKE	, 0.10	LTA_alc=	1.200	0.10	LIA_CIC = 1.8	21		
15	Source		Effluent	Limit Calo	culations				
16	PENTOXSD TRO	5.1f	AM	1L MULT = 1.231					
17	PENTOXSD TRO	6 5.1g	AVG MON LIMI	T (mg/l) =	0.500	BAT/BPJ			
18			INST MAX LIMI	T (mg/l) =	1.635				
							I		
	1411 A	(040/- (1+4)		+ 040/04			I		
	WLA arc	(.019/e(-K*Al	FU_tC)) + [(AFU_TC*\4 C_Vo*Oe*Ye/Od\1*/1_E	5~.019/Qa 09/400\	"e(-K"AFC_tC))	•			
	I TAMULT afc	EXP((0.5*1 N	(cvh^2+1))-2 326*IN(cvh^2+1)/	^0 5)				
	LTA afc	wla afc*LTA	MULT afc	2.1)	0.0)				
	WLA_cfc	(.011/e(-k*Cl	FC_tc) + [(CFC_Yc*Qs*	.011/Qd*	e(-k*CFC_tc))	,	I		
		+ Xd + (CF	C_Yc*Qs*Xs/Qd)]*(1-F	OS/100)					
	LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.326*L	N(cvd^2/no_san	nples+1)^0.5)			
	LTA_cfc	wla_cfc*LTA	MULT_cfc						
		EXP(2.326*1	N((cvd^2/no_samples	+1)^0.5)-0	0.5*LN(cvd^2/nc	samples+1))			
	AVG MON LIMIT	MIN(BAT BP	J.MIN(LTA afc.LTA c	fc)*AML	MULT)	_oumples. I//			
	INST MAX LIMIT	1.5*((av_mo	n_limit/AML_MULT)/L1	AMULT	afc)				
				-	-				

NPDES Permit No. PA0113182

