

Application Type	Renewal
Facility Type	Non- Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0114081
APS ID	1029892
Authorization ID	1338699

Applicant and Facility Information

Applicant Name	Orange Township, Columbia County	Facility Name	Woods Edge Estates STP
Applicant Address	2028 State Route 487	Facility Address	181 Draketown Road
	Orangeville, PA 17859-9029		Bloomsburg, PA 17815-7708
Applicant Contact	Calvin Fox	Facility Contact	John Bauer, Operator
Applicant Phone	(570) 683-5836	Facility Phone	(570) 784-1653
Client ID	115590	Site ID	254209
Ch 94 Load Status	Not Overloaded	Municipality	Orange Township
Connection Status	Dept. Imposed Connection Prohibitions	County	Columbia
Date Application Receiv	ved December 29, 2020	EPA Waived?	Yes
Date Application Accep	ted January 11, 2021	If No, Reason	
Purpose of Application	Renewal of a NPDES Permit		

Summary of Review

The subject permit is a Publicly Owned Treatment Works serving the Woods Edge subdivision in Orange Township, Columbia County.

A map of the discharge location is attached.

Sludge use and disposal description and location(s): The facility's sludge is transferred to other WWTPs for further processing.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
\checkmark		Keith C. Allison Keith C. Allison / Project Manager	May 12, 2021
\checkmark		Nicholas W. Hartranft Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	May 13, 2021

Discharge, Receiving Waters and Water Supply Information									
Outfall No. 001		Design Flow (MGD)	0.021						
Latitude 41° 2'	' 26.46"	Longitude	-76° 25' 38.85"						
	omsburg, PA	Quad Code	1034						
	ption: Sewage Effluent								
Receiving Waters	Fishing Creek (WWF, MF)	Stream Code	27623 (Fishing Creek)						
			1.24 (UNT)						
NHD Com ID	65639951	RMI	7.9 (Fishing Creek)						
	0.0517 mi² (UNT)								
Drainage Area	285 mi ² (Fishing Creek)	Yield (cfs/mi ²)	0.0613						
			USGS Gage 01539000,						
	0.00317 (UNT)		Fishing Creek @						
Q ₇₋₁₀ Flow (cfs)	17.5 (Fishing Creek)	Q7-10 Basis	Bloomsburg (1940-2008)						
Elevation (ft)	820	Slope (ft/ft)	0.0454						
Watershed No.	5-C	Chapter 93 Class.	WWF, MF						
Existing Use	N/A	Existing Use Qualifier	N/A						
Exceptions to Use	None	Exceptions to Criteria	None						
Assessment Status	Attaining Use(s)								
Nearest Downstrea	m Public Water Supply Intake	United Water Pennsylvania, E	Bloomsburg						
PWS Waters F	ishing Creek	Distance from Outfall (mi)	Approx. 6						

Changes Since Last Permit Issuance: None

Other Comments: The discharge is to a small stream that ultimately drains to Fishing Creek. An Aquatic Biological Investigation by the Department on May 6, 2014 found sufficient aquatic life in the Unnamed Tributary to consider it worthy of protection as a perennial stream. This assessment also found significant impact to the receiving waters below the discharge from the Woods Edge Estates treatment plant as compared to above the discharge. The stream degradation was still noticeable at a sample site approximately 0.8 miles below the discharge point. The presence of aquatic life in the receiving stream and the degradation to the stream will again be considered in the limits determination.

No downstream water supply is expected to be affected by this discharge with the monitoring and limitations proposed given the distance and ample dilution in Fishing Creek.

		eatment Facility Summar					
-	ame: Woods Edge Estates						
WQM Permit No.	Issuance Date	Installation	Permit For:	<u></u>			
1988407	A-2 – 9/3/20		of dechlorination and aeration	011			
	T-1 – 6/28/16		fer to Orange Township				
	A-1 – 6/11/93	Amended to modify language in special condition for connecting t municipal facilities					
	Original - 11/18/88	Original permit for treatment plant and sewer system					
	Degree of			Avg Annual			
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)			
<i>.</i>		Extended Aeration With					
Sewage	Tertiary	Solids Removal	Hypochlorite	0.021			
				Biosolids			
Hydraulic Capacity	Organic Capacity			DioSolius			
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Use/Disposa			

Changes Since Last Permit Issuance: The WQM permit amendment issued in 2020 for the installation of a new two compartment chlorine contact tank. One compartment provides chlorine contact time and the other provides dechlorination utilizing a tablet feeder. Fine bubble diffusers were also installed to increase dissolved oxygen levels

Other Comments: The treatment facility is a package extended aeration plant followed by sand filters and consists of: bar screen, 21,000-gallon aeration tank, 4,300-gallon settling tank, siphon tank, two intermittent sand filters, erosion chlorinator, erosion dechlorinator, and two compartment chlorine contact tank.

Compliance History

DMR Data for Outfall 001 (from March 1, 2020 to February 28, 2021)

Parameter	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20
Flow (MGD)												
Average Monthly	0.0092	0.0106	0.0093	0.00978	0.0088	0.01	0.0131	0.0098	0.0084	0.0091	0.0088	0.0089
Flow (MGD)												
Daily Maximum	0.0159	0.0553	0.0062	0.0189	0.0127	0.07	0.0857	0.0312	0.0116	0.0137	0.0142	0.0104
pH (S.U.)												
Minimum	6.8	6.7	6.9	6.7	6.8	6.8	6.9	6.9	6.8	6.8	6.9	6.8
pH (S.U.)												
Maximum	7.3	7.3	7.2	7.1	7.3	7.3	7.4	7.3	7.4	7.3	7.3	7.2
DO (mg/L)												
Minimum	9.8	9.4	8.7	7.4	6.9	7.0	5.3	7.4	7.3	7.4	7.5	7.6
TRC (mg/L)												
Average Monthly	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	0.01	0.01	0.01	0.01
TRC (mg/L)												
Instantaneous Maximum	0.07	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
CBOD5 (lbs/day)												
Average Monthly	< 0.50	< 0.40	< 0.40	< 0.50	< 0.40	< 0.20	< 0.50	< 0.50	< 0.40	< 0.40	< 0.50	< 0.60
CBOD5 (mg/L)												
Average Monthly	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0
CBOD5 (mg/L)												
Instantaneous Maximum	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0	< 6.0
BOD5 (lbs/day) Raw Sewage												
Influent Average Monthly	9.0	28.0	5.0	10.0	8.0	6.0	23.0	21	9	21	12	18
BOD5 (lbs/day) Raw Sewage												
Influent Daily Maximum	9.0	39.0	6.0	13.0	13.0	6.0	37.0	21	10	27	17	18
BOD5 (mg/L) Raw Sewage Influent												
Average Monthly	109	385.0	65.0	113	136.0	86.0	302.0	280	138	297	150	187
TSS (lbs/day)												
Average Monthly	< 0.40	< 0.50	< 0.40	< 0.40	< 0.30	0.20	< 0.40	< 0.40	< 0.30	< 0.40	< 0.40	< 0.50
TSS (lbs/day) Raw Sewage Influent												
Average Monthly	8	27.0	5.0	11.0	6.0	9.0	19.0	12	3	13	7	9
TSS (lbs/day) Raw Sewage Influent												
Daily Maximum	10	42.0	6.0	19.0	6.0	10.0	27.0	13	6	15	7	10
TSS (mg/L) Average Monthly	< 5.0	< 7.0	< 5.0	< 5.0	< 5.0	5.0	< 5.0	< 5.0	< 5.0	< 5.1	< 5.0	< 5.0
TSS (mg/L) Raw Sewage Influent												
Average Monthly	97	367.0	62.0	131	92.0	140.0	250.0	155	46	180	89	99
TSS (mg/L) Instantaneous												
Maximum	< 5.0	8.3	< 5.0	< 5.0	< 5.0	5.0	< 5.0	< 5.0	< 5.0	5.2	< 5.0	< 5.0
Fecal Coliform (CFU/100 ml)												
Geometric Mean	< 2.0	< 4.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1
Fecal Coliform (CFU/100 ml)												
Instantaneous Maximum	3.1	13.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1	< 1	< 1	< 1	< 1

NPDES Permit Fact Sheet Woods Edge Estates Clear Run STP

NPDES Permit No. PA0114081

Ammonia (lbs/day)												
Average Monthly	0.10	< 0.020	1.00	0.30	0.02	0.02	0.03	< 0.02	< 0.30	< 0.04	< 0.20	0.20
Ammonia (mg/L)												
Average Monthly	1.2	< 0.30	11.6	3.0	0.4	0.3	0.3	< 0.2	< 4.08	< 0.52	2.716	1.678
Ammonia (mg/L)												
Instantaneous Maximum	1.65	< 0.40	21.0	3.68	0.423	0.493	0.373	< 0.2	7.77	0.83	4.44	2.91

Compliance History

Effluent Violations for Outfall 001, from: April 1, 2020 To: February 28, 2021

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
DO	09/30/20	Min	5.3	mg/L	6.0	mg/L
Ammonia	07/31/20	Avg Mo	< 0.30	lbs/day	0.28	lbs/day
Ammonia	01/31/21	Avg Mo	1.00	lbs/day	0.83	lbs/day
Ammonia	01/31/21	Avg Mo	11.6	mg/L	4.7	mg/L
Ammonia	07/31/20	Avg Mo	< 4.08	mg/L	1.6	mg/L
Ammonia	05/31/20	Avg Mo	2.716	mg/L	1.6	mg/L
Ammonia	05/31/20	IMAX	4.44	mg/L	3.2	mg/L
Ammonia	07/31/20	IMAX	7.77	mg/L	3.2	mg/L
Ammonia	01/31/21	IMAX	21.0	mg/L	9.5	mg/L

Compliance History								
Summary of Inspections:	The facility has been inspected at least annually by the Department over the past permit term. The most recent inspection on January 29, 2021 identified NPDES effluent violations.							
Other Comments:	A query in WMS found no open violations in eFACTS for Orange Township, Columbia County.							

Existing Effluent Limitations and Monitoring Requirements									
		Monitoring Re	quirements						
Parameter	Mass Units	<mark>(lbs/day) ⁽¹⁾</mark>		Concentrat	ions (mg/L)	•	Minimum ⁽²⁾	Required	
i arameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/week	Measured	
рН (S.U.)	xxx	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab	
DO	ххх	xxx	6.0 Inst Min	xxx	xxx	ххх	1/day	Grab	
TRC	XXX	XXX	XXX	0.02	XXX	0.07	1/day	Grab	
CBOD5	1.75	XXX	XXX	10.0	XXX	20.0	2/month	Grab	
BOD5 Raw Sewage Influent	Report	Report	xxx	Report	xxx	ххх	2/month	Grab	
TSS Raw Sewage Influent	Report	Report	xxx	Report	xxx	ххх	2/month	Grab	
TSS	1.75	XXX	XXX	10.0	XXX	20.0	2/month	Grab	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ХХХ	xxx	xxx	2000 Geo Mean	XXX	10000	2/month	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	xxx	xxx	200 Geo Mean	xxx	1000	2/month	Grab	
Total Nitrogen	Report	xxx	xxx	Report	xxx	ххх	1/year	Grab	
Ammonia Nov 1 - Apr 30	0.83	xxx	xxx	4.7	xxx	9.5	2/month	Grab	
Ammonia May 1 - Oct 31	0.28	xxx	xxx	1.6	XXX	3.2	2/week	Grab	
Total Phosphorus	Report	XXX	XXX	Report	XXX	ХХХ	1/year	Grab	

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.021
Latitude	41º 3' 22.24"		Longitude	-76º 24' 54.81"
Wastewater De	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform	000 / 400 ml	O a a Maran		00 = 47(-)(4)
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: The technology-based secondary treatment limits above for TSS and CBOD₅ are not as stringent as the facility's existing limits for the dry stream discharge as discussed below.

The TRC BAT limit from 92a applies to this facility. However, as noted below a more stringent water quality-based limitation has been applied to the discharge.

Water Quality-Based Limitations

The facility has existing limits of 10 mg/L for TSS and CBOD₅ to protect the receiving stream that were taken from the Department's Dry Stream's Guidance as well as existing water quality-based limits for NH₃-N and DO. These will be retained to address the minimal flow and potential nuisance conditions in the receiving stream with the exception of NH₃-N as noted below.

The WQM7.0 model allows the Department to evaluate point source discharges of Carbonaceous BOD (CBOD₅), ammonia-nitrogen (NH₃-N) and dissolved oxygen (DO) into free-flowing streams and rivers. To accomplish this, the model simulates two basic processes: the mixing and degradation of NH₃-N in the stream and the mixing and consumption of DO in the stream due to the degradation of CBOD₅ and NH₃-N. WQM7.0 modeling has been performed at this time which includes recent updates to the Department's NH3-N criteria to address protection of the receiving stream. The results of the WQM7.0 modeling are attached (See Attachment B) showing the existing Ammonia-Nitrogen limit of 1.58 mg/L and Dissolved Oxygen limit of 6 mg/L are adequate.

The Department uses a spreadsheet to model the toxicity of Total Residual Chlorine in a receiving stream. Modeling of the unnamed tributary for the previous review produced a limit of 0.023 mg/L (See Attachment C).

Toxics Management

No further "Reasonable Potential Analysis" was performed to determine additional pollutants for monitoring or limitations for this minor municipal treatment plant with no industrial influent.

Best Professional Judgment (BPJ) Limitations

Comments: No BPJ limits are necessary beyond the technology and water quality-based limits noted above.

Chesapeake Bay/Nutrient Requirements

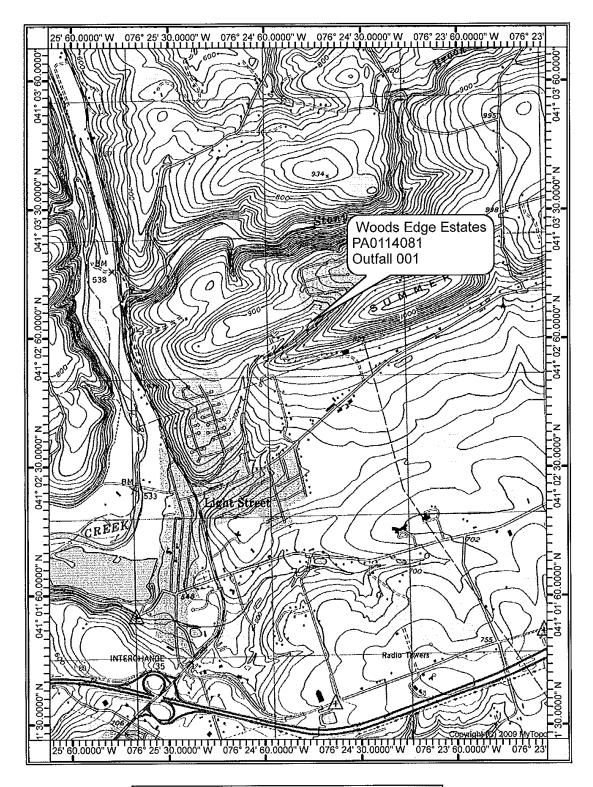
According to the Pennsylvania Chesapeake Bay Tributary Implementation Plan for NPDES Permitting, this facility is considered an existing Phase 5 Chesapeake Bay sewage discharger. Under the previous permit annual monitoring was conducted and the average Total Nitrogen concentration for the past two years was 7.3 mg/L and the Total Phosphorus was 0.85 mg/L. Therefore, because the nutrient levels in the effluent have adequately been characterized no further nutrient monitoring will be required at this time.

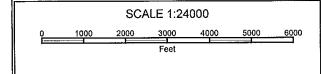
Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Effluent Limitations								Monitoring Requirements		
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/week	Measured		
рН (S.U.)	XXX	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab		
DO	xxx	xxx	6.0 Inst Min	xxx	xxx	xxx	1/day	Grab		
TRC	ххх	XXX	xxx	0.02	XXX	0.07	1/day	Grab		
CBOD5	1.75	XXX	XXX	10.0	XXX	20.0	2/month	Grab		
BOD5 Raw Sewage Influent	Report	Report	xxx	Report	xxx	XXX	2/month	Grab		
TSS Raw Sewage Influent	Report	Report	xxx	Report	xxx	ххх	2/month	Grab		
TSS	1.75	XXX	XXX	10.0	XXX	20.0	2/month	Grab		
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab		
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab		
Ammonia Nov 1 - Apr 30	0.83	XXX	xxx	4.7	xxx	9.5	2/month	Grab		
Ammonia May 1 - Oct 31	0.28	xxx	xxx	1.6	xxx	3.2	2/week	Grab		
e. Coli Bacteria	ХХХ	XXX	XXX	XXX	XXX	Report	1/quarter	Grab		

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.


Compliance Sampling Location: Outfall 001


Other Comments: The above limitations and monitoring are unchanged from the existing permit except for the removal of nutrient as noted above. In addition, consistent with recent changes to Chapter 93 of the Department's regulations e. coli monitoring will be included in the permit at a frequency of once per quarter.

	Tools and References Used to Develop Permit
	MOM for Mindows Model (ass Attackment P)
	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\square	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
\boxtimes	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
\boxtimes	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\square	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
$\overline{\boxtimes}$	SOP: Establishing Effluent Limitations for Individual Sewage Permits, rev. 3/22/21
	Other:
Attachmer	

Attachments:

- Discharge Location MapWQM7.0 Model
- TRC Model ٠

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	am Name		RMI		ation ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	05C	277	754 Trib 27	754 to Fis	shing Cree	k	1.24	10	820.00	0.05	0.00000	0.00	~
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np pH	Tem	<u>Stream</u> p pH	
conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.061	0.00	0.00	0.000	0.000	0.0	0.00	0.00) 2	0.00 7.0	00 0	0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

	Dis	scharge D	ata					
Name	Permit Number	Disc	Permitted Disc Flow (mgd)	Desigr Disc Flow (mgd)	Res Fac	erve T ctor	Disc 'emp (°C)	Disc pH
Woods Edge	PA0114081	0.0210	0.0000	0.00	00 00	000.	25.00	7.00
	Pa	rameter D	ata					
	Description	Dis Co	-		ream Conc	Fate Coef		
	Parameter Name	(mg	/L) (mg	/L) (I	ng/L)	(1/days)		
CBOD5		1	0.00 :	2.00	0.00	1.50)	
Dissolve	d Oxygen		6.00	8.24	0.00	0.00)	
NH3-N			1.58 (0.00	0.00	0.70)	

				Inp	ut Dat	a WQN	17.0						
SWP Basin			Stre	am Name		RMI			Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdraw (mgd)		Apply FC
05C	277	754 Trib 27	7754 to Fi	shing Creel	k	0.74	0 7	00.00	0.10	0.00000	0	.00	✓
				St	ream Da	ta							
LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth					ł	
(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(ºC)			
0.061	0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20.	00 7.0	0 0).00 0	.00	
				D	ischarge	Data							
		Name	Per	mit Numbe	Disc	Permitte Disc Flow	d Design Disc Flow	Rese	rve Tem				
-	Basin 05C LFY (cfsm)	Basin Cor 05C 277 LFY Trib Flow (cfsm) (cfs) 0.081 0.00 0.001 0.00	Basin Code 05C 27754 Trib 21 LFY Trib Flow Stream Flow (cfsm) (cfs) (cfs) 0.061 0.00 0.00 0.00 0.00 0.00	Basin Code Streen 05C 27754 Trib 27754 to Fit LFY Trib Stream Rch Flow Flow Flow Trav (cfsm) (cfs) (cfs) (days) 0.081 0.00 0.000 0.000 0.000 0.000 0.000 0.000	SWP Basin Stream Code Stream Name 05C 27754 Trib 27754 Trib Creek LFY Trib Flow Stream Flow Rch Trav Flow Rch Velocity Time Rch Velocity (cfsm) (cfs) (cfs) (days) (fps) 0.061 0.00 0.00 0.000 0.000 0.00 0.00 0.000 0.000 0.000	SWP Basin Stream Code Stream Name 05C 27754 Trib 27754 to Fishing Creek Stream Date LFY Trib Flow Stream Flow Rch Trav Time Rch Velocity (days) WD Ratio 0.061 0.00 0.00 0.000 0.00 0.00 0.061 0.00 0.00 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.00 Discharge Existing Disc	SWP Stream Basin Stream Code Stream Name RMI 05C 27754 Trib 27754 to Fishing Creek 0,74 Stream Data LFY Trib Stream Rch Rch WD Rch Width Flow Flow Trav Velocity Ratio Width Time (cfsm) (cfs) (cfs) (days) (fps) (ft) 0.061 0.00 0.00 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.00 Discharge Data Existing Permitte Disc	Basin Code Stream Name (ft) 05C 27754 Trib 27754 to Fishing Creek 0,740 7 Stream Data LFY Trib Stream Rch Rch WD Rch Rch Flow Flow Trav Velocity Ratio Width Depth (cfsm) (cfs) (cfs) (days) (fps) (ft) (ft) 0.061 0.00 0.00 0.000 0.000 0.00	SWP Basin Stream Code Stream Name RMI Elevation I (ft) 05C 27754 Trib 27754 to Fishing Creek 0.740 700.00 Stream Data LFY Trib Stream Rch Rch WD Rch Rch Depth Temp (cfsm) (cfs) (cfs) (days) (fps) (fft) (ft) (°C) 0.061 0.00 0.00 0.000 0.00 0.00 0.00 20.00 0.00 0.00 0.000 0.000 0.000 0.00 0.00 20.00 Discharge Data Existing Permitted Design Disc Disc Reset	SWP Basin Stream Code Stream Name RMI Elevation (ft) Drainage Area (sq mi) 05C 27754 Trib 27754 to Fishing Creek 0,740 700.00 0.10 Stream Data Stream Data Stream Pata Rch (sfs) <	SWP Basin Stream Code Stream Name RMI Elevation (ft) Drainage Area (sq mi) Slope (ft/ft) 05C 27754 Trib 27754 to Fishing Creek 0.740 700.00 0.10 0.00000 Stream Data LFY Trib Stream Rch Trav Rch Velocity Rch Ratio Rch Width Rch Depth Tributary Temp Temp (cfsm) (cfs) (cfs) (fps) (ft) (ft) (ft) (@C) (@C) 0.081 0.00 0.00 0.000 0.000 0.00 0.00 20.00 7.00 0 Discharge Data Existing Permitted Design Disc Disc	SWP Basin Stream Code Stream Name RMI Elevation (ft) Drainage Area (ft) Slope Area (ft/ft) PWS Withdraw (mgd) 05C 27754 Trib 27754 to Fishing Creek 0.740 700.00 0.10 0.00000 0.0 UFY Trib Stream Rch Trav Rch Velocity Rch Ratio WD Width Rch Depth Tributary Temp Stream PH Stream Temp PH (cfsm) (cfs) (cfs) (days) (fps) (ft) (ft) (°C) (°C) 0.061 0.00 0.00 0.000 0.00	SWP Basin Stream Code Stream Name RMI Elevation (ft) Drainage Area (sq mi) Slope (ft/ft) PWS Withdrawal (mgd) 05C 27754 Trib 27754 to Fishing Creek 0,740 700.00 0.10 0.00000 0.00 Stream Data LFY Trib Flow Roh Flow Roh Trav Time Roh Velocity (days) WD (fps) Roh Width Depth Depth Tributary Temp Stream Temp Stream pH 0.061 0.00 0.00 0.000 0.00 <

Name	Permit Number	Disc Flow (mgd)	Disc Flow (mgd)	Disc Flow (mgd)	Reserve Factor	Temp (°C)	рН
		0.0000	0.0000	0.0000	0.000	25.00	7.00
	Par	ameter Da	ta				
	Parameter Name	Disc Con			am Fa inc Co		
	Farameter Name	(mg/	L) (mg	/L) (mį	g/L) (1/da	ays)	
CBOD5		25	.00 2	2.00	0.00	1.50	
Dissolved	d Oxygen	3	.00 8	3.24	0.00	0.00	
NH3-N		25	.00 0	0.00	0.00	0.70	

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	im Code				Stream	Name			
		05C	2	7754			Trib 27	754 to F	ishing Cr	eek		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (ºC)	Analysis pH
Q7-1	Q7-10 Flow											
1.240	0.00	0.00	0.00	.0325	0.04545	.34	1.39	4.09	0.08	0.406	24.57	7.00
Q1-1	0 Flow											
1.240	0.00	0.00	0.00	.0325	0.04545	NA	NA	NA	0.07	0.413	24.72	7.00
Q30-	Q30-10 Flow											
1.240	0.00	0.00	0.00	.0325	0.04545	NA	NA	NA	0.08	0.399	24.43	7.00

13

_

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

1	SWP Basin St	ream Code		St	ream Name		
	05C	27754		Trib 2775	4 to Fishing (Creek	
NH3-N A	Acute Allocatio	ons					
RMI	Discharge Nan	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.24	0 Woods Edge	11.34	3.16	11.34	3.16	0	0
IH3-N (Chronic Alloca	tions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.24	0 Woods Edge	1.42	1.58	1.42	1.58	0	0

Dissolved Oxygen Allocations

		CBC		NH:	3-N	Dissolved	d Oxygen	Cottant	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple	Baseline	Multiple	Reach	Reduction
1.24	Woods Edge	10	10	1.58	1.58	6	6	0	0

				~ ~		
SWP Basin	Stream Code			Stream Na	ame	
05C	27754		Trib 2	7754 to Fis	hing Creek	
RMI	Total Discharge	e Flow (mgd) <u>Ana</u>	lysis Tempe	rature (°C)	Analysis pH
1.240	0.02	0.021 24.571		7.000		
Reach Width (ft)	Reach De	epth (ft)		Reach WD	Ratio	Reach Velocity (fps)
1.390	0.34	0		4.092		0.075
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	Reach NH3-N (mg/L)		Reach Kn (1/days)	
9.31	1.45			1.44		0.995
Reach DO (mg/L)	Reach Kr			Kr Equat		Reach DO Goal (mg/L)
6.193	31.5	D1		Owens	5	6
Reach Travel Time (days	<u>i)</u>	Subreact	Results			
0.406	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.041	8.66	1.39	7.11		
	0.081	8.05	1.33	7.42		
	0.122	7.48	1.28	7.54		
	0.162	6.95	1.23	7.59		
	0.203	6.46	1.18	7.59		
	0.244	6.01	1.13	7.59		
	0.284	5.58	1.09	7.59		
	0.325	5.19	1.05	7.59		
	0.365	4.82	1.00	7.59		
	0.406	4.48	0.96	7.59		

WQM 7.0 D.O.Simulation

WQM 7.0 Effluent Limits

	27754	Stream Name Trib 27754 to Fishing Creek				
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
Woods Edge	PA0114081	0.021	CBOD5	10		
			NH3-N	1.58	3.16	
			Dissolved Oxygen			6
		Number	Name Permit Flow Number (mgd)	Name Permit Flow Parameter Number (mgd) Woods Edge PA0114081 0.021 CBOD5 NH3-N	Name Permit Number Flow (mgd) Parameter 30-day Ave. (mg/L) Woods Edge PA0114081 0.021 CBOD5 10 NH3-N 1.58	Name Permit Number Flow (mgd) Parameter 30-day Ave. (mg/L) Maximum (mg/L) Woods Edge PA0114081 0.021 CBOD5 10 NH3-N 1.58 3.16

TRC EVALUATION									
Client Date									
0.00317	= Q stream (cfs	3)	0.5	= CV Daily					
	= Q discharge (= CV Hourly					
30	= no. samples	· · · ·	0.972	= AFC_Partial Mix Factor					
0.3	= Chlorine Dem	and of Stream	1	= CFC_Partial Mix Factor					
0	= Chlorine Demand of Discharge			= AFC_Criteria Compliance Time (min)					
0.5	= BAT/BPJ Valu			= CFC_Criteria Compliance Time (min)					
	= % Factor of Safety (FOS)		0	=Decay Coefficient (K)					
Source		AFC Calculations		Reference	CFC Calculations				
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 0.041				
PENTOXSD TRG	5.1a	LTAMULT afc =		5.1c	LTAMULT cfc = 0.581				
PENTOXSD TRG	5.1b	LTA_afc=		5.1d	LTA_cfc = 0.024				
		WQBEL_afc=			WQBEL_cfc= 0.030				
Source	Effluent Limit Calculations								
PENTOXSD TRG									
PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.023 AFC									
INST MAX LIMIT (mg/l) = 0.074									
		:							
WLA afc									
VVLA alc	(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))								
LTAMULT afc	+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)								
LTA afc	EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)								
	wla_afc*LTAMULT_afc								
WLA_cfc	WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))								
	+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)								
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)								
LTA cfc	wla cfc*LTAMULT cfc								
AML MULT	EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))								
AVG MON LIMIT									
NST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)									
	· · · · · · · · · · · · · · · · · · ·	, /_	·····/						