

Northcentral Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0114286

APS ID 1001474

Authorization ID 1288002

Applicant and Facility Information							
Applicant Name	New	Albany Borough	Facility Name	New Albany Borough Sewer System STP			
Applicant Address	PO B	ox 67	Facility Address	401 Main Street			
	New /	Albany, PA 18833-0067		New Albany, PA 18833			
Applicant Contact	Rhon	da McCarty, Secretary	Facility Contact	Shane Walker, Chief Operator			
Applicant Phone	(570)	363-2300	Facility Phone	(570) 637-4302			
Client ID	35452	2	Site ID	242240			
Ch 94 Load Status	Not C	verloaded	Municipality	New Albany Borough			
Connection Status	No Li	mitations	County	Bradford			
Date Application Rece	eived	September 10, 2019	EPA Waived?	Yes			
Date Application Accepted		September 12, 2019	If No, Reason				

Summary of Review

This facility is a municipal wastewater treatment plant serving Albany Borough, Bradford County.

A map of the discharge location is attached.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X	X Keith C. Allison / Project Manager		December 16, 2019
		Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	

Outfall No. 001		Design Flow (MGD)	0.04
Latitude 41° 3	6' 23.45"	Longitude	-76° 26' 31.57"
Quad Name <u>Du</u>	shore, PA	Quad Code	0634
Wastewater Descrip	otion: Sewage Effluent		
	South Branch Towanda Creek		
Receiving Waters	(CWF, MF)	Stream Code	30251
NHD Com ID	66407625	RMI	8.5
Drainage Area	22.8	Yield (cfs/mi²)	0.013
O Flow (ofc)	0.297	Q ₇₋₁₀ Basis	Gage 01532000, Towanda Creek near Monroeton, PA (1915-2008)
Q ₇₋₁₀ Flow (cfs) Elevation (ft)	1170	Slope (ft/ft)	0.00789
Watershed No.	4-C	Chapter 93 Class.	CWF, MF
Existing Use	N/A	Existing Use Qualifier	N/A
Exceptions to Use	None	Exceptions to Criteria	None
Assessment Status	Attaining Use(s)		
Nearest Downstrea	m Public Water Supply Intake	Danville Municipal Authority	
PWS Waters S	Susquehanna River	Flow at Intake (cfs)	6.5 MGD
PWS RMI	122.5	Distance from Outfall (mi)	Approx. 150

Changes Since Last Permit Issuance: The above stream and discharge characteristics were determined in the previous review and remain adequate.

Other Comments: No downstream water supply is expected to be affected by the discharged with the limitations and monitoring proposed.

	Treatment Facility Summary								
Treatment Facility Na	me: New Albany Boroug	h Sewerage STP System							
WQM Permit No.	WQM Permit No.								
0889405	6/7/90	0.04 MGD treatment plant	and associated sewers						
0893406	4/27/93	 0.04 MGD Extended aeration treatment plant. A minor amendment approved in 2008 allowed the replacement of the existing tablet chlorinator with a liquid sodium hypochlorite feed. A minor amendment in 2019 approved the permanent use of a tablet dechlorinator. 							
	Degree of			Avg Annual					
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)					
Sewage	Secondary	Extended Aeration	Hypochlorite	0.04					
Hydraulic Capacity	Organic Capacity			Biosolids					
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal					
0.04	80	Not Overloaded	Aerobic Digestion	Other WWTP					

Changes Since Last Permit Issuance: The use of dechlorination is new since the last NPDES review.

Other Comments: The treatment facility, approved by WQM Permit No. 0893406, consists of a bar screen, influent tank, equalization tank with grinder pumps, three 16,000-gallon aeration tanks, one 8,750-gallon clarifier, tablet chlorinator, 1000-gallon chlorine contact tank, tablet dechlorination, and an 8,000-gallon aerated sludge holding tank. The permittee received three different WQM permit for different proposals for the treatment plant: 0889405, 0892403 and 0893406. Apparently, the option under 0893406 was constructed.

Hauled in Waste

Per the application, the permittee has not received any hauled in waste in the past three years and does not anticipate receiving any over the next permit term.

Sludge/Biosolids Disposal

The facility's sludge is sent to the Towanda Municipal Authority WWTP for further processing.

Compliance History

DMR Data for Outfall 001 (from November 1, 2018 to October 31, 2019)

Parameter	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18
Flow (MGD)												
Average Monthly	0.014	0.012	0.013	0.016	0.018	0.022	0.016	0.014	0.017	0.018	0.016	0.019
Flow (MGD)												
Daily Maximum	0.035	0.014	0.022	0.34	0.054	0.071	0.033	0.016	0.022	0.065	0.032	0.0227
pH (S.U.)												
Minimum	6.0	6.31	6.5	6.3	6.2	6.1	6.0	6.0	6.04	5.51	5.35	6.0
pH (S.U.)												
Maximum	6.75	7.29	7.1	6.75	8.05	7.0	6.93	6.8	6.77	7.17	7.02	7.08
DO (mg/L)												
Minimum	1.84	2.79	2.8	2.8	1.12	2.0	2.2	3.0	3.56	2.03	3.23	2.17
TRC (mg/L)												
Average Monthly	0.5	0.6	0.4	0.5	0.3	0.3	0.4	0.4	0.4	0.6	0.4	0.6
TRC (mg/L)												
Instantaneous												
Maximum	1.1	0.8	1.1	1.0	0.93	0.7	1.0	1.0	1.6	0.98	1.06	1.5
CBOD5 (lbs/day)												
Average Monthly	0.6	< 0.4	< 0.4	< 0.4	< 0.3	< 0.5	< 0.5	< 0.4	< 0.4	< 0.3	< 0.4	< 0.4
CBOD5 (lbs/day)	0.0	0.5	0.4	0.4	0.4	0.0		0.4	0.4	0.4	0.4	
Daily Maximum	0.8	0.5	< 0.4	< 0.4	< 0.4	< 0.6	0.6	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
CBOD5 (mg/L)				. 0								
Average Monthly	6	< 4	< 3	< 3	< 3	< 3	< 4	< 3.0	< 3	< 3	< 3	< 3
CBOD5 (mg/L) Daily Maximum	7.2	5	< 3	< 3	< 3	< 3	5	< 3.0	< 3	< 3	< 3	< 3
BOD5 (lbs/day)	1.2	5	< 3	< 3	< 3	< 3	5	< 3.0	< 3	< 3	< 3	< 3
Raw Sewage Influent												
Average Monthly	34	45	50	36	38	35	30	35	33	35	32	28
BOD5 (lbs/day)	34	43	30	30	30	33	30	33	33	33	32	20
Raw Sewage Influent												
Daily Maximum	38	59	63	40	49	42	31	39	34	38	35	34
BOD5 (mg/L)		00	- 55			12	01	- 55	<u> </u>	- 55	00	
Raw Sewage Influent												
Average Monthly	314	428	391	294	342	226	266	293	266	315	248	195
TSS (lbs/day)												
Average Monthly	0.9	< 0.3	0.4	0.5	0.5	< 1	0.7	1	< 0.2	< 0.3	0.3	< 0.5
TSS (lbs/day)												
Raw Sewage Influent												
Average Monthly	21	33	42	41	93	29	21	37	19	17	39	20

NPDES Permit Fact Sheet New Albany Borough Sewer System STP

NPDES Permit No. PA0114286

TSS (lbs/day)												
Daily Maximum	1	0.6	0.5	0.6	0.7	2	0.7	1	0.2	0.5	0.3	0.8
TSS (lbs/day)												
Raw Sewage Influent												
Daily Maximum	22	48	68	55	115	36	21	64	20	18	60	28
TSS (mg/L)												
Average Monthly	8	< 3	3	4	5	< 4	6	12	< 2	< 2	2	< 4
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	199	310	313	350	912	186	190	314	150	155	310	138
TSS (mg/L)												
Daily Maximum	9	5.2	4	4.4	8	7	7	12.4	2	4	2.4	5.6
Fecal Coliform												
(No./100 ml)												
Geometric Mean	3	< 1	< 1	7	1	86	< 1	2	< 30	< 2	5	47
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	8.5	< 1	1	25	1	157	< 1	< 4	875	3.1	5.2	1120
Total Nitrogen												
(lbs/day)												
Average Monthly											0.68	
Total Nitrogen (mg/L)												
Average Monthly											6.3	
Ammonia (lbs/day)												
Average Monthly	0.05	0.08	0.06	0.06	0.07	< 0.05	< 0.1	0.03	< 0.02	0.04	0.05	0.03
Ammonia (lbs/day)												
Daily Maximum	0.06	0.1	0.07	0.07	0.07	0.1	0.2	0.04	0.02	0.05	0.06	0.03
Ammonia (mg/L)												
Average Monthly	0.5	8.0	0.5	0.5	0.6	< 0.3	< 1.3	0.2	< 0.1	0.3	0.4	0.2
Ammonia (mg/L)												
Daily Maximum	0.6	1	0.5	0.6	0.73	0.4	2	0.33	0.176	0.42	0.5	0.228
Total Phosphorus												
(lbs/day)												
Average Monthly											0.32	
Total Phosphorus												
(mg/L)												
Average Monthly											2.99	

Compliance History, Cont'd

Effluent Violations for Outfall 001, from: November 1, 2018 To: October 31, 2019

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
рН	12/31/18	Min	5.35	S.U.	6.0	S.U.
рН	01/31/19	Min	5.51	S.U.	6.0	S.U.
TRC	09/30/19	Avg Mo	0.6	mg/L	0.5	mg/L
TRC	01/31/19	Avg Mo	0.6	mg/L	0.5	mg/L
TRC	02/28/19	IMAX	1.64	mg/L	1.6	mg/L
TRC	11/30/18	IMAX	0.6	mg/L	0.5	mg/L

	Compliance History, Cont'd							
Summary of Inspections:	The facility has been inspected approximately annually over the past permit term. The most recent inspection on June 26, 2019 by Stephen Puzio, WQS, identified effluent violations but no operational violations were noted at the time of inspection.							
Other Comments:	A query in WMS found the following open violation in eFACTS for New Albany Borough from the Safe Drinking Water Program.							

New Albany Borough Open Violations:

CLIENT	CLIENT	PF ID	FACILITY	PF KIND	INSP PROGRAM	PROGRAM SPECIFIC ID	VIOLATION ID	VIOLATION DATE	VIOLATION
35452	NEW ALBANY BORO BRADFORD CNTY	275369	NEW ALBANY WATER FUND	Community	Safe Drinking Water	2080010	865384	10/17/2019	FAILURE TO SUBMIT OR REVISE A COMPREHENSIVE MONITORING PLAN

NPDES Permit No. PA0114286

Existing Effluent Limitations and Monitoring Requirements

		Effluent Limitations							
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Monitoring Re Minimum (2)	Required	
Parameter	Average	Daily		Average	Daily	Instant.	Measurement	Sample	
	Monthly	Maximum	Minimum	Monthly	Maximum	Maximum	Frequency	Type	
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Metered	
			6.0						
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab	
			Report						
DO	XXX	XXX	Inst Min	XXX	XXX	XXX	1/day	Grab	
TRC	xxx	xxx	XXX	0.5	XXX	1.6	1/day	Grab	
							•	8-Hr	
CBOD5	8.3	13	XXX	25	40	50	2/month	Composite	
BOD5								8-Hr	
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	Composite	
TSS								8-Hr	
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	Composite	
T00	40	4.5	V/V/V	00	45	00	0/	8-Hr	
TSS	10	15	XXX	30	45	60	2/month	Composite	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	XXX	XXX	2000 Geo Mean	xxx	10000	2/month	Grab	
Fecal Coliform (No./100 ml)	^^^	^^^	^^^	200	^^^	10000	2/month	Grab	
May 1 - Sep 30	xxx	xxx	xxx	Geo Mean	xxx	1000	2/month	Grab	
may : Cop co	7001	7001	7001	Occ mean	7001	1000	2/111011111	8-Hr	
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/year	Composite	
Ammonia				110 111			,,	8-Hr	
Nov 1 - Apr 30	Report	Report	XXX	Report	Report	XXX	2/month	Composite	
Ammonia	·	•						8-Hr	
May 1 - Oct 31	4.5	6.7	XXX	13.5	20	27	2/month	Composite	
								8-Hr	
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	1/year	Composite	

Development of Effluent Limitations								
Outfall No.	001	Design Flow (MGD)	0.04					
Latitude	41° 36' 16.20"	Longitude	-76º 26' 26.70"					
Wastewater [Wastewater Description: Sewage Effluent							

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: The above limitations are applicable, are included in the existing permit, and will remain.

Water Quality-Based Limitations

CBOD5, NH3-N & DO

The WQM7.0 model allows the Department to evaluate point source discharges of dissolved oxygen (DO), carbonaceous BOD (CBOD $_5$), and ammonia-nitrogen (NH $_3$ -N) into free-flowing streams and rivers. To accomplish this, the model simulates two basic processes: the mixing and degradation of NH $_3$ -N in the stream and the mixing and consumption of DO in the stream due to the degradation of CBOD $_5$ and NH $_3$ -N. WQM7.0 modeling was performed at this time (see Attachment B) for the discharge to South Branch Towanda Creek and indicated that the existing limits for CBOD $_5$ and NH $_3$ -N are adequate to protect the receiving stream.

Total Residual Chlorine

The Department uses a modeling spreadsheet to determine necessary WQBELs for TRC based on chlorine toxicity and available instream dilution. The attached modeling results (see attachment C) show that the BAT limit of 0.5 mg/l is adequate to protect the receiving stream.

Toxics Management

No further "Reasonable Potential Analysis" was conducted for this minor sewage treatment facility with no significant industrial users to determine additional parameters as candidates for limitations or monitoring.

Chesapeake Bay/Nutrient Requirements

According to the Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, this facility is an existing Phase 5 Chesapeake Bay sewage discharger that is not expanding, and as such requires no nutrient loading limits. The monitoring for the past permit term found the average Total Nitrogen concentration and loading to be 14.6 mg/L and 1.8 pounds per day and the average Total Phosphorus concentration and loading to be 3.7 mg/L and 0.48 pounds per day. Therefore, because the level of these nutrients in the discharge have been characterized no additional monitoring for TN and TP will be required at this time.

Best Professional Judgment (BPJ) Limitations

Comments: No additional BPJ limitations are necessary beyond the technology and water quality-based limitations noted above.

Anti-Backsliding

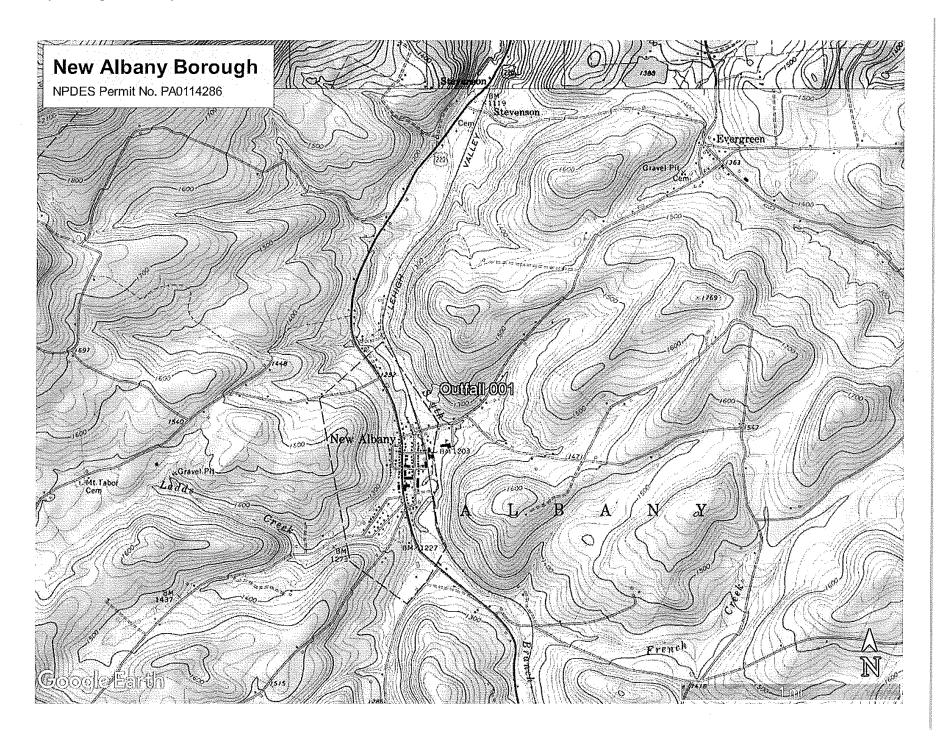
No limitations have been made less stringent consistent with the anti-degradation requirements of the Clean Water Act and 40 CFR 122.44(I).

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Effluent Limitations									
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required			
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type			
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Metered			
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab			
DO	XXX	XXX	Report Inst Min	XXX	XXX	XXX	1/day	Grab			
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab			
CBOD5	8.3	13	XXX	25	40	50	2/month	8-Hr Composite			
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	8-Hr Composite			
TSS Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	8-Hr Composite			
TSS	10	15	XXX	30	45	60	2/month	8-Hr Composite			
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab			
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab			
Ammonia Nov 1 - Apr 30	Report	Report	XXX	Report	Report	XXX	2/month	8-Hr Composite			
Ammonia May 1 - Oct 31	4.5	6.7	XXX	13.5	20	27	2/month	8-Hr Composite			


Compliance Sampling Location: Outfall 001

Other Comments: The above limitations and monitoring requirements are unchanged from the existing permit except for the removal of monitoring for total nitrogen and total phosphorus as mentioned above.

Tools and References Used to Develop Permit
WOM for Windows Model (see Attachment P)
WQM for Windows Model (see Attachment B)
TRC Model Spreadsheet (see Attachment C)
Temperature Model Spreadsheet (see Attachment)
Toxics Screening Analysis Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP: Establishing Effluent Limitations for Individual Sewage Permits, rev. 8/23/13
Other

Attachments:

- A. Discharge Location Map B. WQM7.0 Model
- C. TRC Model

Input Data WQM 7.0

													•	
	SWF Basi			Stre	eam Name		RMI	Eleva		Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	lrawal	Apply FC
	04C	30	251 SOUT	H BRANC	CH TOWAN	DA CREE	8.50	00 11	170.00	22.80	0.00000)	0.00	~
		-			St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip pH	Ter	<u>Strean</u> mp	n pH	
conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C	C)		
27-10 21-10 230-10	0.013	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	0.00 7.0	00	0.00	0.00	
					Di	scharge l	Data	TOTAL TOURS						
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	ed Desigr Disc Flow (mgd)	Res Fa	Dis erve Terr ctor (°C	ip	Pisc pH		
		New	Albany	PA	0114286	0.0400	0.000	0.000	00 (0.000 2	5.00	7.00		
					Pa	ırameter l	Data							
				Paramete	r Name	C	onc C	onc (tream Conc mg/L)	Fate Coef (1/days)				
•	_				M/s/=			<u> </u>			•	-		
			CBOD5			2	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				13.50	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name		RMI	Eleva (ft		Orainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawa (mgd)	Apply al FC
	04C	30	251 SOUT	H BRANC	CH TOWAN	DA CREE	7.78	80 11	40.00	25.00	0.00000	0.	00 🗹
	7,000				St	ream Dat	а			THE RESIDENCE OF THE PARTY OF T			
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>T</u> Temp	ributary pH	Tem	<u>Stream</u> ip pl	1
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))	
Q7-10 Q1-10	0.013	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.	00 7.0	0 (0.00 0	.00
Q30-10		0.00	0.00	0.000	0.000								
					Di	scharge l					***************************************		
			Name	Pei	rmit Number	Disc	Permitt Disc Flow (mgd)	Flow	Rese		р р	sc H	
•						0.000						7.00	
					Pa	arameter l	Data						
				Paramete	r Name				ream Conc	Fate Coef			
				· www.	, , , , , , , , , , , , , , , , , , , ,	(m	ıg/L) (r	mg/L) (r	ng/L)	(1/days)			
	-		CBOD5				25.00	2.00	0.00	1.50			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00			
												1	

25.00

0.00

0.00

0.70

NH3-N

WQM 7.0 Hydrodynamic Outputs

	<u>sw</u>	<u>'P Basin</u> 04C		<u>ım Code</u> 0251		sc		Stream ANCH T	<u>Name</u> OWANDA	CREEK		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	·	Depth	Width	W/D Ratio	Velocity	Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
8.500	0.30	0.00	0.30	.0619	0.00789	.465	12.48	26.84	0.06	0.713	20.86	7.00
Q1-10	0 Flow											
8.500	0.19	0.00	0.19	.0619	0.00789	NA	NA	NA	0.05	0.869	21.23	7.00
Q30-	10 Flow	,										
8.500	0.40	0.00	0.40	.0619	0.00789	NA	NA	NA	0.07	0.616	20.67	7.00

Permit No. PA0114286

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6 .	·	

WQM 7.0 Wasteload Allocations

		eam Code 30251			ream Name ICH TOWANE	A CREEK		
NH3-N	Acute Allocatio	ns			·			
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	n
8.5	00 New Albany	8.85	27	8.85	27	0	Ó	_
NH3-N	Chronic Allocat	ions		-				_
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
8.5	00 New Albany	1.83	13.5	1.83	13.5	0	0	_
Dissolv	ed Oxygen Allo	cations						_
RMI	Discharge Na	_	•	<u>NH3-N</u> Baseline Mu (mg/L) (m		ved Oxygen ne Multiple) (mg/L)	Critical	Percent Reductio

25

13.5

13.5

8.50 New Albany

WQM 7.0 D.O.Simulation

SWP Basin St	tream Code		·	Stream Name			
04C	30251	SOUTH BRANCH TOWANDA CREEK					
RMI	Total Discharge	Flow (mgd) Ana	lysis Temperature	e (°C) Analysis pH		
8.500	0.04	0		20.864	7.000		
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps		
12.482	0.46	5		26.841	0.062		
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	B	leach NH3-N (mg	/L) Reach Kn (1/days)		
5.97	0.89	6		2.33	0.748		
Reach DO (mg/L)	<u>Reach Kr (</u>			Kr Equation	Reach DO Goal (mg/		
7.337	14.13	31		Owens	6		
Reach Travel Time (days) 0.713	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)			
	0.071	5.59	2.21	7.69			
	0.143	5.23	2.10	7.86			
	0.214	4.89	1.99	7.97			
	0.285	4.58	1.88	8.04			
•	0.356	4.28	1.79	8.10			
	0.428	4.01	1.69	8.11			
	0.499	3.75	1.61	8.11			
	0.570	3.51	1.52	8.11			
	0.642	3.29	1.44	8.11			
	0.713	- 3.07	1.37	8.11			

WQM 7.0 Effluent Limits

	SWP Basin Stream C		<u>de</u> <u>Stream Name</u> SOUTH BRANCH TOWANDA CREEK					
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
8.500	New Albany	PA0114286	0.040	CBOD5	25			
				NH3-N	13.5	27		
				Dissolved Oxygen			3	

		TRC E	VALUATION		<u> </u>			
Client			Date					
0.297	= Q stream (cfs)		= CV Daily				
	= Q discharge (MGD)		= CV Hourly				
	= no. samples			= AFC_Partial				
	= Chlorine Den			= CFC_Partial				
		and of Discharge			Compliance Time (min)			
0.5	= BAT/BPJ Valı				Compliance Time (min)			
	= % Factor of S		0	=Decay Coeffic				
Source	Reference	AFC Calculations			CFC Calculations			
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 1.504			
PENTOXSD TRG	5.1a	LTAMULT afc =		5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRG	5.1b	LTA_afc=		5.1d	LTA_cfc = 0.874			
***************************************		WQBEL_afc=			WQBEL_cfc= 1.076			
Source			Effluent Limit Ca					
PENTOXSD TRG	5.1f		AML MULT =					
PENTOXSD TRG	5.1g		N LIMIT (mg/l) =		BAT/BPJ			
		INSTIMA	X LIMIT (mg/l) =	1.635				
WLA afc LTAMULT afc LTA_afc	+ Xd + (AFC_	tc)) + [(AFC_Yc*Qs* Yc*Qs*Xs/Qd)]*(1-F0 h^2+1))-2.326*LN(cvh LT_afc)S/100)	C_tc))				
WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	+ Xd + (CFC_ EXP((0.5*LN(cv wla_cfc*LTAMU	_ cvd^2/no_samples+1	0S/100) 2.326*LN(cvd^2/r)^0.5)-0.5*LN(cvd	no_samples+1)^				