

Application Type Renewal
Facility Type Municipal
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0114979

 APS ID
 1033830

 Authorization ID
 1345815

Applicant and Facility Information

Applicant Name	Knoxville Borough, Tioga County	Facility Name	Knoxville Borough STP
Applicant Address	PO Box 191	Facility Address	115 S East Street
	Knoxville, PA 16928-0191		Knoxville, PA 16928
Applicant Contact	Lyssa Smith, Treasurer	Facility Contact	Nathan Rundell, Operator
Applicant Phone	(814) 326-4126	Facility Phone	(570) 502-0845
Client ID	66901	Site ID	245551
Ch 94 Load Status	Existing Hydraulic Overload	Municipality	Knoxville Borough
Connection Status	No Exceptions Allowed	County	Tioga
Date Application Receiv	ved March 9, 2021	EPA Waived?	Yes
Date Application Accep	ted March 15, 2021	If No, Reason	
Purpose of Application	Renewal of a NPDES Permit for a	discharge of treated sev	vage

Summary of Review

The subject facility is a publicly owner treatment works (POTW) serving Knoxville Borough, Tioga County.

A map indicating the discharge location is attached.

Sludge use and disposal description and location(s): The facility's dried sludge is disposed at landfill. Per the application approximately 38 dry tons were disposed in the previous year.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
1		Keith C. Allison Keith C. Allison / Project Manager	May 16, 2021
1		Nicholas W. Hartranft Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	May 17, 2021

Discharge, Receiving	Waters and Water Supply Inform	mation	Discharge, Receiving Waters and Water Supply Information									
Outfall No. 001		Design Flow (MGD)	0.07									
Latitude 41° 57'	12.61"	Longitude	-77º 25' 48.30"									
Quad Name Knox	kville, PA	Quad Code										
Wastewater Descript	ion: Sewage Effluent											
Receiving Waters	Cowanesque River (WWF)	Stream Code	30995									
NHD Com ID	57350387	RMI	21.47									
Drainage Area	200.2 mi ²	Yield (cfs/mi ²)	0.0132									
			Gage 01518862,									
Qz 10 Flow (cfs)	2 64	$\Omega_{7.10}$ Basis	Lawrenceville (1985-2008)									
Elevation (ft)	1216		0.00278									
Watershed No	4-A	Chapter 93 Class										
Existing Use	N/A	Existing Use Qualifier	N/A									
Exceptions to Use	None	Exceptions to Criteria	None									
Assessment Status												
Cause(s) of Impairme												
Source(s) of Impairm												
TMDL Status		Name										
		Name										
Nearest Downstream	Public Water Supply Intake	Nelson Township Municipal A	uthority									
PWS Waters Co	owanesque River	Distance from Outfall (mi)	10.2									
		_ (,										

The above stream and drainage characteristics were determined for the previous review and remain adequate.

No downstream water supply is expected to be affected by the discharge at this time with the limitations and monitoring proposed.

The above-listed impairment to the Cowanesque River is attributed to siltation from Agriculture. The Knoxville discharge consistently meets its TSS (averaging 4.7 mg/L over the past two years per the application) and should not be contributing significantly to the impairment given its quality and size.

	Treatment Facility Summary								
Treatment Facility Na	me: Knoxville Borough STP								
WQM Permit No.	Issuance Date		Permit Covers:						
5992405	59924053/16/93Treatment plant and collection system								
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)					
Sewage	Secondary	Extended Aeration	Hypochlorite	0.07					
Hydraulic Capacity	Organic Capacity			Biosolids					
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal					
		Existing Hydraulic							
0.07	110	Overload	Aerobic Digestion	Landfill					

Changes Since Last Permit Issuance: None

Other Comments: The treatment facility, approved by WQM Permit No. 5992405, consists of influent grinder pump station, flow equalization, two aeration tanks, two secondary clarifiers, one tertiary clarifier, Ferric Chloride addition for P removal, chlorination, two chlorine contact tanks, four aerobic digesters, sludge thickener and drying beds.

Hauled in Wastes

Per the application the facility has not received any hauled in wastes over the past three years and the permittee does not anticipate receiving any over the next permit term.

Compliance History

DMR Data for Outfall 001 (from May 1, 2020 to April 30, 2021)

Parameter	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20
Flow (MGD)												
Average Monthly	0.0330	0.0367	0.0317	0.0384	0.0338	0.0289	0.0261	0.0246	0.0245	0.0265	0.0317	0.0620
Flow (MGD)												
Daily Maximum	0.0430	0.0480	0.0440	0.0514	0.0750	0.0380	0.0366	0.0369	0.0360	0.0370	0.0475	0.1204
pH (S.U.)												
Minimum	7.29	7.35	6.86	6.67	6.63	6.84	6.97	7.19	6.94	7.34	7.27	7.23
pH (S.U.)												
Maximum	7.78	7.77	7.57	7.38	7.17	7.31	7.50	7.84	7.99	7.89	7.99	7.76
DO (mg/L)												
Minimum	5.0	5.0	5.4	5.9	5.5	5.5	5.8	4.9	4.0	4.0	4.6	5.2
TRC (mg/L)												
Average Monthly	0.22	0.42	0.30	0.31	0.26	0.43	0.25	0.36	0.27	0.28	0.32	0.30
TRC (mg/L)												
Instantaneous												
Maximum	0.36	0.082	0.91	0.47	0.48	1.02	0.86	1.00	1.01	1.14	1.00	0.73
CBOD5 (lbs/day)												
Average Monthly	0.70	0.95	0.63	1.3	0.52	< 0.64	0.45	0.57	< 0.32	0.46	< 0.70	1.6
CBOD5 (lbs/day)												
Weekly Average	0.70	1.2	0.63	1.6	0.52	< 0.67	0.45	0.62	0.5	0.56	0.75	2
CBOD5 (mg/L)												
Average Monthly	2.4	2.8	< 2.3	3.3	2.1	< 2.2	2.2	2.1	2	2.2	< 2.2	2.5
CBOD5 (mg/L)												
Weekly Average	2.6	3.3	2.4	4.4	2.2	< 2.2	2.2	2.2	2.2	2.2	< 2.2	2.7
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	52	93	73	99	91	97	49	98	25	73	78	64
BOD5 (lbs/day)												
Raw Sewage Influent												
Daily Maximum	61	96	89	100	100	98	58	104	32	60	87	73
BOD5 (mg/L)												
Raw Sewage Influent	400	070	005	0.40		004		050	470		050	
Average Monthly	180	270	265	249	360	324	228	358	179	282	250	93
ISS (lbs/day)				4.0		1.0				1.0		0
Average Monthly	2.0	1.4	1.1	1.6	1	< 1.2	0.82	1.1	0.9	1.3	< 1.24	3
ISS (lbs/day)												
Raw Sewage Influent												
Average Monthly	71	70	61	88	89	80	44	94	22	25	51	61

NPDES Permit Fact Sheet Knoxville Borough STP

NPDES Permit No. PA0114979

TSS (lbs/day)												
Raw Sewage Influent												
Daily Maximum	95	79	67	117	127	86	57	99	30	42	55	74
TSS (lbs/day)												
Weekly Average	2.2	1.4	1.1	1.7	1.05	< 1.2	0.82	1.2	0.6	1.6	< 1.35	3.1
TSS (mg/L)												
Average Monthly	7.0	4.0	< 4.0	< 4.0	4	< 4.0	4.0	4	< 4	7	< 4	4.5
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	235	204	221	213	345	268	205	341	152	136	164	93
TSS (mg/L)												
Weekly Average	7.0	4.0	4.0	< 4.0	4	< 4.0	4.0	4	< 4	10	< 4	5
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	14	49	1.4	1	2419	1	16	49	< 1	1	< 1	1
Fecal Coliform												
(CFU/100 ml)												
Instantaneous			_									
Maximum	48	120	2	1	2419	1	275	2419	< 1	1	1	1
Total Nitrogen (mg/L)												
Daily Maximum					41.5							
Ammonia (mg/L)												
Average Monthly	17.7	6.1	2.6	1.4	0.33	0.085	0.12	0.42	0.29	1.5	0.31	0.20
Total Phosphorus												
(lbs/day)												
Average Monthly	0.124	0.17	0.12	0.19	0.15	0.15	0.39	0.17	0.065	0.15	0.23	0.20
Total Phosphorus												
(lbs/day)		o (=										
Weekly Average	0.24	0.17	0.12	0.19	0.20	0.16	0.66	0.25	0.1	0.16	0.26	0.22
Total Phosphorus												
(mg/L)		A 4 A	o 15	o 17						0.70		
Average Monthly	0.39	0.49	0.45	0.47	0.62	0.51	1.8	0.6	0.72	0.72	0.72	0.29
I otal Phosphorus												
(mg/L)	0.70	0.50	0.40	0.50	0.07	0.50	0.00			0.04	0.77	
Weekly Average	0.76	0.50	0.46	0.52	0.87	0.59	2.99	0.8	1.3	0.81	0.77	0.30

Compliance History, Cont'd

Effluent Violations for Outfall 001, from: May 1, 2020 To: April 30, 2021

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	12/31/20	Geo Mean	2419	CFU/100 ml	2000	CFU/100 ml
Fecal Coliform	12/31/20	Geo Mean	2419	CFU/100 ml	2000	CFU/100 ml
Fecal Coliform	09/30/20	IMAX	2419	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	09/30/20	IMAX	2419	CFU/100 ml	1000	CFU/100 ml

Compliance History, Cont'd								
Summary of Inspections:	The most recent inspection of the facility by the Department on February 10, 2021 identified NPDES effluent violations.							
Other Comments:	A query in WMS found an open violation No. 898382 dated 10/30/20 for Knoxville Borough for Failure of a Community Water System to Develop and/or Update an Operation and Maintenance Plan. The permittee received a January 8, 2021 NOV for the late submittal of this NPDES application.							

		Monitoring Po	quiromonte					
	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	Continuous	Metered
pH (S.U.)	ххх	xxx	6.0	xxx	9.0 Max	xxx	1/day	Grab
DO	ххх	xxx	Report	XXX	xxx	ххх	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	15	23	xxx	25	40	50	2/month	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	xxx	Report	xxx	xxx	2/month	8-Hr Composite
TSS	18	26	xxx	30	45	60	2/month	8-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	xxx	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	xxx	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	xxx	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Total Nitrogen	XXX	xxx	XXX	xxx	Report Daily Max	XXX	1/year	8-Hr Composite
Ammonia	XXX	XXX	XXX	Report	xxx	XXX	2/month	8-Hr Composite
Total Phosphorus	1.2	1.8	xxx	2.0	3.0	4	2/month	8-Hr Composite

Existing Effluent Limitations and Monitoring Requirements

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.07
Latitude	41º 57' 13.60	11	Longitude	-77º 25' 48.00"
Wastewater De	escription:	Sewage Effluent	_	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: The above limits are applicable and will remain in the permit. In addition to the Fecal Coliform limits above the permit will also include quarterly e. coli bacteria monitoring due to recent changes to 25 PA Code §93 and current Department policy.

Water Quality-Based Limitations

CBOD5, NH3-N, and DO

The WQM7 model allows the Department to evaluate point source discharges of dissolved oxygen (DO), carbonaceous BOD (CBOD₅), and ammonia-nitrogen (NH₃-N) into free-flowing streams and rivers. To accomplish this, the model simulates two basic processes: the mixing and degradation of NH₃-N in the stream and the mixing and consumption of DO in the stream due to the degradation of CBOD₅ and NH₃-N. The current model includes recent updates to the NH₃-N criteria in Chapter 93. WQM7.0 modeling was performed (see Attachment B) for the discharge to Cowanesque River and indicated that the existing secondary limit for CBOD₅ listed above with monitoring only for NH₃-N and DO is adequate.

Total Residual Chlorine

The BAT limit of 0.5 mg/L from 25 PA Code 92a.48 is included in the existing permit. The Department uses a modeling spreadsheet to analyze the toxicity of a discharge's TRC in a receiving stream, accounting for available dilution. The attached results of the TRC spreadsheet from the previous review (see Attachment C) show that the technology-based limit of 0.5 mg/l is adequate to protect the receiving stream.

Chesapeake Bay/ Cowanesque Reservoir Nutrient Requirements

Due to the discharge to the Cowanesque Reservoir, the discharge has an existing Total Phosphorus limit of 2.0 mg/L with twice per month monitoring which will remain.

According to the Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, this facility is an existing Phase 5 Chesapeake Bay sewage discharger that is not expanding, and as such requires no nutrient loading limits but does require Total Nitrogen and Total Phosphorus monitoring. Annual total nitrogen monitoring was included in the existing permit in addition to the existing Total Phosphorus requirements.

Per a review of eDMR data, the average Total Nitrogen over the past two years was 32.75 mg/L and the average Total Phosphorus was 0.63 mg/L. Because the average total nitrogen load from the facility has been characterized no further monitoring for TN will be required at this time. However, TP monitoring must continue due to the TP effluent limitation.

Toxics Management

No further "Reasonable Potential Analysis" was performed for this minor municipal sewage facility with no industrial users to determine additional toxic parameters as candidates for limitations or monitoring.

Best Professional Judgment (BPJ) Limitations

Comments: No additional BPJ limits are necessary beyond the technology and water quality-based limits noted above.

Anti-Backsliding

No limitations have been made less stringent consistent with the anti-degradation requirements of the Clean Water Act and 40 CFR 122.44(I).

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

			Effluent L	imitations			Monitoring Requirements	
Baramatar	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Falameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Metered
					9.0			
pH (S.U.)	XXX	XXX	6.0	XXX	Max	XXX	1/day	Grab
50		2000		2000		2004		
DO	XXX	XXX	Report	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	16	1/day	Grab
				0.0		1.0	i/day	8-Hr
CBOD5	15	23	XXX	25	40	50	2/month	Composite
BOD5		Report						8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/month	Composite
-	•	-						8-Hr
TSS	18	26	XXX	30	45	60	2/month	Composite
TSS		Report						8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/month	Composite
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
								8-Hr
Ammonia	XXX	XXX	XXX	Report	XXX	XXX	2/month	Composite
								8-Hr
Total Phosphorus	1.2	1.8	XXX	2.0	3.0	4	2/month	Composite
					Report			
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	grab

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Compliance Sampling Location: Outfall 001

Other Comments: The above limitations and monitoring are unchanged from the existing permit except for the addition of e. coli monitoring and the removal of annual TN monitoring as mentioned above.

	Tools and References Used to Develop Permit
	WOM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment D)
	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97
	Policy for Permitting Surface Water Diversions 362-2000-003 3/08
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96
	Technology-Based Control Requirements for Water Treatment Plant Wastes 362-2183-003 10/07
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\square	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
\square	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\square	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Establishing Effluent Limitations for Individual Sewage Permits, rev. 8/23/13
	Other:
Attachmen	ts:

A. Discharge Location MapB. WQM7.0 ModelC. TRC Model

	SWP Basir	Strea Coo	im le	Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgd)	wal)	Apply FC
	04A	309	995 COW/		ERIVER		21.4	70	1216.00	200.20	0.00000)	0.00	~
					St	ream Dat	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> 1p pH	Ter	<u>Stream</u> np	рH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C	C)		
Q7-10 Q1-10 Q30-10	0.013	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	0.00 7.0	00	0.00	0.00	
					Di	ischarge	Data							
			Name	Per	rmit Numbe	Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	ed Desi Dis Flo) (mg	ign sc Res ow Fa gd)	Dis serve Tem ictor (°C	c D ۱p))isc pH		
		Knox	ville Boro	PA	0114979	0.070	0 0.000	0.0 0.0	0000	0.000 2	5.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name	Di C	isc T onc C	Trib Conc	Stream Conc	Fate Coef				
				aramete	i Name	(m	ng/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

SWP Basir	Strea Coo	im le	Stre	am Name		RMI	I	Elevation (ft)	Drain: Are (sq i	age :a mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
04A	309	995 COWA	NESQUE	RIVER		20.38	30	1200.00) 2	08.00	0.00000	0.00	
				S	tream Da	ta							
LFY	Trib Flow	Stream Flow	Rch Trav	Rch Velocity	WD Ratio	Rch Width	Rc Dep	h oth Te	<u>Tribut</u> mp	ary pH	Tem	<u>Stream</u> ip pH	
(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(fl) (°	C)		(°C)	
0.013	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00		0.00	20.00	7.0	0 0	0.00 0.0	D
	SWP Basir 04A LFY (cfsm) 0.013	SWP Basin Streat Cod 04A 309 LFY Trib Flow (cfsm) (cfs) 0.013 0.00 0.00 0.00	SWP Basin Stream Code 04A 30995 COW/ LFY Trib Flow Stream Flow (cfsm) (cfs) (cfs) 0.013 0.00 0.00 0.00 0.00 0.00	SWP Basin Stream Code Stream 04A 30995 COWANESQUE LFY Trib Flow Flow Flow rrav Time (cfsm) (cfs) (cfs) 0.013 0.00 0.00 0.000 0.00 0.00 0.000 0.000	SWP Basin Stream Code Stream Name 04A 30995 COWANESQUE RIVER 04A 30995 COWANESQUE RIVER Stream Rch Flow Rch Trav Trav Time (days) Rch (fps) 0.013 0.00 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000	SWP Basin Stream Code Stream Name 04A 30995 COWANESQUE RIVER LFY Trib Flow Stream Rch Flow Rch Trav Time (days) Rch Velocity (fps) WD Ratio 0.013 0.00 0.00 0.000 0.000 0.000 0.00 0.00 0.000 0.000 0.000 0.00	SWP Basin Stream Code Stream Name RMI 04A 30995 COWANESQUE RIVER 20.38 04A 30995 COWANESQUE RIVER 20.38 Iteram Data LFY Trib Flow Stream Flow Rch Trav Time (cfsm) Rch Velocity (fps) WD Ratio Rch Width 0.013 0.00 0.00 0.000 0.000 0.00 0.00 0.013 0.00 0.00 0.000 0.000 0.000 0.00 0.00	SWP Basin Stream Code Stream Name RMI R 04A 30995 COWANESQUE RIVER 20.380 Stream Name 04A 30995 COWANESQUE RIVER 20.380 Stream Data LFY Trib Stream Rch Rch WD Rch Rc Flow Flow Trav Velocity Ratio Width Dep (cfsm) (cfs) (cfs) (days) (fps) (ft) (ft) 0.013 0.00 0.00 0.000 0.000 0.00	SWP Basin Stream Code Stream Name RMI Elevation (ft) 04A 30995 COWANESQUE RIVER 20.380 1200.00 04A 30995 COWANESQUE RIVER 20.380 1200.00 Stream Data LFY Trib Flow Stream Flow Rch Trav Time (cfsm) Rch Velocity Time (cfs) Rch Width Depth Depth Te 0.013 0.00 0.000 0.000 0.000 0.000 0.00 0.00 0.013 0.00 0.000 0.000 0.000 0.000 0.000 0.00	SWP Basin Stream Code Stream Name RMI Elevation (ft) Drain: Are (ft) 04A 30995 COWANESQUE RIVER 20.380 1200.00 20 Stream Data LFY Trib Flow Stream Flow Rch Trav Time (days) Rch Velocity (fps) WD Ratio Rch Width Rch Depth Tribut Temp 0.013 0.00 0.00 0.000 0.000 0.00 0.00 20.00 0.013 0.00 0.00 0.000 0.000 0.000 0.000 20.00	SWP Basin Stream Code Stream Name RMI Elevation Area (sq mi) Drainage Area (sq mi) 04A 30995 COWANESQUE RIVER 20.380 1200.00 208.00 Stream Data LFY Trib Stream Flow Flow Rch Trav Trav Velocity Matio WD Ratio Rch Depth Temp pH Temp pH (cfsm) (cfs) (cfs) (days) (fps) (ft) (°C) 0.013 0.00 0.00 0.000 0.00 0.00 0.00 20.00 7.0 0.013 0.00 0.00 0.000 0.000 0.00 0.00 7.0	SWP Basin Stream Code Stream Name RMI Elevation (ft) Drainage Area (ft) Slope Area (ft) 04A 30995 COWANESQUE RIVER 20.380 1200.00 208.00 0.00000 Stream Data LFY Trib Flow Stream Row Rch Trav Time (cfsm) Rch Velocity Time (days) Rch Ratio Rch Width Rch Depth Tributary Temp Temp 0.013 0.00 0.000 0.000 0.00 0.00 0.00 0.00 7.00 0 0.013 0.00 0.000	SWP Basin Stream Code Stream Name RMI Elevation (ft) Drainage Area (sq mi) Slope (ft/ft) PWS Withdrawal (mgd) 04A 30995 COWANESQUE RIVER 20.380 1200.00 208.00 0.0000 0.00 Stream Data LFY Trib Flow Rch Flow Rch Trav Time (days) Rch Velocity (fps) WD Ratio Rch Width Depth Depth Tributary Temp Stream Temp PH Temp Stream PH 0.013 0.00 0.00 0.000 0.00

Input Data WQM 7.0

	Dis	scharge Da	ta					
Name	Permit Number	Existing I Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Rese Fac	rve To tor ()isc emp °C)	Disc pH
		0.0000	0.0000	0.000	0 0	.000	25.00	7.00
	Pa	rameter Da	ta					
	Parameter Name	Disc Con	c Cor	o Str no C	eam onc	Fate Coef		
	arameter Name	(mg/	L) (mg/	′L) (n	ng/L)	(1/days)		
CBOD5		25	.00 2	2.00	0.00	1.50		
Dissolved	Oxygen	3	.00 8	3.24	0.00	0.00		
NH3-N		25	.00 0	00.0	0.00	0.70		

WQM 7.0 Hydrodynamic Outputs

	SWP Basin Stream Code					Stream Name						
		04A	3	0995		COWANESQUE RIVER						
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10 Flow												
21.470	2.60	0.00	2.60	.1083	0.00278	.708	35.14	49.65	0.11	0.611	20.20	7.00
Q1-1	0 Flow											
21.470	1.67	0.00	1.67	.1083	0.00278	NA	NA	NA	0.09	0.775	20.31	7.00
Q30-	10 Flow											
21.470	3.54	0.00	3.54	.1083	0.00278	NA	NA	NA	0.13	0.517	20.15	7.00

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0114979

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

	SWP Basin Str	eam Code		St	ream Name		
	04A	30995		COWA	NESQUE RIV	ER	
NH3-N	Acute Allocatio	ns					
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
21.4	70 Knoxville Boro	16.34	50	16.34	50	0	0
NH3-N	Chronic Alloca	tions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
	70 Knoxville Boro	1.87	25	1.87	25	0	0

		CBC	<u>DD5</u>	NH	<u>3-N</u>	Dissolve	d Oxygen	Critical	Porcont
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
21.47	Knoxville Boro	25	25	25	25	3	3	0	0

<u>SWP Basin</u> St 04A	tream Code 30995		CO	Stream Name WANESQUE RI	VER	
<u>RMI</u> 21.470 Reach Width (ft)	<u>Total Discharge</u> 0.070 Reach De	Flow (mqd) oth (ft)) <u>Anal</u>	<u>ysis Temperatur</u> 20.200 Reach WDRati	r <u>e (°C)</u>	<u>Analysis pH</u> 7.000 Reach Velocity (fps)
35.136 <u>Reach CBOD5 (mg/L)</u> 2.92	0.70 Reach Kc (3 1/days) 5	<u>R</u>	49.646 each NH3-N (mo	<u>-</u> g/L)	0.109 <u>Reach Kn (1/days)</u> 0.711
2.92 <u>Reach DO (mg/L)</u> 8.034	<u>Reach Kr (</u> 2.89	, <u>1/days)</u> 3		Kr Equation Tsivoglou		Reach DO Goal (mq/L) 5
Reach Travel Time (days) 0.611	TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)		
	0.061 0.122	2.85 2.79	0.96 0.92	7.94 7.87		
	0.183	2.72 2.66	0.88 0.84	7.83 7.79		
	0.306 0.367 0.428	2.60 2.54 2.48	0.80 0.77 0.74	7.78 7.77 7.77		
	0.489 0.550 0.611	2.43 2.37 2.32	0.71 0.68 0.65	7.78 7.80 7.82		

WQM 7.0 D.O.Simulation

WQM 7.0 Effluent Limits

	<u>SWP Basin</u> <u>Stream Code</u> 04A 30995			Stream Name COWANESQUE RIVER						
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)			
21.470	Knoxville Bor	ro PA0114979	0.070	CBOD5	25					
				NH3-N	25	50				
				Dissolved Oxygen			3			

TRC EVALUATION											
Client Date											
2.64	= Q stream (cfs	a)	0.5	= CV Daily							
0.07	= Q discharge (MGD)	0.5	= CV Hourly							
30	= no. samples		0.333	= AFC_Partial	Mix Factor						
0.3	= Chlorine Dem	and of Stream	1	= CFC_Partial	Mix Factor						
0	= Chlorine Dem	and of Discharge	15	= AFC_Criteria	Compliance Time (min)						
0.5	= BAT/BPJ Valu	10	720	= CFC_Criteria	Compliance Time (min)						
	= % Factor of a	Safety (FOS)		=Decay Coemic	cient (K)						
Source	Reference	AFC Calculations		Reference	CFC Calculations						
IRC	1.3.2.111	· WLA atc =	2.609	1.3.2.11	WLA ctc = 7.593						
PENIOXSD IKG	5.18		0.373	5.10							
PENIONSDIKG	0.10		0.972	5.10	$LIA_CIC = 4.414$						
Source	LJ		Effluent Limit Co	loulations	WQDLL_00-0.400						
DENTOXOD TRG	5 1f			1 021							
PENTOXSD TRG	5.n		$M_{\rm MIT}(ma/l) =$	0.500	RAT/RD						
	J. 19	INST MA	X LIMIT (mg/l) =	1.635	BAT/BF 3						
WLA afc	(.019/e(-k*AFC_ + Xd + (AFC_'		.019/Qd*e(-k*AF ⊃S/100)	C_tc))							
LTAMULT afc LTA_afc	EXP((0.5*LN(cvł wla_afc*LTAMU	1^2+1))-2.326*LN(cvh LT_afc	ı^2+1)^0.5)								
WLA_cfc	(.011/e(-k*CFC_ + Xd + (CFC_`	tc) + [(CFC_Yc*Qs*. Yc*Qs*Xs/Qd)]*(1-F(011/Qd*e(-k*CFC)S/100)	C_tc))							
LTAMULT_cfc LTA_cfc	EXP((0.5*LN(cvo wla_cfc*LTAMU	J^2/no_samples+1))-2 LT_cfc	2.326*LN(cvd^2/n	10_samples+1)^(0.5)						
AML MULT AVG MON LIMIT INST MAX LIMIT	EXP(2.326*LN((MIN(BAT_BPJ,N 1.5*((av_mon_l	cvd^2/no_samples+1j /IN(LTA_afc,LTA_cfc imit/AML_MULT)/LT)^0.5)-0.5*LN(cvd :)*AML_MULT) AMULT_afc)	J^2/no_samples+	+1))						