

Application Type Renewal Facility Type Municipal Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0115088
APS ID	1023945
Authorization ID	1328225

Applicant and Facility Information

Applicant Name	Bentor Sewer	n Borough Municipal Water & Authority	Facility Name	Benton Municipal Water & Sewer Authority Sewer System
Applicant Address	PO Bo	x 516	Facility Address	PA 239
	Benton	n, PA 17814-0516 d Clocker	_	Benton, PA 17814
Applicant Contact	Richar	d.clocker@yahoo.com	Facility Contact	Richard Clocker
Applicant Phone	(570) 9	25-6341	Facility Phone	(570) 925-6341
Client ID	66431		Site ID	462771
Ch 94 Load Status	Not Ov	erloaded	Municipality	Benton Borough
Connection Status	No Lim	itations	County	Columbia
Date Application Rece	eived	September 22, 2020	EPA Waived?	Yes
Date Application Acce	epted	October 5, 2020	If No, Reason	
Purpose of Applicatior	n	Application for a renewal of an NP	DES permit for discharg	ge of treated Sewage.

Summary of Review

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
x		Jonathan P. Peterman	
Л		Jonathan P. Peterman / Project Manager	March 10, 2021
x		Nickolas W. Hartranft	
Λ		Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	March 11, 2021

Discharge, Receivir	ng Water	s and Water Supply Infor	mation	
				0.420
				0.132
Latitude 41°	11' 28.72		Longitude	-76º 23' 11.07"
Quad Name B	enton		Quad Code	0934
Wastewater Desc	ription:	Sewage Effluent		
Receiving Waters	Fishin	g Creek (CWF)	Stream Code	27623
NHD Com ID	65636	313	RMI	22.38
Drainage Area	72.3		Yield (cfs/mi ²)	0.06
Q ₇₋₁₀ Flow (cfs)	4.43		Q ₇₋₁₀ Basis	Stream Gage No. 01539000
Elevation (ft)	748		Slope (ft/ft)	0.003
Watershed No.	5-C		Chapter 93 Class.	CWF
Existing Use	CWF		Existing Use Qualifier	N/A
Exceptions to Use	None		Exceptions to Criteria	None
Assessment Statu	IS	Attaining Use(s)		
Cause(s) of Impai	rment	N/A		
Source(s) of Impa	irment	N/A		
TMDL Status		N/A	Name N/A	
Nearest Downstre	am Publi	c Water Supply Intake	United Water PA Bloomsburg	
PWS Waters	Fishing (Creek	Flow at Intake (cfs)	16.8
PWS RMI	2.68		Distance from Outfall (mi)	19.7

Changes Since Last Permit Issuance: A Q₇₋₁₀ analysis was conducted using downstream gage (01539000) to approximate the Q₇₋₁₀ stream flow at the discharge point. The updated Q₇₋₁₀ data was obtained from the updated stream gage information obtained from *Stuckey, M.H., and Roland, M.A., 2011, Selected Streamflow Statistics for Streamgage Locations In and Near Pennsylvania.* The Q₇₋₁₀ calculations, which are attached in Appendix A, indicate that the Q₇₋₁₀ is 4.43.

Other Comments: None.

Treatment Facility Summary

Treatment Facility Name: Benton Municipal Water & Sewer Authority Sewer System **Tributary Sewer System Information:** The facility receives flows from Benton Borough (90%) and Benton Township (10%).

WQM Permit No.	Issuance Date	Notes:
1973401	6/4/1973	Initial construction of original plant and collection system.
1992410	11/23/1993	Initial construction of new plant and pump stations.
1992410-A1	2/25/2003	Removal of basket strainer and installation of comminutor.
1992410-A2	9/5/2008	Drying bed synthetic media and drain system and polymer feed system.

Waste Type	Degree of Treatment	Process Type	Disinfection	Design Flow (MGD)
Sewage	Secondary	Extended Aeration	Gas Chlorine	0.132
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(Ibs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.132	275	Not Overloaded	Aerobic Digestion	Other WWTP

Treatment System Components for Outfall 001:

- One (1) Influent pump station.
- One (1) Comminutor.
- One (1) Manual bar screen.
- One (1) Equalization tank.
- Two (2) Aeration tanks.
- Two (2) Clarifiers.
- One (1) Gas chlorination system.
- One (1) Chlorine contact tank.
- One (1) Open channel weir flow meter.
- One (1) Outfall 001 to Fishing Creek.
- Two (2) Sludge Digesters
- Four (4) Drying beds

Changes Since Last Permit Issuance: None. Other Comments: None.

TMDL Impairment

The Department's Geographical Information System indicates that there are no associated TMDLs for this segment of Fishing Creek. No further TMDL analysis is required.

Anti-Backsliding

In accordance with 40 CFR 122.44(I)(1) and (2), this permit does not contain effluent limitations, standards, or conditions that are less stringent than the previous permit.

Chesapeake Bay Requirements

Since this facility's annual average design flow is 0.132 MGD, the permittee will be required to monitor and report TN and TP throughout the permit term at a frequency no less than annually in accordance with the Phase II WIP Chesapeake Bay Strategy for Phase V facilities (0.002 MGD to 0.2 MGD) unless 1) the facility has already conducted at least two years of nutrient monitoring and 2) a summary of the monitoring results are included in the next permit's fact sheet. The summarized results for this monitoring are contained below and the full data set is contained on an attached sheet. Since the permittee conducted this monitoring in the previous permit term and the data is summarized in the fact sheet below, the conditions have been met and Chesapeake Bay monitoring will not be required.

Existing Effluent Limitations and Monitoring Requirements

Existing Limits – Outfall 001

		Effluent Limitations					Monitoring Re	quirements
Parameter	Mass (lbs/d	Units lay) ⁽¹⁾		Concentrations (mg/L)				Required
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
		Report Daily						
Flow (MGD)	Report	Max	XXX	XXX	XXX	XXX	Continuous	Metered
pH (S.U.)	xxx	ХХХ	6.0	xxx	9.0 Max	xxx	1/day	Grab
Dissolved Oxygen	XXX	XXX	Report	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	xxx	0.5	XXX	1.6	1/day	Grab
Carbonaceous								
Biochemical								0.11
(CBOD5)	28	44	xxx	25.0	40.0	50	1/week	8-Hr Composite
Oxygen Demand (CBOD5)	28	44	XXX	25.0	40.0	50	1/week	8-Hr Composite

NPDES Permit Fact Sheet Benton Municipal Water & Sewer Authority Sewer System

		Effluent Limitations				Monitoring Re	quirements	
	Mass	Units						
Parameter	(lbs/d	lay) ⁽¹⁾		Concentrations (mg/L)			Minimum ⁽²⁾	Required
	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
Biochemical								
Oxygen Demand								
(BOD5)								
Raw Sewage								8-Hr
Influent	Report	Report	XXX	Report	XXX	XXX	1/week	Composite
Total Suspended								
Solids								
Raw Sewage								8-Hr
Influent	Report	Report	XXX	Report	XXX	XXX	1/week	Composite
Total Suspended								8-Hr
Solids	33	50	XXX	30.0	45.0	60	1/week	Composite
Fecal Coliform				2000				
(No./100 ml)				Geo				
Nov 1 - Apr 30	XXX	XXX	XXX	Mean	XXX	10000	1/week	Grab
Fecal Coliform				200				
(No./100 ml)				Geo				
May 1 - Oct 31	XXX	XXX	XXX	Mean	XXX	1000	1/week	Grab
	Report	Report		Report				
	Annl	Total		Annl				8-Hr
Total Nitrogen	Avg	Annual	XXX	Avg	XXX	XXX	1/year	Composite
Ammonia-								8-Hr
Nitrogen	Report	Report	XXX	Report	XXX	XXX	2/month	Composite
	Report	Report		Report				
	Annl	Total		Annl				8-Hr
Total Phosphorus	Avg	Annual	XXX	Avg	XXX	XXX	1/year	Composite

*The existing effluent limits for Outfall 001 were based on a design flow of 0.132 MGD.

Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	0.132
Latitude	41º 11' 29.10"	Longitude	-76º 23' 11.70"
Wastewater De	escription: Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)

(10/1 – 4/30)				
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

To establish whether or not water-quality based effluent limitations (WQBELs) are required, the Department models instream conditions. In order to determine limitations for CBOD5, ammonia-N and dissolved oxygen, the Department utilizes the WQM 7.0 v1.0b model and in order to determine limitations for toxics, the Department utilizes the Toxic Screening analysis spreadsheet.

WQM 7.0 for Windows, Version 1.0b, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen

The model was run using the latest information on Q7-10 stream flow, background water quality, average annual design flow, and other discharge characteristics. The existing technology-based effluent limits for CBOD₅ (25 mg/l) and NH3-N (25 mg/l) were used as inputs for the modeling. The DO minimum daily average criterion from §93.7 (5.0 mg/L for CWF) was used for the in-stream objective for the model. The summary of the output is as follows:

Demonster	Effluent Limit				
Parameter	30 Day Average	Maximum	Minimum		
CBOD5	25	N/A	N/A		
Ammonia-N	25	50	N/A		
Dissolved Oxygen	N/A	N/A	3		

The model indicates that the effluent limits for ammonia-nitrogen and CBOD5 as shown above are still protective of water quality. The model does not recommend water-quality based effluent limitations with regards to dissolved oxygen. Refer to the Appendix for the WQM 7.0 inputs and results. Comments: None.

Best Professional Judgment (BPJ) Limitations

See Dissolved Oxygen and Ammonia-nitrogen sections below. Comments: None.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst the abovementioned technology, water quality, and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or BPJ.

Proposed Limits - Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass (Ibs/d	Units lay) ⁽¹⁾		Concentrat	ions (mg/L	.)	Minimum ⁽²⁾	Required
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
		Report						
		Daily						
Flow (MGD)	Report	Max	XXX	XXX	XXX	XXX	Continuous	Metered
					9.0			
pH (S.U.)	XXX	XXX	6.0	XXX	Max	XXX	1/day	Grab
Dissolved Oxygen	xxx	xxx	Report	xxx	xxx	xxx	1/day	Grab
Total Residual								
Chlorine (TRC) XXX X		XXX	XXX	0.5	XXX	1.6	1/day	Grab

NPDES Permit Fact Sheet Benton Municipal Water & Sewer Authority Sewer System

			Effluent L	imitations.			Monitoring Re	quirements
Parameter	Mass (lbs/d	Units lay) ⁽¹⁾		Concentrat	tions (mg/L	.)	Minimum ⁽²⁾	Required
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Carbonaceous Biochemical		U						
(CBOD5)	28	44	xxx	25.0	40.0	50	1/week	8-Hr Composite
Biochemical Oxygen Demand (BOD5)								
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Total Suspended Solids Raw Sewage								8-Hr
Influent	Report	Report	XXX	Report	XXX	XXX	1/week	Composite
Total Suspended Solids	33	50	xxx	30.0	45.0	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Nov 1 - Apr 30	xxx	xxx	xxx	2000 Geo Mean	xxx	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Oct 31	xxx	xxx	xxx	200 Geo Mean	xxx	1000	1/week	Grab
Ammonia- Nitrogen	Report	Report	xxx	Report	xxx	xxx	2/month	8-Hr Composite

*The proposed effluent limits for Outfall 001 were based on a design flow of 0.132 MGD.

Effluent Limit Determination for Outfall 001

General Information

The associated mass-based limits (lbs/day) for all parameters were based on the formula: design flow (average annual) (MGD) x concentration limit (mg/L) at design flow x conversion factor (8.34). All effluent limits were then rounded down in accordance with the rounding rules established in the *Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001)*, Chapter 5 - Specifying Effluent Limitations in NPDES Permits. The existing monitoring frequencies and sample types for these parameters generally correspond with the *Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001)*, Chapter 5 - Specifying Effluent Limitations in NPDES Permits. The existing monitoring frequencies and sample types for these parameters generally correspond with the *Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001)*, Table 6-3 and will remain.

<u>Flow</u>

Reporting of the daily maximum flow is consistent with monitoring requirements for other treatment plants and will remain.

Carbonaceous Biochemical Oxygen Demand (CBOD₅)

The results of the WQM 7.0 model show that the previously applied secondary treatment standards (25 PA Code 92a.47 (a) (1&2)) for CBOD₅ are protective of water quality and will remain.

Total Suspended Solids (TSS)

The previously applied technology based secondary treatment standards (25 PA Code §92a.47 (a) (1&2)) for TSS will remain as well.

pН

CFR Title 40 §133.102(c) and 25 PA Code §95.2(1) provide the basis of effluent limitations for pH.

Total Residual Chlorine (TRC)

In accordance with 25 Pa. Code § 92a.48(b)(1), a site-specific BAT value of 0.5 mg/l (which is also the existing effluent limit) was used as the input in the TRC model evaluation. The attached TRC model indicates that the existing BAT effluent limits of 0.5 mg/L (Average Monthly) and 1.6 mg/L (Instantaneous Maximum) are protective of water quality.

Fecal Coliforms

The existing fecal coliform limits with I-max limits were previously updated from the previous Chapter 92 code to correspond with what is specified in the updated 25 PA Code § 92a.47 (a)(4)&(5). The existing effluent limits will remain.

Ammonia-Nitrogen (NH3-N)

Based on BPJ, monitoring for NH3-N will remain with a monitoring frequency of 2 month.

Dissolved Oxygen (DO)

25 PA Code §93.7 provides specific water quality criteria for DO and monitoring for this parameter will ensure that the facility is not creating or contributing to an in-stream excursion below these water quality standards

Influent BOD₅ and TSS

The Department requires the reporting of raw sewage influent monitoring for BOD₅ and TSS in all POTW permits. This provides the Department with the ability to monitor the percent removal of each parameter as stipulated in section 2 of the Part A conditions and maintain records of the BOD₅ loading as required by 25 Pa. Code Chapter 94. The monitoring frequencies and sample types are identical to the effluent sampling.

Compliance History

<u>Summary of Inspections</u> -The most recent Clean Water Program onsite inspections for this facility were a Compliance Evaluation Inspection on 12/18/19. No issues were noted in the inspection.

<u>WMS Query Summary</u> - A WMS Query was run at *Reports* - *Violations & Enforcements* – *Open Violations for Client Report* to determine whether there are any unresolved violations associated with the client that will affect issuance of the permit (per CSL Section 609). This query revealed the following open violation. The NCRO Safe Drinking Water program will be notified of this open violation.

CLIEN T ID ‡	CLIENT ‡	FACILITY	INSP PROGRA M	PROGRA M SPECIFIC ID	INSP ID	VIOLATIO N ID	VIOLATION DATE	VIOLATIO N CODE	VIOLATION	PF INSPECTO R ‡	INSP REGIO N
6643 1	BENTON BORO MUNI WATER & SEW AUTH COLUMBI A CNTY	BENTON MUNICIPA L WATER AUTH	Safe Drinking Water	419001 4	304787 2	887318	06/25/202 0	C3F	FAILURE TO TEST ALARM AND SHUTDOWN CAPABILITIE S OR RESPOND TO ALARM AND SHUTDOWN EQUIPMENT FAILURES	MARTIN, RICHAR D	NCR O

<u>Summary eDMR Data</u> -The facility has generally been in compliance with the effluent limits. No violations are noted below.

Compliance History

DMR Data for Outfall 001 (from December 1, 2019 to November 30, 2020)

Parameter	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20	DEC-19
Flow (MGD)												
Average Monthly	0.063	0.056	0.056	0.054	0.052	0.054	0.077	0.08	0.088	0.093	0.086	0.076
Flow (MGD)												
Daily Maximum	0.085	0.077	0.064	0.066	0.071	0.073	0.193	0.170	0.112	0.156	0.143	0.119
pH (S.U.)												
Minimum	6.8	6.8	6.8	6.7	6.7	6.7	6.6	6.8	6.8	7.0	7.1	7.1
pH (S.U.)												
Maximum	7.3	7.3	7.3	7.2	7.1	7.3	7.2	7.1	7.3	7.6	7.6	7.8
DO (mg/L)												
Minimum	3.2	3.1	3.1	2.8	2.6	2.9	3.4	3.7	3.0	3.0	3.2	2.8
TRC (mg/L)												
Average Monthly	0.32	0.25	0.32	0.31	0.33	0.28	0.3	0.28	0.29	0.32	0.29	0.24
TRC (mg/L)												
Instantaneous												
Maximum	0.77	0.82	1.17	0.67	1.2	0.76	0.65	0.76	0.64	1.1	0.89	0.60
CBOD5 (lbs/day)												
Average Monthly	7	6	6	8	7	5	6	9	8	5	8	9
CBOD5 (lbs/day)		_									10	
Weekly Average	8	1	8	11	8	6	9	14	15	6	12	15
CBOD5 (mg/L)	40.0	40.0	44.0	47.0	15.0	40.0		40.0	40.0	7.0	44.0	45.0
Average Monthly	12.0	13.0	11.0	17.0	15.0	12.0	9.0	12.0	10.0	7.0	11.0	15.0
	11.0	110	10.0	25.0	10.0	110	10.0	10.0	10.0	0.0	10.0	27.0
	14.0	14.0	18.0	25.0	19.0	14.0	10.0	16.0	16.0	9.0	18.0	27.0
BOD5 (IDS/day)												
kaw Sewage Innueni												
 Soli/> Average Monthly	101	110	124	106	107	122	02	01	76	121	100	107
BOD5 (lbs/day)	121	140	134	100	127	155	92	01	70	131	109	127
BODS (IDS/Udy) Raw Sewage Influent												
<pre>chr/> Weekly Average</pre>	182	266	153	135	174	155	126	130	114	165	158	159
BOD5 (mg/L)	102	200	100	100	174	100	120	100	117	105	100	100
Raw Sewage Influent												
<pre>chr/> Average</pre>												
Monthly	215.0	321	266	231	281	307	167	118.3	104.5	189	157.2	208.7
TSS (lbs/dav)												
Average Monthly	6	< 2	< 3	4	< 3	< 2	< 4	8	7	< 5	< 5	< 4

NPDES Permit No. PA0115088

NPDES Permit Fact Sheet Benton Municipal Water & Sewer Authority Sewer System

100 (100/ duy)												
Raw Sewage Influent												
 Average												
Monthly	109	168	141	58	108	81	103	59	91	135	88	99
TSS (lbs/day)												
Raw Sewage Influent												
 br/>> Weekly Average	139	339	181	74	192	115	176	98	174	197	120	138
TSS (lbs/day)												
Weekly Average	7	3	4	7	5	3	5	6	10	11	9	6
TSS (mg/L)												
Average Monthly	11.0	< 5.0	< 5.0	9.0	< 7.0	< 5.0	< 7.0	9.0	9.0	< 7.0	< 6.0	< 6.0
TSS (mg/L)												
Raw Sewage Influent												
 Average												
Monthly	200	363	281	126	245	185	178	87.0	128	197	125	162.0
TSS (mg/L)												
Weekly Average	14.0	6.0	7.0	13.0	10.0	6.0	12.0	10.0	13.0	12.0	9.0	10.0
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 1.0	12	< 1	< 9.0	< 5	< 2	< 2.0	24	< 30.0	< 5	49.0	< 77
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	< 1.0	140.6	2.0	133.1	13.2	9.7	11.9	2419.6	2419.6	204.6	2419.6	2419.6
Total Nitrogen												
(lbs/day)												
Annual Average												423
Annual Average Total Nitrogen												423
Annual Average Total Nitrogen (Ibs/day)												423
Annual Average Total Nitrogen (Ibs/day) Total Annual												423 423
Annual Average Total Nitrogen (Ibs/day) Total Annual Total Nitrogen (mg/L)												423 423
Annual Average Total Nitrogen (Ibs/day) Total Annual Total Nitrogen (mg/L) Annual Average												423 423 23.4
Annual Average Total Nitrogen (Ibs/day) Total Annual Total Nitrogen (mg/L) Annual Average Ammonia (Ibs/day)												423 423 23.4
Annual Average Total Nitrogen (Ibs/day) Total Annual Total Nitrogen (mg/L) Annual Average Ammonia (Ibs/day) Average Monthly	18	11	14	16	13	14	14	18	14	17	17	423 423 23.4 9
Annual Average Total Nitrogen (Ibs/day) Total Annual Total Nitrogen (mg/L) Annual Average Ammonia (Ibs/day) Average Monthly Ammonia (Ibs/day)	18	11	14	16	13	14	14	18	14	17	17	423 423 23.4 9
Annual Average Total Nitrogen (Ibs/day) Total Annual Total Nitrogen (mg/L) Annual Average Ammonia (Ibs/day) Average Monthly Ammonia (Ibs/day) Weekly Average	18	11	14	16 19	13	14	14	18 20	14	17	17	423 423 23.4 9 15
Annual Average Total Nitrogen (lbs/day) Total Annual Total Nitrogen (mg/L) Annual Average Ammonia (lbs/day) Average Monthly Ammonia (lbs/day) Weekly Average Ammonia (mg/L)	18	11	14 16	16 19	13 14	14 16	14	18 20	14	17	17	423 423 23.4 9 15
Annual Average Total Nitrogen (lbs/day) Total Annual Total Nitrogen (mg/L) Annual Average Ammonia (lbs/day) Average Monthly Ammonia (lbs/day) Weekly Average Ammonia (mg/L) Average Monthly	18 17 34.8	11 12 25.5	14 16 27.8	16 19 32.2	13 14 28.7	14 16 32.3	14 15 19.9	18 20 24.4	14 16 21.0	17 18 25.6	17 18 25.0	423 423 23.4 9 15 15.5
Annual Average Total Nitrogen (Ibs/day) Total Annual Total Nitrogen (mg/L) Annual Average Ammonia (Ibs/day) Average Monthly Ammonia (Ibs/day) Weekly Average Ammonia (mg/L) Average Monthly Total Phosphorus	18 17 34.8	11 12 25.5	14 16 27.8	16 19 32.2	13 14 28.7	14 16 32.3	14 15 19.9	18 20 24.4	14 16 21.0	17 18 25.6	17 18 25.0	423 423 23.4 9 15 15.5
Annual Average Total Nitrogen (Ibs/day) Total Annual Total Nitrogen (mg/L) Annual Average Ammonia (Ibs/day) Average Monthly Ammonia (mg/L) Average Monthly Total Phosphorus (Ibs/day)	18 17 34.8	11 12 25.5	14 16 27.8	16 19 32.2	13 14 28.7	14 16 32.3	14 15 19.9	18 20 24.4	14 16 21.0	17 18 25.6	17 18 25.0	423 423 23.4 9 15 15.5
Annual AverageTotal Nitrogen(lbs/day)Total AnnualTotal Nitrogen (mg/L)Annual AverageAmmonia (lbs/day)Average MonthlyAmmonia (lbs/day)Weekly AverageAmmonia (mg/L)Average MonthlyTotal Phosphorus(lbs/day)Annual Average	18 17 34.8	11 12 25.5	14 16 27.8	16 19 32.2	13 14 28.7	14 16 32.3	14 15 19.9	18 20 24.4	14 16 21.0	17 18 25.6	17 18 25.0	423 423 23.4 9 15 15.5 52
Annual AverageTotal Nitrogen(lbs/day)Total AnnualTotal Nitrogen (mg/L)Annual AverageAmmonia (lbs/day)Average MonthlyAmmonia (lbs/day)Weekly AverageAmmonia (mg/L)Average MonthlyTotal Phosphorus(lbs/day)Annual Average	18 17 34.8	11 12 25.5	14 16 27.8	16 19 32.2	13 14 28.7	14 16 32.3	14 15 19.9	18 20 24.4	14 16 21.0	17 18 25.6	17 18 25.0	423 423 23.4 9 15 15.5 52
Annual AverageTotal Nitrogen(lbs/day)Total AnnualTotal Nitrogen (mg/L)Annual AverageAmmonia (lbs/day)Average MonthlyAmmonia (lbs/day)Weekly AverageAmmonia (mg/L)Average MonthlyTotal Phosphorus(lbs/day)Annual Average	18 17 34.8	11 12 25.5	14 16 27.8	16 19 32.2	13 14 28.7	14 16 32.3	14 15 19.9	18 20 24.4	14 16 21.0	17 18 25.6	17 18 25.0	423 423 23.4 9 15 15.5 52

NPDES Permit No. PA0115088

NPDES Permit Fact Sheet Benton Municipal Water & Sewer Authority Sewer System

Total Phosphorus						
(mg/L)						
Annual Average						2.9

	Tools and References Used to Develop Permit
	WOM for Windows Medal (and Attachment B)
	WQM for Windows Model (see Attachment B) DENTOXED for Windows Model (see Attachment B)
	TRC Madel Spreadebact (ass Attachment
	Temperature Medel Spreadsheet (ass Attachment
	Temperature Model Spreadsheet (see Attachment
	Neter Orefite Teries Mass spreadsneet (see Attachment)
	water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\square	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

APPENDIX A Q7-10 ANALYSIS AND STREAM DATA

the same to be a second and the second se			
	Q ₇₋₁₀	Analysis	
Facility: Outfall:	Benton Mun. Water and Sewer Authority 001	NPDES Permit No.: RMI at Outfall:	PA0115088 22.38 Elev. 748
Reference Stream	m Gage Information	Was Froflows Used?	No 👻
Siream Name	Fishing Creek	Correlation From Ecoflows	
Reference Gage	1539000		l
Station Name	Fishing Creek near Bloomsburg, PA	Check D	Ilution Ratio
Gage Drainage Area (sq. ml.)	274	Discharge at Outfall (wi) (mgd)	0.132
Q ₇₋₁₀ al gage (cfs)	16.8	THE REPORT OF THE REPORT OF THE REPORT OF THE	sf (cfs) wf (cfs)
Yield Ratio (cfs/mi ²)	0.0613	Dilution Ratio = sf/wf	4.4330 0.204234195
		Dilution Ratio =	21.70543819 to 1
Q ₇₋₁₀ (at Outfall	Q ₇₋₁₀ at Down	stream Reach #1
Drainage Area at site (sq. ml.)	72.3	Drainage Area at Reach (sq. ml.) —	89.7 .
Q ₇₋₁₀ at discharge site (cfs)	4.4330	RMI	21.73
Q ₇₋₁₀ at discharge site (mgd)	2.8651	Grie at reach (cfs)	5.4999
Low Flow Yield Ratio of 0.1 cfs	simi (ror Approx, Companson Unly)	الطريمة المعدية (mgo)	Elay 738
Q ₇₋₁₀ at discharge site (cis) Q ₇₋₁₀ at discharge site (mgd)	4.6729		Eley, 730
Q ₇₄₀ at Down	stream Reach #2	Q ₇₄₀ at Down	stream Reach #3
Drainage Area at Reach (sg. ml.)	IDrainage Area @ Reach #21	Drainage Area at Reach (sg. ml.)	[Drainage Area @ Reach #3]
RML	[RMI @ Reach #2]	RMI	[RMI @ Reach #3]
Q ₇₋₁₀ at reach (cfs)	#VALUE!	Q ₇₋₁₀ at reach (cfs)	#VALUE!
Q _{7.10} at reach (mgd)	#VALUE!	Q ₇₋₁₀ at reach (mgd)	#VALUE!
Basin Gnaracteristics	Report at [Site / Reach]	Basinewie	pacoullai
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864	::06 AM GMT-5 (41 11 28) (-76 23 11)		real
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864	(41 11 28) (-76 23 11)		I - A - Market
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label	:06 AM GMT-5 (41 11 28) (-76 23 11) Value		
Date: 1 hurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRMAREA STRMTOT	:06 AM GMT-5 (41 11 28) (-76 23 11) Yalue 72. 140.2		Mar La
Date: 1 hurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN	8:06 AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9		
Date: 1 hurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD	3:06 AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 1.9		
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX	3:06 AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 1 1 3367		
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDY	3:06 AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 1 13367 257660.		
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX OUTLETX OUTLETX	3:06 AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 1 13367 257660. 13533 2455		
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETX OUTLETY LONG OUT	1:06 AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 1 13367 257660. 13533 24453 24453 -76.3864 -76.3864		moduli moduli main main main main main main main mai
Date: 1 Hurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETX OUTLETY LONG_OUT BSLOPDRAW	3:06 AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 1 13367 257660. 13533 24453 24453 24453 -76.3864 11.		moduli irration i irration i irration i irration i irration i irration i i i i i i i i i i i i i i i i i i
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST	3:06 AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 1 13367 257660. 13533 24453 -76.3864 11. 9		models in the second seco
Date: 1 hurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP	3:06 AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 1 13367 257660. 13533 24453 -76.3864 11. 9 4		Marine Constraints
Date: 1 hurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN	3:06 AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 13367 257660. 13533 24453 24453 -76.3864 11. 9 4		A SUIT STATES
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN GLACIATED BC/CKDEP	1:06 AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 13567 257660. 13533 24453 -76.3864 11. 9 4 9 4		
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN GLACIATED ROCKDEP CCARBON	Side AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 1 1 13367 257660. 13533 24453 -76.3864 11. 9 -76.3864 11. 9 4		
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN GLACIATED ROCKDEP CARBON STORAGE	3:06 AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 1 13367 257660. 13533 24453 -76.3864 11. 9 4 4 9 4		
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN GLACIATED ROCKDEP CARBON STORAGE ELEY	Side AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 13367 257660. 13533 24453 -76.3864 11. 9 4 4 9 4 4 11. 9 9 4 4 11. 9 9 4 1832.		
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN GIACIATED ROCKDEP CARBON STORAGE ELEY MAXTEMP	Side AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 13367 257660. 13533 24453 -76.3864 11. 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5		La Santa S
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN GLACIATED ROCKDEP CARBON STORAGE ELEY MAXTEMP DRN	Side AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 13367 257660. 13533 24453 24453 -76.3864 		mount in and in a second in a
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN GLACIATED ROCKDEP CARBON STORAGE ELEY MAXTEMP DRN IMPNLCD01 LCOLDEV	::06 AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 13367 257660. 13333 24453 76.3864 .11		
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN GLACIATED ROCKDEP CARBON STORAGE ELEY MAXTEMP DRN IMPNLCD01 LC01DEV LC1IMP	::06 AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 13367 257660. 13533 24453 .76.3864 .11 .9 .4 .9 .11 .9 .13 .140.2 .9 .11 .9 .11 .9 .11 .9 .13 .1353 .1353 .1353 .24453 .76.3864 .11 .9 .14 .15 .1832 .1832 .1832 .1832 .1832 .1832 .11 .11 .11 .12 .1333 .14 .15 .16 .17		In contrast In co
Date: Thurs Jan 21, 2016 10:28 Study Area: Pennsylvania NAD 1983 Latitude: 41.1911 NAD 1983 Longitude: -76.3864 Label DRNAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN GLACIATED ROCKDEP CARBON STORAGE ELEY MAXTEMP DRN MPNLCD01 LC010EV LC110EV	::06 AM GMT-5 (41 11 28) (-76 23 11) Value 72. 140.2 1.9 1 13367 257660. 13533 24453 .76.3864 .11		In our second seco

.

Table 2 25

4

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

[ft³/s; cubic feet per second; ---, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis ¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft ³ /s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01530500	1940-2008	69	5.0	6.1	11.0	7.6	13	9.0
01531000	² 1981-2008	28	138	147	237	169	296	203
01531000	319051979	68	86.3	97.0	175	116	219	161
01531500	²1981-2008	28	550	592	1,030	733	1,340	952
01531500	³ 19151979	65	539	571	990	675	1,230	928
01532000	1915-2008	94	2.2	2.8	9.7	- 4.6	14.4	9.4
01532850	1967–1979	13	1	.2		.3	.8	
01533400	² 1981–2008	28	602	648	1,110	790	1,430	1,060
01533500	1942-1958	17	.4	.6	1.5	.8	2.0	1.7
01533950	1962-1978	17	.2	- 3	1.0	.6	1,4	1.0
01534000	1915-2008	94	15.2	17.3	35.9	24.2	51.0	38.7
01534300	1960-2008	49	1.1	1.7	5.1	2.8	7.6	4.8
01534500	² 19612008	48	16.7	18.8	29.2	21.9	35.8	27.6
01534500	³ 1941–1959	19	18.8	23.0	- 33.3	25.6	39.2	34.9
01536000	² 1961–2008	48	28.7	32.7	51.7	40.8	68.1	54.3
01536000	³ 1940–1959	20	77.8	93.9	119	105	138	124
01536500	²1981–2008	28	828	872	1,450	1,030	1,830	1,350
01536500	31901-1979	79	778	811	1,350	927	1,640	1,260
01537000	1943-1993	51	1.3	2.0	4.9	3.1	6.4	4.7
01537500	1941–1990	50	.2	.3	1.9	- 5 -5	3.1	1.6
01538000	1921–2008	88	3.1	3.6	7.1	5.0	9.3	7.5
01539000	1940-2008	69	15.4	16.8	36.8	21.1	51.1	36.8
01539500	1942-1958	17	.1	.3	1.4	1.0	3.3	2.3
01540200	1965–1981	17	0	0	3	.1	.3	.1
01540500	² 1981–2008	28	1,080	1,120	1,870	1,320	2,330	1,690
01540500	³ 1906–1979	74	927	978	1,660	1,160	2,050	1,590
01541000	1915-2008	94	25.3	<u>27.9</u>	50.7	35.3	66.6	49.6
01541200	² 1967–2008	40	34.6	45,2	66.0	63.1	100	92.4
01541200	³ 1957–1965	9	22.9	24.7	44.7	27.7	58.2	36.4
01541303	1980–2008	29	53.4	58.5	94.0	74.4	123	102
01541308	1969–1979	11	1.3	1.3	1.9	1.6	2.4	2.1
01541500	²1962-2008	47	39.0	41.9	66.5	51.9	86.3	70.6
01541500	³ 1915–1960	46	14.9	21.3	41.9	28.5	55.0	42.9
01542000	19421993	52	8.1	9.1	14.8	11.3	17.8	14.6
01542500	² 1967–2008	33	216	235	326	285	435	402
01542500	³ 1941–1965	20		131	189	152	243	221
01542810	1966-2008	43	.1	.1			.5	
01543000	1915-2008	94	2.9	4.2	16.0	9.6	27.4	19.2
_01543500	1940-2008	- 69	10.7	14.5	44.9	26.6	74.9	50.5
01544000	² 1957–2008	52	-3.3	6.9	19.0	11.2	31.1	19.0
01544500	1942-2008	67	4.2	4.9	12.5	7.5	17.4	11.7
01545000	² 1964–2008	45	6.8	8.2	21.2	12.0	32.7	20.7
01545500	21963-2008	46	217	238	446	306	629	428
01545500	31909-1961	53	125	141	278	190	387	296
01545600	1966-2008	43	1.2	1.5	4.4	2.4	6.7	4.2

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued

[Latitude and Longitude in decimal degrees; mi², square miles]

Ctroomaga				Drainage	
Streamgage number	Streamgage name	Latitude	Longitude	area (mi²)	Regulated
01508803	West-Branch Tioughnioga River at Homer, N.Y.	42.638	-76.176	71.5	N
01509000	Tioughnioga River at Cortland, N.Y.	42,603	-76.159	292	N
01510000	Otselic River at Cincinnatus, N.Y.	42.541	-75.900	147	N
01512500	Chenango River near Chenango Forks, N.Y.	42.218	-75.848	1.483	N
01515000	Susouchanna River near Waverly, N.Y.	41,985	-76,501	4,773	N
01516350	Tioga River near Mansfield, Pa.	41.797	-77.080	153	N
01516500	Corey Creek near Mainesburg, Pa.	41,791	-77.015	12.2	N
01518000	Tioga River at Tioga Pa	41 908	-77 129	282	Y
01518700	Tioga River at Tioga Junction Pa	41.953	-77.115	446	Ŷ
01518862	Cowanesque River at Westfield Pa	41 923	-77 532	90.6	N
01520000	Complexane River near Laurenceville - Pa	41 997	-77 140	298	v
01520000	Tioga Biver at Lindley NV	42.020	-77 132	270 771	v
01521500	Conjetao Diver at Arlenort N V		77 711	30.6	v
01521500	Callisted River al Alkpolt, N. J.	42.390	-77.711	57.0	- I
01523500	Canacadea Creek near Hornen, N. 1.	42,333	-17.063	159	1
01524500	Canisteo River below Canacadea Creek at Homeit, N. 1.	42.514	-77.031	138	Netering Kerding and
01526500	lioga River near Erwins, N.Y.	42.121	-77.129	1,377	I
01527000	Conocton River at Conocton, N.Y.	42.500	-//.500	52.2	N
01527500	Cohocton River at Avoca, N.Y.	42.398	-77.417	152	N
01528000	Fivemile Creek near Kanona, N.Y.	42.388	-77.358	66.8	N
01529000	Mud Creek near Savona, N.Y.	42.308	-77.197	76.6	Ŷ
01529500	Cohocton River near Campbell, N.Y.	42.253	-77.217	470	N
01529950	Chemung River at Corning, N.Y.	42.146	-77.057	2,006	Y
01530332	Chemung River at Elmira, N.Y.	42.086	-76.801	2,162	Y .
01530500	Newtown Creek at Elmira, N.Y.	42.105	-76.798	77.5	Y
01531000	Chemung River at Chemung, N.Y.	42.002	-76.635	2,506	Y
01531500	Susquehanna River at Towanda, Pa.	41.765	-76.441	7,797	Y
01532000	Towanda Creek near Monroeton, Pa.	41.707	-76.485	215	N
01532850	MB Wyalusing Creek near Birchardville, Pa.	41.863	-76.007	5.67	N
01533400	Susquehanna River at Meshoppen, Pa.	41.607	-76.050	8,720	Y
01533500	North Branch Mehoopany Creek near Lovelton, Pa.	41.531	-76.156	35.2	'N
01533950	SB Tunkhannock Creek near Montdale, Pa.	41.575	-75.642	12.6	Ň
01534000	Tunkhannock Creek near Tunkhannock, Pa.	41.558	-75.895	383	N
01534300	Lackawanna River near Forest City, Pa.	41.680	-75.472	38.8	Y
01534500	Lackawanna River at Archbald, Pa.	41.505	-75.542	108	Y
01536000	Lackawanna River at Old Forge, Pa.	41.359	-75.744	332	Y
01536500	Susquehanna River at Wilkes-Barre, Pa.	41.251	-75.881	9,960	Y
01537000	Toby Creek at Luzerne. Pa.	41.281	-75.896	32.4	Y
01537500	Solomon Creek at Wilkes-Barre, Pa.	41.228	-75.904	15.7	N
01538000	Wanwallonen Creek near Wanwallonen, Pa	41.059	-76.094	43.8	N
01539000	Fishing Creek near Bloomsburg Pa	41.078	-76 431	274	N
01539500	Little Eiching Creek at Evers Grove Pa	41 080	-76 511	56.5	N,
01540200	Trevler Run near Rinotown Pa		-76 280	1.77	N
01540500	-Suscuehonna River at Danville Pa	40.055	-76 619 -	11 220	v
01540000	West Branch Succushanna Diver at Davvar De	10.750	-78 677	215 215	N
01541000	Wast Dranch Susquehanna Diver and Dowels-La.	10.071	70 5 10	315	V V
01341200	west draiten susquenanna Aivel near Curwensvine, fa.	40.201			i <u>mana di</u> set u da

	SWI Basi	D Strea	im le	Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	e Slo (ft	ope P With /ft) (r	WS ndrawal ngd)	Apply FC
	05C	276	523 FISHI	NG CREE	К		22.38	30	748.00	72.	30 0.0	0000	0.00	
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip p	н	<u>Strea</u> Temp	am pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	4.43 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 20	0.00	7.00	0.00	0.00	
		5			Di	scharge l	Data							
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitt Disc Flow (mgd)	ed Des Dis Flo (mo	ign sc Res sw Fa jd)	erve T ctor	Disc [°] emp (°C)	Disc pH		
		Bento	on Mun. W	SA PA	00115088	0.000	0.132	20 0.0	0000	0.000	25.00	7.00		
					Pa	arameter i	Data							
				Doromoto	r Name	Di C	isc - onc C	Frib Conc	Stream Conc	Fate Coef				
				aramete	i Ramo	(m	ig/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00).			
			NH3-N				25.00	0.00	0.00	0.70)			

Input Data WQM 7.0

•

,

_ ____

			VACU	<u>vi 7.u</u>	<u>Hyar</u>	<u>oayn</u>	amic	Out	<u>outs</u>			
	<u>sw</u>	P Basin	<u>Strea</u>	<u>ım Code</u>				<u>Stream</u>	<u>Name</u>			
		05C	2	7623			F	ISHING	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow									÷		
22.380	4.43	0.00	4.43	.2042	0.00291	.695	36.05	51.83	0.18	0.215	20.22	7.00
Q1-1	0 Flow											
22.380	4.06	0.00	4.06	.2042	0.00291	NA	NA	NA	0.18	0.225	20.24	7.00
Q30-	10 Flow	1										
22.380	5.54	0.00	5.54	.2042	0.00291	NA	NA	NA	0.21	0.191	20.18	7.00

MOM 7.0 Hydrodynamic Outpute

.

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.9167	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.25	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	
D.O. Goal	5		

22.38 Benton Mun. WSA

.

25

25

25

25

3

3

0

0

	<u>SWP Basin</u> Str 05C	eam Code 27623		<u>St</u> FISI	<u>ream Name</u> HING CREEK			
NH3-N	Acute Allocatio	ns						
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reductior	1
22.38	0 Benton Mun. WS	9.51	50	9.51	50	0	0	_
NH3-N	Chronic Allocat	ions						_
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
22.38	0 Benton Mun. WS	1.89	25	1.89	25	0	0	-
Dissolve	ed Oxvaen Allo	cations						_
		(CBOD5	NH3-N	Dissolv	ved Oxygen		
	Dissipation No.		no Multinio	Beeeline Mu	utinto Recolin	o Multiplo	Critical	Percent

<u>SWP Basin</u> Str 05C	ream Code 27623		ł	<u>Stream Name</u> SHING CREEK	
RMI	Total Discharge	Flow (mgd) <u>A</u> nal	ysis Temperature (°C)	Analysis pH
22.380	0.13	2		20.220	7.000
Reach Width (ft)	Reach De	Depth (ft)		Reach WDRatio	Reach Velocity (fps)
36.046	0.69	95 51.834			0.185
Reach CBOD5 (mg/L)	Reach Kc (1/days)		<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
3.01	0.494	4.		1.10	0.712
Reach DO (mg/L)	<u>Reach Kr (1/days)</u> 5.145			Kr Equation	<u>Reach DO Goal (mg/L)</u>
8.012				Tsivoglou	5
<u>Reach Travel Time (days)</u> 0.215	TravTime (days) 0.021 0.043 0.064 0.086 0.107 0.129 0.150 0.172 0.193 0.215	Subreach CBOD5 (mg/L) 2.98 2.95 2.92 2.89 2.86 2.83 2.80 2.77 2.74 2.74	Results NH3-N (mg/L) 1.08 1.07 1.05 1.04 1.02 1.01 0.99 0.97 0.96 0.95	D.O. (mg/L) 8.01 8.01 8.01 8.01 8.02 8.02 8.02 8.03 8.04 8.04 8.04 8.04	

WQM 7.0 D.O.Simulation

.

.

·

	<u>SWP Basin</u> 05C	<u>Stream C</u> 27623	<u>ode</u>		<u>Stream Name</u> FISHING CREE	K		
RMI	Name		Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
22.380	Benton Mun.	WSA	PA00115088	0.000	CBOD5	25		
					NH3-N	25	50	
,					Dissolved Oxygen			3

WQM 7.0 Effluent Limits

1A	В	С	D	Е	F	G			
2	TRC EVALU	ATION	Benton PA0115088						
3	Input appropriate values in B4:B8 and E4:E7								
4	4.43	s = Q stream (cfs)	0.5	= CV Daily				
5	0.132	= Q discharg	e (MGD)	0.5	= CV Hourly				
6	30	= no. sample	S	1	= AFC_Partial Mix Factor				
7	0.3	= Chlorine D	emand of Stream	1	= CFC_Partial Mix Factor				
8	0	= Chlorine D	emand of Discharge	15	= AFC_Criteria Compliance Time (min)				
9	0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)				
	0	= % Factor o	of Safety (FOS)	0	=Decay Coefficient (K)				
10	Source	Reference	AFC Calculations		Reference	CFC Calculations			
11	TRC	1.3.2.iii	WLA afc =	6.939	1.3.2.iii	WLA cfc = 6.758			
12	PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581			
13 14	PENTOXSD TRG	5.1b	LTA_afc=	2.586	5.1d	LTA_cfc = 3.929			
14 15	Sourco		Effluort	Limit Colo	ulationa				
16		5 1f	Linuent		1 021				
17	PENTOXSD TRG	5.1a		T (ma/l) =	0.500	BAT/BP.I			
18		0.19	INST MAX LIMI	T (mg/l) =	1.635	BANBIO			
	INST WAX EIWIT (IIIgh) - 1.055								
	WLA afc	(.019/e(-k*Al	⁻ C_tc)) + [(AFC_Yc*Qs	*.019/Qd*	e(-k*AFC_tc))				
		+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)							
	LTAMULT afc	EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)							
	LTA_afc	wla_afc*LTAMULT_afc							
		(.U11/e(-K^CFC_tc) + [(CFC_YC^Qs^.U11/Qd^e(-K^CFC_tc)) + Yd + (CFC_Yc^*Ce*Ye(Od))*(1 FOS(100)							
	I TAMULT ofc	+ X0 + (CFC_TC"US"XS/Q0)]"(1-FCS/100) EXP(/0.5*1 N(cvd^2/no.samples+1))-2.326*1 N(cvd^2/no.samples+1)^0.5)							
	LTA cfc	$LAF((0.5 EN(000^{-2}/10^{-5} samples + 1))-2.520 EN(000^{-2}/10^{-5} samples + 1)^{-0.5})$ what of c [*] I TAMULT of c							
	—	_	_						
	AML MULT	EXP(2.326*L	N((cvd^2/no_samples-	+1)^0.5)-0	.5*LN(cvd^2/no_	_samples+1))			
	AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_c	fc)*AML_I	MULT)				
	INST MAX LIMIT	1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)							

APPENDIX D FACILITY MAP AND SCHEMATIC

00.076.15 Benton Municipal Water and Sewer Authority 11411 0.3 0,45 Ō 0.6 \mathcal{O} 0 **Miles** (0)Benton Mun. Water & Sewer Auth Drawn By: J. Peterman Date: 1/21/16 Benton Borough, Columbia County **Drainage Area at Outfall 001** ò Phone: (570) 327-3689 Fax: (570) 327-3565 N West - Ouog NES. Benton R 229 3 OUTFALL 001 - Fishing Creek (CWF) 208 West Third Street, Suite 101, Williamsport , PA 17701-6448 DEPARTMENT OF ENVIRONMENTAL PROTECTION **Northcentral Regional Office** nsylvania ద Ð

NPDES Permit Fact Sheet Benton Municipal Water & Sewer Authority Sewer System

