

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0204048

APS ID 1008446

Authorization ID 1300097

		Applicant and Fa	cility Information	
Applicant Name		naugh Township Municipal Water er Authority	Facility Name	Tunnelton STP
Applicant Address	16980	Route 286 Highway W	Facility Address	Tunnelton Road (SR 3003)
	Saltsb	urg, PA 15681-8023		Tunnelton, PA 15725
Applicant Contact	Scott C	Corbin	Facility Contact	Chuck Ishman
Applicant Phone	Scott Corbin (724) 639-9024		Facility Phone	(724) 801-8169 Ext. 12
Client ID	114983	3	Site ID	259187
Ch 94 Load Status	Not Ov	rerloaded	Municipality	Conemaugh Township
Connection Status	No Co	nnection Prohibitions	County	Indiana
Date Application Rece	ived	December 11, 2019	EPA Waived?	Yes
Date Application Acce	pted	December 31, 2019	If No, Reason	
Purpose of Application	1	Renewal of a NPDES Permit for an	existing discharge to to	reated domestic sewage from a POTW.

Summary of Review

No changes to discharge quantity or quality were proposed as part of this permit renewal.

Permittee began using eDMR system for reporting in January 2016.

There are currently no open violations listed in EFACTS for this permittee (2/22/2021).

Chapter 94 reports have been incomplete or not submitted. The Department's permitting section will follow up with the compliance section prior to final permit issuance.

Sludge use and disposal description and location(s): Biosolids are land applied at Adam Skokut Farm, South Huntington Township, Westmoreland County under NPDES Permit PAG 09-6113

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Adam Pesek Adam J. Pesek, E.I.T. / Environmental Engineering Specialist	February 24, 2021
Х		Justin C. Dickey Justin C. Dickey, P.E. / Environmental Engineer Manager	February 26, 2021

Discharge, Receiving Wa	ters and Water Supply Info	rmation	
Outfall No. 001		Design Flow (MGD)	0.0095
Latitude 40° 27' 19	"	Longitude	-79º 23' 30"
Quad Name Saltsbur	rg	Quad Code	01510
Wastewater Description:	Treated Sewage Effluent		
Receiving Waters Con	nemaugh River	Stream Code	43832
NHD Com ID 123	3722194	RMI	5.57
Drainage Area 135	58	Yield (cfs/mi²)	0.2069
Q ₇₋₁₀ Flow (cfs)281		Q ₇₋₁₀ Basis	USGS #03041500 ('92-'17)
Elevation (ft) 846	3	Slope (ft/ft)	
Watershed No. 18-	С	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairment		REGIME MODIFICATION, META	
0 () ()		DAM OR IMPOUNDMENT, IMP	
Source(s) of Impairment	HYDROSTRUCTURE FL	OW REGULATION/MODIFICAT Kiskiminetas	ION s-Conemaugh River
TMDL Status	Final	Name Watersheds	•
Background/Ambient Da	ta	Data Source	
pH (SU)	7.49	8/17/2020 stream sample at S	SR 3003 Bridge in Tunnelton
Temperature (°C)	25	Default WWF	
Hardness (mg/L)	281	8/17/2020 stream sample at S	SR 3003 Bridge in Tunnelton
Other: NH ₃ -N	0.04	8/17/2020 stream sample at S	SR 3003 Bridge in Tunnelton
Nearest Downstream Pu	blic Water Supply Intake	Buffalo Township Municipal A	uthority, Freeport, PA
PWS WatersAllegh	neny River	Flow at Intake (cfs)	2,390
PWS RMI <u>29.4</u>		Distance from Outfall (mi)	31.4

Changes Since Last Permit Issuance: Stream yield rate was updated based on newer gage flow data. The Saltsburg Municipal WTP Plant PWS Intake is no longer operational.

Other Comments: As was previously implemented, only 5% of the total streamflow was allocated for this discharge as a conservative measure for modeling considerations. There the streamflow at the discharge point is $0.05 \times 281 = 15.05$ cfs.

Available dilution ratio is therefore 15.05 cfs: 0.0146 7 cfs (0.0095 MGD) = 956 to 1.

Past experience indicates a dilution ratio of 500:1 or greater, water quality modeling should indicate secondary limits are appropriate. WQM 7.0 modeling will still be conducted to verify this statement.

	Tre	eatment Facility Summa	ry	
Treatment Facility Na	me: Tunnelton STP			
WQM Permit No.	Issuance Date			
3289406	11/20/1989			
	Dograp of			Ανα Αρρμοί
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Extended Aeration	Chlorination	0.0095
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.0095	16	Unknown		Land Application

Changes Since Last Permit Issuance: N/A

Other Comments: Treatment system consists of an equalization basin, two aeration chambers, two clarifiers, sludge holding tank, chlorination, and chlorine contact tank.

	Compliance History
Summary of DMRs:	Permittee has been consistently meeting existing limits
Summary of Inspections:	No inspections conducted in the previous 5 years.

Other Comments: Status of Chapter 94 reports is unknown.

Compliance History

DMR Data for Outfall 001 (from January 1, 2020 to December 31, 2020)

Parameter	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20
Flow (MGD)		0.00179	0.00229	0.00473						0.00926		0.00460
Average Monthly	0.0049	5	7	2	0.00458	0.00322	0.00275	0.00341	0.00557	1	0.008	6
pH (S.U.)												
Minimum	7.0	6.9	6.8	6.6	6.5	6.5	6.3	6.7	6.6	6.5	7.0	6.8
pH (S.U.)												
Maximum	7.3	7.4	7.6	7.5	7.6	7.4	7.4	7.4	7.6	7.4	7.4	7.5
DO (mg/L)												
Minimum	4.5	7.2	6.79	6.00	7.27	6.8	6.0	6.13	5.85	5.94	7.0	7.1
TRC (mg/L)												
Average Monthly	0.27	0.23	0.16	0.32	0.34	0.30	0.17	0.13	0.18	0.26	0.25	0.22
TRC (mg/L)												
Instantaneous												
Maximum	0.5	0.43	0.47	0.50	0.52	0.62	0.41	0.4	0.47	0.45	0.49	0.48
CBOD5 (mg/L)												
Average Monthly	< 3.0	4.25	< 4.01	< 5.7	< 3.0	< 9.4	3.7	< 3.92	6.11	< 3.0	3.38	< 3.0
CBOD5 (mg/L)												
Instantaneous		- 40	= 0.4				4.0	4.00	0.04		0.00	
Maximum	< 3.0	5.12	5.01	8.39	< 3.0	15.7	4.3	4.83	9.01	< 3.0	3.68	< 3.0
TSS (mg/L)	0.0	0.0	0.4	4.0	0.4	0.0	4.0	4.0	0.0	0.4	4 74	0.0
Average Monthly	3.8	2.6	2.4	< 1.6	< 3.4	< 3.0	4.0	< 1.2	< 3.0	< 2.1	4.71	6.2
TSS (mg/L)												
Instantaneous Maximum	6.8	3.8	3.2	< 1.6	6.0	4.4	6.00	< 1.6	4.4	3.4	8.22	6.8
Fecal Coliform	0.0	3.0	3.2	< 1.0	6.0	4.4	6.00	< 1.0	4.4	3.4	0.22	0.0
(CFU/100 ml)												
Geometric Mean	< 1	< 2	< 1	< 1	< 1.0	< 1	< 1	< 2	9	29	97	3.0
Fecal Coliform	 ` ' 	\ <u>Z</u>	<u> </u>	<u> </u>	V 1.0	<u> </u>	<u> </u>	\ <u>Z</u>	9	23	31	3.0
(CFU/100 ml)												
Instantaneous												
Maximum	< 1	4.1	< 1	< 1	< 1.0	< 1	< 1	3.1	40.4	51.2	435	5.2
Ammonia (mg/L)	† ` ` '			` '	\ 1.0	` '	` '	0.1	10.1	01.2	100	0.2
Average Monthly	< 0.1	< 1.612	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.382	< 0.1	< 3	< 0.1
Ammonia (mg/L)	1 3	1										1 0
Instantaneous												
Maximum	< 0.1	3.124	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.471	< 0.1	5.9	< 0.1

	Develop	oment of Effluent Limitations		
Outfall No.	001	Design Flow (MGD)	.0095	
Latitude	40° 27' 19.00"	Longitude	-79º 23' 31.00"	
Wastewater D	Pescription: Sewage Effluent			

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
N/A			

Comments: WQM 7.0 modeling and the TRC calc spreadsheet determined secondary treatment limits were protective of the receiving stream.

Best Professional Judgment (BPJ) Limitations

Comments: A dissolved oxygen limit of a minimum of 4.0 mg/l, a TRC IMAX limit of 1.6, and monitoring for ammonia nitrogen, total nitrogen and total phosphorus was placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Influent monitoring for TSS and BOD5 was placed in the permit in accordance with the Department's SOP entitled "New and Reissuance of Sewage Individual NPDES Permit Applications (SOP No. BCW-PMT-002)."

The requirement to monitor Iron, Manganese and Aluminum once per year is being continued in this permit renewal in accordance with the Conemaugh River Basin TMDL.

Flow monitoring is being retained as authorized under Chapter 92a.61.

Anti-Backsliding

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	3/week	Grab
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	3/week	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	3/week	Grab
CBOD5	1.9	xxx	xxx	25.0	xxx	50	2/month	Grab
BOD5			2007					
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	Grab
TSS	2.3	xxx	XXX	30.0	XXX	60	2/month	Grab
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Total Nitrogen	XXX	Report Daily Max	XXX	XXX	Report Daily Max	XXX	1/year	Grab
Ammonia Nov 1 - Apr 30	Report	XXX	XXX	Report	XXX	XXX	2/month	Grab
Ammonia May 1 - Oct 31	Report	XXX	XXX	Report	XXX	XXX	2/month	Grab

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations								
Parameter	Mass Units	(lbs/day) (1)	Concentrations (mg/L)		Minimum (2)	Required				
i arameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
		Report			Report			•		
Total Phosphorus	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/year	Grab		
·		Report			Report					
Total Aluminum	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/year	Grab		
		Report			Report					
Total Iron	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/year	Grab		
		Report			Report					
Total Manganese	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/year	Grab		

Compliance Sampling Location: Outfall 001 (after disinfection)

Other Comments: As part of a permit amendment in the previous permit cycle, the Authority requested that the Department amend their NPDES Permit to decrease the monitoring frequency for dissolved oxygen, TRC and pH from 1/day to 3/week due to the additional cost of testing. The Authority had stated that it only has 37 customers and is a lower income community. The Authority further claimed that the additional cost will increase the customer's monthly bill to an unreasonable and unaffordable amount and will put its customers in hardship to pay for service. This may result in more delinquent payments and actually jeopardize funding to keep the plant operating. A review of the eDMR data for these three parameters since 2016 indicates they are meeting the existing limits. Therefore, 3/week sampling frequency for dissolved oxygen, TRC and pH will be retained in this permit renewal.

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	am Nam	e	RMI	Elev		Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	18C	438	832 CONE	MAUGH F	RIVER		5.57	70	846.00	1358.00	0.00000)	0.00	✓
						Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Ter	<u>Strean</u> mp	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(00	C)		
Q7-10 Q1-10 Q30-10	0.207	15.05 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000)	0.00	0.00	25	5.00 7.	49	0.00	0.00	
						Discharge I	Data							
			Name	Per	mit Numt	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res	Dis erve Ten ctor (°C	np)isc pH		
		Tunn	elton STP	PAC	204048	0.009	5 0.000	0.00	00 (0.000 2	20.00	6.80		
						Parameter I	Data							
			Į	Parameter	· Name		onc C	Conc	tream Conc	Fate Coef				
	,_					(m	g/L) (n	ng/L) (mg/L)	(1/days)		_		
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				
			NH3-N				25.00	0.04	0.00	0.70				

Input Data WQM 7.0

					0.00	put Dut		0.00 0 0.00						
	SWP Basin			Stre	eam Nam	e	RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgd	wal	Appl FC
	18C	438	32 CONE	MAUGH	RIVER		4.1	80	841.00	1370.00	0.00000		0.00	~
8						Stream Da	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	ı Tem	<u>Tributary</u> np pH	Ten	Stream np	рН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C	c)		
Q7-10 Q1-10 Q30-10	0.207	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000)	0.00	0.0	00 2	5.00 7.4	19	0.00	0.00	
						Discharge	Data							
			Name	Per	rmit Numb	Disc	Permitt Disc Flow (mgd	Dis Flo	sc Res	Dis erve Ten ctor	np p	isc oH		
						0.000	0.00	00 0.0	0000	0.000 2	25.00	7.00		
						Parameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				r ai airiele	I Name	(m	ng/L) (r	mg/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code				Stream	<u>Name</u>			
	18C 43832				CONEMAUGH RIVER							
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
5.570	15.05	0.00	15.05	.0147	0.00068	1.025	88.29	86.12	0.17	0.510	25.00	7.49
Q1-10	0 Flow											
5.570	9.63	0.00	9.63	.0147	0.00068	NA	NA	NA	0.13	0.655	24.99	7.49
Q30-	10 Flow	1										
5.570	20.47	0.00	20.47	.0147	0.00068	NA	NA	NA	0.20	0.430	25.00	7.49

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
18C	43832	CONEMAUGH RIVER

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
5.57	0 Tunnelton STP	4.18	50	4.18	50	0	0
IH3-N	Chronic Allocati	100 TO 10			## DOT 1		
IH3-N (Chronic Allocati Discharge Name	ONS Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBC	CBOD5		<u>NH3-N</u>		Dissolved Oxygen		Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Critical Reach	Reduction	
5.57	Tunnelton STP	25	25	25	25	4	4	0	0	

WQM 7.0 D.O.Simulation

SWP Basin Str	eam Code			Stream Name	
18C	43832		cc	NEMAUGH RIVER	
<u>RMI</u>	Total Discharge	Flow (mgd) Ana	lysis Temperature (°C	C) <u>Analysis pH</u>
5.570	0.00	9		24.995	7.488
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
88.289	1.02	5		86.123	0.166
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
2.02	0.01:	TO Secretary and the second		0.06	1.028
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
7.537	0.87	1		Tsivoglou	5
Reach Travel Time (days)		Subreach	Reculte		
0.510	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.051	2.02	0.06	7.54	
	0.102	2.02	0.06	7.54	
	0.153	2.02	0.05	7.54	
	0.204	2.02	0.05	7.54	
	0.255	2.01	0.05	7.54	
	0.306	2.01	0.05	7.54	
	0.357	2.01	0.04	7.54	
	0.408	2.01	0.04	7.54	
	0.459	2.01	0.04	7.54	
	0.510	2.01	0.04	7.54	

WQM 7.0 Effluent Limits

· · · · · · · · · · · · · · · · · · ·				to the state of th		
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
Tunnelton STP	PA0204048	0.009	CBOD5	25		
			NH3-N	25	50	
			Dissolved Oxygen			4
	18C 43	18C 43832 Name Permit Number	18C 43832 Disc Name Permit Flow Number (mgd)	Name Permit Number Disc Flow (mgd) Parameter Tunnelton STP PA0204048 0.009 CBOD5 NH3-N	18C 43832 CONEMAUGH RIVER Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Tunnelton STP PA0204048 0.009 CBOD5 25 NH3-N 25	CONEMAUGH RIVER Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Tunnelton STP PA0204048 0.009 CBOD5 25 NH3-N 25 50

TRC EVALUAT	LION	Gira	rd Boro	STP - Outfall	001		
Input appropriate	values in B4:E	38 and E4:E7					
281.00	= Q stream (cfs	3)	0.5	= CV Daily			
0.010	= Q discharge	(MGD)	0.5	= CV Hourly			
30	= no. samples		0.066	= AFC_Partial Mi	ix Factor		
0.3	= Chlorine Dem	and of Stream	0	0 = CFC_Partial Mix Factor			
0	= Chlorine Dem	and of Discharge	15 = AFC_Criteria Compliance Time (min)				
0.5 BAT/BPJ Value 720 CFC_Criteria Compliance Time (min			Compliance Time (min)				
0	= % Factor of 8	Safety (FOS)	0 =Decay Coefficient (K)				
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC PENTOXSD	1.3.2.iii 5.1a	WLA afc = 0.643 LT	AMULT	1.3.2.iii 5.1c	WLA cfc = 0.863 LTAMULT cfc =		
TRG PENTOXSD	5.1b	afc = 0.373		5.1d	0.581		
TRG		LTA_afc= 0.240			LTA_cfc = 0.502		
Source		Effluent Limit C	Calculation	s			
PENTOXSD TRG PENTOXSD TRG	5.1f	AML MULT = 1.23			AFC		
	5.1g	0.295 INST MAX L		30-00-000 T			
	+ Xd + (AFC_ wla_afc*LTAMU	——————————————————————————————————————	0) EXP((0.	5*LN(cvh^2+1))-2	.326*LN(cvh^2+1)^0.5)		
WLA afc LTAMULT afc	NAME OF THE PARTY	_tc) + [(CFC_Yc*Qs*.011/		FC_tc))			
LIAMOLI AIC		Yc*Qs*Xs/Qd)]*(1-FOS/10		0/	AO E)lf-*! TABILLT -f-		
LTA_afc	1000	cvd^2/no_samples+1))-2.32			^0.5) wla_cfc*LTAMULT_cfc		
WLA_cfc	MIN(BAT_BPJ,	MIN(LTA_afc,LTA_cfc)*AN imit/AML_MULT)/LTAMUI	/IĹ_MULT)	ovu zmo_sample	3.1))		
LTAMULT_cfc LTA_cfc							
AML MULT							
AVG MON LIMIT							
INST MAX LIMIT							

Page 1

Tunnelton STP Conemaugh Township, Indiana County NPDES# PA0204048

Ave (10^pH min

<u>Date</u>	pH min	pH max
Jul-18	6.1	7.2
Aug-18	6.5	7.3
Sep-18	6.8	7.7
Jul-19	6.6	7.4
Aug-19	6.5	7.5
Sep-19	6.7	7.1
Jul-20	6.5	7.4
Aug-20	6.5	7.6
Sep-20	6.6	7.5

10^ -pH min	10^ -pH max	& pH max)	-Log (Ave pH)
7.94E-07	6.31E-08	4.29E-07	6.4
3.16E-07	5.01E-08	1.83E-07	6.7
1.58E-07	2E-08	8.92E-08	7.0
2.51E-07	3.98E-08	1.45E-07	6.8
3.16E-07	3.16E-08	1.74E-07	6.8
2E-07	7.94E-08	1.39E-07	6.9
3.16E-07	3.98E-08	1.78E-07	6.7
3.16E-07	2.51E-08	1.71E-07	6.8
2.51E-07	3.16E-08	1.41E-07	6.8
		Median:	6.8