

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0205061
APS ID	985477
Authorization ID	1259931

Applicant and Facility Information

Applicant Name	Mark IV	/ Development, LLC	Facility Name	Raccoon Elementary School STP
Applicant Address	3949 P	atterson Road	Facility Address	3949 Patterson Road
	Aliquipp	oa, PA 15001-1044		Aliquippa, PA 15001-1044
Applicant Contact	Mr. Ant	hony Policastro	Facility Contact	Same as Applicant
Applicant Phone	(412) 9	74-8840	Facility Phone	Same as Applicant
Client ID	320634		Site ID	254794
Ch 94 Load Status	Not Ove	erloaded	Municipality	Raccoon Township
Connection Status	No Lim	itations	County	Beaver
Date Application Recei	ved	January 29, 2019	EPA Waived?	Yes
Date Application Accept	oted	January 30, 2019	If No, Reason	
Purpose of Application		Application for a renewal of a	n existing NPDES permit for	discharge of treated Sewage.

Summary of Review

The applicant has applied for a renewal of an existing NPDES Permit, Permit No. PA0205061, which was previously issued by the Department on July 10, 2014. That permit expired on July 31, 2019.

WQM Permit No. 491401, issued on April 23, 1991, approved construction of a STP with a design flow rate of 0.00854 MDG. The existing treatment process consists of a comminutor, flow EQ, aeration, final clarifier, sludge holding tank, chlorination, dechlorination, and effluent pump station.

The receiving stream, UNT to Gums Run, is classified as a WWF, and is located in State Watershed No. 20-D.

The applicant has complied with Act 14 Notifications and no comments were received.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
х		William C Mitchell ELT (Environmental Engineering Specialist	March 21, 2020
		William C. Mitchell, E.I.T. / Environmental Engineering Specialist	March 31, 2020
x		Roll A Ca	
		Donald J. Leone, P.E. / Environmental Engineer Manager	March 31, 2020

ischarge, Receiving Waters and Water Supply Informat	ion			
Outfall No. 001	Design Flow (MGD)	0.00854		
Latitude40° 36' 30.00"	Longitude	-80º 21' 36.00"		
Quad Name Aliquippa	Quad Code	1403		
Wastewater Description: Sewage Effluent				
Unnamed Tributary to Gums Run				
Receiving Waters (WWF)	Stream Code	33576		
NHD Com ID99681980	RMI	0.70		
Drainage Area 0.10	Yield (cfs/mi ²)	0.0027		
Q ₇₋₁₀ Flow (cfs) 0.0003	Q7-10 Basis	WR Bulletin 12, STA# 03107700, pg. 425		
Elevation (ft)	Slope (ft/ft)	0.0375		
Watershed No. 20-D	Chapter 93 Class.	WWF		
Existing Use	Existing Use Qualifier			
Exceptions to Use	Exceptions to Criteria			
Assessment Status Attaining Use(s)	-			
Cause(s) of Impairment				
Source(s) of Impairment				
TMDL Status Final	Name Raccoon Cr	eek Watershed		
Background/Ambient Data D	ata Source			
pH (SU)				
Temperature (°F)				
Hardness (mg/L)				
Other:				
Nearest Downstream Public Water Supply Intake	idland Borough Water Autho	ority		
PWS Waters Ohio River	Flow at Intake (cfs)			
PWS RMI	Distance from Outfall (mi)			

Changes Since Last Permit Issuance: NONE

Comments: The discharge is to an UNT to Gums Run, which flows into the Raccoon Creek Watershed that has a Final TMDL and is impaired by metals and pH. This sewage discharge is not expected to contribute to the stream impairment for which abandoned mine drainage is source of the impairment. No WLAs have been developed for this sewage discharge and they are not expected to contribute to the stream impairment for these pollutants.

Treatment Facility Summary

reatment Facility Na	me: Raccoon Elementary S	School		
WQM Permit No.	Issuance Date			
491401	April 23, 1991			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Extended Aeration	Chlorination	0.00854
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
				Hauled to
0.0085		Not Overloaded		Regional WWT

Changes Since Last Permit Issuance: NONE.

Compliance History

Operations Compliance Check Summary ReportFacility:Raccoon_Elementary_School_STPNPDES Permit No.:PA0205061Compliance Review Period:03/30/2015 - 03/30/2020

Open Violations by Client Summary

None.

Inspection Summary

INSP ID	INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC	# OF VIOLATIONS
2837829	02/04/2019	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted	0
2533307	11/01/2016	Administrative/File Review	PA Dept of Environmental Protection	Violation(s) Noted	1

Violation Summary

VIOL	VIOLATION	VIOLATION	VIOLATION TYPE DESC	RESOLVED
ID	DATE	TYPE		DATE
771529	11/01/2016	302.202	Operator Certification - Failure to submit annual system fee	12/12/2016

Enforcement Summary

ENF ID	ENF TYPE DESC	EXECUTED DATE	VIOLATIONS	ENF FINALSTATUS	ENF CLOSED DATE
348395	Notice of Violation	11/01/2016	302.202	Comply/Closed	12/12/2016

DMR Violation Summary

Current eDMR user.

Effluent limit violation summary 3/30/2018 – 3/30/2020:

MONITORING END DATE	OUTFALL	PARAMETER	SAMPLE VALUE	PERMIT VALUE	UNIT OF MEASURE	STATISTICAL BASE CODE
01/31/2020	001	Ammonia- Nitrogen	3.1	3.0	mg/L	Average Monthly

Compliance Status:

Facility had a single DMR violation in January 2020, but no other noncompliance issues.

Completed by: David Roote

Completed date: 3/30/2020

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.00854
Latitude	40° 36' 30.00		Longitude	-80º 21' 36.00"
Wastewater De	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Total Suspended Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Total Residual Chlorine	0.02	Average Monthly	TRC_CALC
Dissolved Oxygen	5.0	Minimum	WQAM 63
Ammonia			
Nov 1 - Apr 30	3.0	Average Monthly	WQAM 63
Ammonia-Nitrogen			
May 1 – Oct 31	1.9	Average Monthly	WQAM 63

Best Professional Judgment (BPJ) Limitations

Comments: N/A

Anti-Backsliding

N/A

Additional Considerations:

For pH, Dissolved Oxygen (DO) and Total Residual Chlorine (TRC), a monitoring frequency 1/day has been imposed. In general, less frequent monitoring may be established only when the permittee demonstrates that there will be no discharge on days where monitoring is not required.

Nutrient monitoring is required to establish the nutrient load from the waste water treatment facility and the impacts that load may have on the quality of the receiving stream(s). A 1/year monitor and report requirement for Total N & Total P has been added to the permit as per Chapter 92.a.61.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	0.00854	XXX	XXX	XXX	xxx	XXX	2/month	Measured
pH (S.U.)	ххх	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
DO	ххх	xxx	5.0 Inst Min	xxx	xxx	ххх	1/day	Grab
TRC	ххх	xxx	xxx	0.02	xxx	0.04	1/day	Grab
CBOD5	ХХХ	XXX	ХХХ	25	XXX	50	2/month	Grab
TSS	XXX	XXX	XXX	30	XXX	60	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	xxx	xxx	2000 Geo Mean	xxx	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	XXX	ххх	200 Geo Mean	XXX	1000	2/month	Grab
Total Nitrogen	ххх	XXX	xxx	XXX	Report Daily Max	ххх	1/year	Grab
Ammonia Nov 1 - Apr 30	XXX	XXX	xxx	3.0	xxx	6.0	2/month	Grab
Ammonia May 1 - Oct 31	ххх	XXX	xxx	1.9	xxx	3.8	2/month	Grab
Total Phosphorus	ХХХ	XXX	ххх	xxx	Report Daily Max	ХХХ	1/year	Grab

Compliance Sampling Location: Outfall # 001

Discharge to flum Par - wart
HEADWATER DATA pro-
TEMP. =
$$\frac{1}{7000} = \frac{100027}{7}$$

TEMP. = $\frac{1}{70} = \frac{100027}{100} = \frac{1000}{100}$
TEMP. = $\frac{1}{70} = \frac{100027}{100} = \frac{1000}{100}$
TEMP. = $\frac{1}{70} = \frac{1000}{100} = \frac{1000}{100}$
TEMP. = $\frac{1000}{100} = \frac{1000}{100}$
TEMP. =

. .

RACOON ELEMENTARY SCHOOL DISCHARGE TO GUM RUN FILE:

> DEFAULT DATA A. STREAM VALUES 10 KC.... (HEADWATERS ONLY!)......0 B. DISCHARGE VALUES (30 DAY AVE) 15 EFFLUENT TEMP.....:20

HEADWATERS AND TRIBUTARY DATA

17 BAL, TECHNOLOGY (1=Y O=N):0

MO. OF REACHES : 1

914	67-10	Ŧ	FH	30	CECOS	NH3-N
	(CFS)	(\Box)		(MG/L)	(MG/L)	(MG/L)
$(\Phi_{i}) \in \Phi_{i}$		$(1,1,\dots,1,n) \in \mathbb{R}^{n}$	11.111.0	*	- 200 - 001 - 00 - 2010	
H4	2.72-0	25	2	7.12	2	. 1
1	0					

.

RACOON ELEMENTARY SCHOOL DISCHARGE TO GUM RUN

STREAM CHARACTERISTICS

RCH	07-10 CFS	-	РH	DO MG/L	CBODS MG/L	
	4-8 +- +he		• • • • • • • •	-44 -	The second second	
1	0	25	7	7.12	2	. 1

DISCHARGER DATA 07-10 DESIGN CONDITIONE

214	G MGD				CBODS MG./L	NHZN MG / _	NC
		-0-0					
۰.	3.548	· 020	-	3		272	1.3

-pt-17 #

~

RACOON ELEMENTARY SCHOOL DISCHARGE TO GUM RUN

		REACH	I CHARAC	FERIST	ICS	
RH			RCH.			
	D.O.	KM	SL.	LEN.	AREA	W/D
	GOAL	(/D)	(FT/FT)	(FT.)	(MI^2)	
1						
1	5	. 5	.0375	800	. 1	10

. .

.

RACDON ELEMENTARY SCHOOL DISCHARGE TO GUM RUN FILE: RACDON GUM.WQM6.3

NH3-N DISCHARGE ALLOCATIONS AT 930-10

DIS	Q (MGD)	IND. CONC. (MG/L)	ALL. CONC. (MG/L)	CRIT. RCH.	
1	8.54E-	-031,95	1.95	0	0

MH3-N	DISCHARGE	ALLOCATIONS	AT 01-10
-------	-----------	-------------	----------

018		IND. CONC. (MG/L)	COMC.		
i	8.34E-	-039.75	9.73	C	<u>_</u>

. .

-

RACOON ELEMENTARY SCHOOL DISCHARGE TO GUM RUN FILE: RACOON GUM.WQM6.3

(TOTAL) TEMP = 2 CBOD-5= KC'= 1.4	DISCHARG 0.1 24.54 NH	E = 8.54 3-N= 1.9 = .6	IMITATIONS E-03 MGD PH = 7 1 D.O. = 5.04 D.O.60AL = 5 (DWENS)
DIS. 1	RCH. 1	TRVL 1	TIME: .251
	CBOD-5 (M5/L)		
.025	23.63	1.98	7.12
	22.76		
	21.92 21.11		
125	20.33	1.77	7.12
.15	19.57	1.75	7.12
	18.85		7.12
	18.15		
	17.48		
.251	16.84	1.64	7.12

	5 41 0 - H ²				
				IMITATIONS	
	TEME = 2		n = 8.04	E-03 MGD	
			Zurdan (D	PH = 7 3 D.C. = 5.04	
	$K_{1}^{-} = 1.4$				
	KR= 20	77 K.B	0	D.O.GOAL =	-
		909 i	TENT	(USR DEF.) TIME:.251	
1	inf a tail a		114 412	11021.201	
	TS.TM.	C30D~5	MHZ-N	D 0	
/	(DAYS)				
				100 100 Million Inc. 100 100	
	,026	23.63	-1-1	5.49	
	. 1977	22.7:	1.61	5.8	
		31.90	1.78	3.02	
		21.11	1.75	5.2	
		20130	£. 13	6.35	
	.15	12.37	1. T	5.47	
	11	19196		B. 52	
		16.15		6.5E	
		1.1.4.8	1.1.1	2.4	
	.151	15.51	1.5	4.95	

pet to

			D.O. ALL	OCATIONS			
S	Q (MGD)	CONC. (MG/L)	CUM. CONC.	IND. CONC. (MG/L)	CUM. CONC. (MG/L)	CRIT. RCH.	
	8.545	1.900	1.900	25,00	25.0000		
		1	Alita				
			HEADWA		TRIBUTARY	DATA	
		N	HEADWA 0. OF REA H Q7-10	CHES: 1 T PH	TRIBUTARY DO CBOL (MG/L) (MG/	5 NH3-	N

27) X 360

.

RACOON ELEMENTARY SCHOOL DISCHARGE TO GUM RUN FILE: RACOON WINTER.WGM6.3

NH3-N DISCHARGE ALLOCATIONS AT 030-10

DIS	Q (MGD)	IND. CONC. (MG/L)	ALL. CONC. (MG/L)	CRIT. RCH.	
1	8.54E-	-033.05	3.05	0	0

NH3-N DISCHARGE ALLOCATIONS AT 01-10

DIS	Ø	IND. CONC.	ALL. CONC.	CRIT. ECH.	
	(MGD)	(MG/L)	(MG/L)		(%)
1	8.54E	-0314.66	14.66	- 0	Ō

Copy of TRC_CALC

TRC EVALUATION

0.00854 = Q discharge (MGD) 0.5 = CV Hourly 4 = no. samples 0.995 = AFC_Partial Mix Factor 0.3 = Chlorine Demand of Stream 1 = CFC_Partial Mix Factor 0.5 = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min) 0.5 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0.5 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0.5 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0.5 = BAT/BPJ Value 720 = CFC_CalculationsTRC $1.3.2.iii$ WLA afc = 0.026 $1.3.2.iii$ WLA cfc = 0.018 PENTOXSD TRG $5.1a$ LTA_MULT afc = 0.373 $5.1c$ LTAMULT cfc = 0.581 PENTOXSD TRG $5.1b$ LTA_afc= 0.010 $5.1d$ LTA_cfc = 0.011 SourceEffluent Limit CalculationsPENTOXSD TRG $5.1f$ AML MULT = 1.720 PENTOXSD TRG $5.1g$ AVG MON LIMIT (mg/l) = 0.017 AFCINST MAX LIMIT (mg/l) = 0.039 WLA afc $(.019/e(-k^*AFC_tc)) + [(AFC_Yc^*Qs^*.019/Qd^*e(-k^*AFC_tc)) + Xd + (AFC_Yc^*Qs^*.019/Qd^*e(-k^*CFC_tc))LTA_afcwla_afc*'LTAMULT_afcWLA_cfc(.011/e(-k^*CFC_tc) + [(CFC_Yc^*Qs^*.011/Qd^*e(-k^*CFC_tc)) + Xd + (CFC_Tc'Ca*Xs/Qd)]'(1-FOS/100) + Xd + (CFC_Tc'Ca*Xs/Qd)]'(1-FOS/100)LTAMULT_cfcLTA_cfcwla_cfc*'LTAMULT_cfcWacfc*'LTAMULT_cfc$	0.0003	= Q stream (c	cfs)	0.5	= CV Daily		
d = no. samples 0.995 = AFC_Partial Mix Factor03= Chlorine Demand of Stream1= CFC_Partial Mix Factor05= BAT/BPJ Value720= CFC_Criteria Compliance Time (min)05= BAT/BPJ Value720= CFC_Criteria Compliance Time (min)05= BAT/BPJ Value720= CFC_Criteria Compliance Time (min)06= WF factor of Safety (FOS)= Decay Coefficient (K)07= % Factor of Safety (FOS)= Decay Coefficient (K)08SourceAFC CalculationsTRC1.3.2.iiiWLA afc = 0.0261.3.2.iiiWLA afc = 0.0101.3.2.iiiPENTOXSD TRG5.1aLTAMULT afc = 0.373PENTOXSD TRG5.1bLTA_afc= 0.010SourceEffluent Limit CalculationsPENTOXSD TRG5.1fAML MULT = 1.720PENTOXSD TRG5.1gAVG MON LIMIT (mg/l) = 0.017NameAFCINST MAX LIMIT (mg/l) = 0.039WLA afc(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]'(1-FOS/100)LTAMULT afcWLA_afc(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]'(1-FOS/100)LTAMULT_afcWLA_cfc(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]'(1-FOS/100)LTAMULT_cfcLTAMULT_cfcEXP((0.5*LN(cvd*2/no_samples+1))*2.326*LN(cvd*2/no_samples+1)*0.5)LTA_cfcwia_cfc*LTAMULT_cfc	0.0003 = Q stream (cfs)			-			
0.3chlorine Demand of Stream0= Chlorine Demand of Discharge0.5= BAT/BPJ Value0.5= BAT/BPJ Value720= CFC_Criteria Compliance Time (min)= % Factor of Safety (FOS)= Decay Coefficient (K)SourceReferenceAFC CalculationsReferenceTRC1.3.2.iiiWLA afc0.0261.3.2.iiiWLA afc = 0.0261.3.2.iiiULA afc = 0.3735.1cLTAMULT afc = 0.373PENTOXSD TRG5.1bLTA_afc= 0.0105.1dSourceEffluent Limit CalculationsPENTOXSD TRG5.1fAML MULT = 1.720PENTOXSD TRG5.1gAVG MON LIMIT (mg/l) = 0.017AFCINST MAX LIMIT (mg/l) = 0.039WLA afc(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)LTAMULT afcEXP((0.5*LN(cvh*2+1))-2.326*LN(cvh*2+1)*0.5)LTA_afc(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)LTAMULT_cfcEXP((0.5*LN(cvd*2/no_samples+1))*0.5)LTA_efcwia_cfc*LTAMULT_cfc				-			
0= Chlorine Demand of Discharge15= AFC_Criteria Compliance Time (min)0.5= BAT/BPJ Value720= CFC_Criteria Compliance Time (min)= % Factor of Safety (FOS)= Decay Coefficient (K)SourceReferenceAFC CalculationsTRC1.3.2.iiiWLA afc = 0.0261.3.2.iiiWLA afc = 0.0261.3.2.iiiPENTOXSD TRG5.1aLTAMULT afc = 0.373PENTOXSD TRG5.1bLTA_afc= 0.010SourceEffluent Limit CalculationsPENTOXSD TRG5.1fAML MULT = 1.720PENTOXSD TRG5.1gAVG MON LIMIT (mg/l) = 0.017AFCINST MAX LIMIT (mg/l) = 0.039WLA afc(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*.021*(xcvh*2+1)*0.5)LTA_afcwla_afc*'LTAMULT_afcWLA_cfc(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*.021*(1-FOS/100)LTAMULT_cfcEXP((0.5*LN(cvd*2/no_samples+1)*0.5)LTA_efcwla_cfc*'LTAMULT_cfc				_			
0.5 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) = % Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 0.026 1.3.2.iii WLA cfc = 0.018 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 0.010 5.1d LTA_cfc = 0.011 Source Effluent Limit Calculations Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.720 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.017 AFC INST MAX LIMIT (mg/l) = 0.039 0.039 INST MAX LIMIT (mg/l) = 0.039 INST MAX LIMIT (mg/l) = 0.039					_		
= % Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 0.026 1.3.2.iii WLA cfc = 0.018 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 0.010 5.1d LTA_cfc = 0.011 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.720 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.017 AFC INST MAX LIMIT (mg/l) = 0.039 0.039 INST MAX LIMIT (mg/l) = 0.039 INST MAX LIMIT (mg/l) = 0.039			-		-		
Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 0.026 1.3.2.iii WLA cfc = 0.018 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 0.010 5.1d LTA_cfc = 0.011 Source Effluent Limit Calculations 5.1d LTA_cfc = 0.011 Source Effluent Limit Calculations 5.1d LTA_cfc = 0.011 Source Effluent Limit Calculations 0.017 AFC PENTOXSD TRG 5.1f AML MULT = 1.720 AVG MON LIMIT (mg/l) = 0.039 0.039 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc LTAMULT afc EXP((0.5*LN(cvh*2+1))-2.326*LN(cvh*2+1)^0.5) + Xd + (CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc LTAMULT_cfc EXP((0.5*LN(cvd*2/no_samples+1))-2.326*LN(cvd*2/no_samples+1)^0.5) LTA_cfc*LTAM		4			_		
TRC 1.3.2.iii WLA afc = 0.026 1.3.2.iii WLA cfc = 0.018 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 0.010 5.1d LTA_cfc = 0.011 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.720 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.017 AFC INST MAX LIMIT (mg/l) = 0.039 0.039 INST MAX LIMIT (mg/l) = 0.039 INST MAX LIMIT (mg/l) = 0.039	Source						
PENTOXSD TRG5.1a S.1bLTAMULT afc = 0.373 LTA_afc= 0.0105.1c S.1c S.1dLTAMULT cfc = 0.581 LTA_cfc = 0.011SourceEffluent Limit CalculationsPENTOXSD TRG5.1fAML MULT = 1.720 NCSD TRGAVG MON LIMIT (mg/l) = 0.017 INST MAX LIMIT (mg/l) = 0.039WLA afc(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) INST MAX LIMIT (mg/l) = 0.039AFC INST MAX LIMIT (mg/l) = 0.039WLA afc(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) INST MAX LIMIT (mg/l) = 0.039MEC INST MAX LIMIT (mg/l) = 0.039WLA afc(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) INST MAX LIMIT (mg/l) = 0.039MEC INST MAX LIMIT (mg/l) = 0.039WLA afc(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) ITAMULT afcMec EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)WLA_cfc(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) I+Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)Mec ITAMULT_cfcLTAMULT_cfcEXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)Mec ITAMULT_cfc				0.026			
PENTOXSD TRG 5.1b LTA_afc= 0.010 5.1d LTA_cfc = 0.011 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.720 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.017 AFC INST MAX LIMIT (mg/l) = 0.039 0.039 INST MAX LIMIT (mg/l) = 0.039 INST MAX LIMIT (mg/l) = 0.039 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1+FOS/100) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1+FOS/100) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1+FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^{0.5}) LTA_cfc wla_cfc*LTAMULT_cfc							
Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.720 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.017 AFC INST MAX LIMIT (mg/l) = 0.039 0.039 INST MAX LIMIT (mg/l) = 0.039 INST MAX LIMIT (mg/l) = 0.039 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) ITA_afc Wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) ITAMULT_cfc LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) ITA_cfc Wla_cfc*LTAMULT_cfc							
PENTOXSD TRG 5.1f AML MULT = 1.720 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.017 AFC INST MAX LIMIT (mg/l) = 0.039 INST MAX LIMIT (mg/l) = 0.039 AFC WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc Wa_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTAMULT_cfc	FEINTONSDIIKO	5.15		0.010	3.14		
PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.017 INST MAX LIMIT (mg/l) = 0.039 AFC WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) + Xd + (CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) WLA_efc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)	Source		Efflue	nt Limit Calcu	ations		
INST MAX LIMIT (mg/l) = 0.039 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc Wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc Wla_cfc*LTAMULT_cfc	PENTOXSD TRG	5.1f		AML MULT =	1.720		
WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc Wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) WIA_cfc wia_cfc*LTAMULT_cfc	PENTOXSD TRG	5.1g	AVG MON I	LIMIT (mg/l) =	0.017	AFC	
WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc Wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) WLA_cfc wla_cfc*LTAMULT_cfc		0	INST MAX I	LIMIT (mg/l) =	0.039		
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc							
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc							
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc Wla_cfc*LTAMULT_cfc							
LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) WIA_cfc wla_cfc*LTAMULT_cfc	WLA afc				AFC_tc))		
LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc							
WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc							
+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc	LTA_arc	atc Wa_atc*LTAMULT_atc					
+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc							
LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc							
LTA_cfc wla_cfc*LTAMULT_cfc							
	-						
AMI_MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))							
and mean and prove and outprover and an an	AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))						
AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)							
INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)							