

Southwest Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Industrial
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.	PA0205800		
APS ID	843856		
Authorization ID	1310299		

Applicant and Facility Information					
Applicant Name	South	western PA Water Authority	Facility Name	Southwestern PA Water Authority WTP	
Applicant Address	1442	Jefferson Street PO Box 187	Facility Address	310 Tin Can Hollow Road	
	Jeffer	son, PA 15344-4159	_	Rices Landing, PA 15357	
Applicant Contact	Steve	Lowther	Facility Contact	Same as Applicant	
Applicant Phone	(724)	883-2301	Facility Phone	Same as Applicant	
Client ID	38513	1	Site ID	461059	
SIC Code	4941		Municipality	Cumberland Township	
SIC Description	Trans	. & Utilities - Water Supply	County	Greene	
Date Application Rec	eived	March 30, 2020	EPA Waived?	Yes	
Date Application Acc	epted	April 6, 2020	If No, Reason		

Summary of Review

The Department received an NPDES permit renewal application from the Southwestern Pennsylvania Water Authority on March 30, 2020 for the coverage of its water treatment plant on Tin Can Hollow Road. This facility is a public water supply system that provides treated water from the Monongahela River for domestic use. The standard industrial classification (SIC) code for this type of facility is 4941, water supply.

The authority has a raw water intake and pumping station which withdraws water from the Monongahela River and pumps it to the treatment plant. Pre-treatment chemicals for disinfection, coagulation, pH adjustment, and iron and manganese removal are injected into the plant influent line. Rapid mix is provided by in-line static mixers. Two plate settler clarifiers provide flocculation and clarification. These clarifiers are then followed by eight high-rate mixed media filters. Each filter has a continuous turbidity monitor on the filter effluent line. Filter effluent is discharged to the clearwell where chemicals for disinfection, corrosion control and fluoridation are injected. Finished water is pumped from the clearwell into the distribution system by high service pumps. Support facilities on site include chemical feed area, storage area, laboratory, office, locker room and control room.

Most of the waste generated at the water treatment plant is produced during sludge withdrawal from the clarifiers and the backwash of the mixed media filters. Suspended material in the raw water and the suspended material generated during pretreatment is removed during clarification. Suspended material removed by filtration is washed out during the backwash process. Process wastewater is also generated during the filter-to-waste periods. Following the backwash process, effluent is discharged to the two wastewater lagoons. The settled solids in the clarifiers are intermittently withdrawn and conveyed to a gravity thickener. The sludge is then periodically transferred to the sludge holding tank and completely mixed. Feed sludge from the sludge holding tank is then periodically dewatered with polymer addition immediately ahead of a solid-bowl decanting centrifuge. Sludge cake from the centrifuge is conveyed to a roll-off dumpster and properly disposed of offsite. The supernatant from the lagoons is discharged via Outfall 001 to the Monongahela River, designated in 25 PA Code Chapter 93

Approve	Deny	Signatures	Date
Y		Adam Olesnanik	
^		Adam Olesnanik / Environmental Engineering Specialist	4/8/2020
Х		Michael E. Fifth, P.E. / Environmental Engineer Manager	4/21/2020

Summary of Review

as a Warm Water Fishery. Stormwater comingles with the wastewater from the lagoons prior to the discharge to Outfall 001; therefore, the effluent from the lagoons is monitored and the effluent limitations are applied at Internal Monitoring Point 101 prior to the comingling of the stormwater.

The site was last inspected on July 9, 2015; no violations were noted. The Permittee has no open violations.

Issuance of the Draft permit is recommended.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Outfall No. 0	01		Design Flow (MGD)	0.418
Latitude 39° 56′ 50″		Longitude	-79° 57' 00"	
Quad Name	Carmichae	els	Quad Code	1906
Wastewater De	scription:	Water treatment plant filter beds and stormwater	backwash, filter-to-waste water	, effluent from sludge drying
Receiving Water	rs <u>Mono</u>	ngahela River (WWF)	Stream Code	37185
NHD Com ID	13483	39924	RMI	71.63
Drainage Area	4600		Yield (cfs/mi²)	0.115
Q ₇₋₁₀ Flow (cfs) <u>530</u>		Q ₇₋₁₀ Basis	US Army Corp of Engineers	
Elevation (ft) 762		Slope (ft/ft)	0.0001	
Watershed No.	19-B		Chapter 93 Class.	WWF
Existing Use			Existing Use Qualifier	
Exceptions to U	se		Exceptions to Criteria	
Assessment Sta	atus	Attaining Use(s)		
Cause(s) of Imp	airment			
Source(s) of Im	pairment			
TMDL Status		Final	Name Monongahel	a River TMDL
Nearest Downs	tream Publi	c Water Supply Intake	Tri County Joint Municipal Aut	hority
PWS Waters	Monong	ahela River	Flow at Intake (cfs)	530
PWS RMI	65.268		Distance from Outfall (mi)	6.36

Development of Effluent Limitations						
Outfall No.	001	Design Flow (MGD)	0.418			
Latitude	39° 56' 50"	Longitude	-79° 57' 00"			
Wastewater D	escription:	Effluent from IMP 101 (filter backwash water, filter-to-waste varying beds) and plant area stormwater.	vater and effluent from sludge			

This discharge shall consist solely of sources monitored at Internal Monitoring Point 101 and uncontaminated storm water runoff from plant area. No monitoring will be imposed on Outfall 001, all limitations will be applied to the discharge from IMP 101 to isolate the process wastewater from the stormwater portion.

The Southwestern PA Water Authority sampled the stormwater discharge at Outfall 001 and the sample results indicate that the discharge is below the no exposure stormwater benchmarks, indicating that the discharge is uncontaminated stormwater. Stormwater sampling will not be imposed but semi-annual inspections will be required as part of an annual stormwater report. A part C condition is included in the permit requiring the submission of the annual stormwater report.

Development of Effluent Limitations							
IMP	101	Design Flow (MGD)	0.418				
Latitude	39° 56' 50"	Longitude	-79° 57' 0"				
Wastewater I	Wastewater Description: Filter backwash water, filter-to-waste water and effluent from sludge drying beds						

Technology-Based Limitations

The Southwestern PA Water Treatment Plant is not subject to Federal Effluent Limitation Guidelines (ELGs) as the SIC code is not listed under 40 CFR parts 405 through 471.

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) which is displayed in Table 1 below.

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code §§ 95.2(1) which is displayed in Table 1 below.

Pennsylvania regulations at 25 Pa. Code § 92a.48(b) require the imposition of technology-based TRC limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELGs or a facility-specific BPJ evaluation which is displayed in Table 1 below.

Table 1. Regulatory Effluent Standards

Parameter	Monthly Avg	Daily Max	IMAX
Flow	Monitor	Monitor	
pH	6-9 at a	II times	
TRC 0.5 mg/l			1.6 mg/l

Best Practicable Control Technology Currently Achievable (BPT)

BPT for wastewater from treatment of WTP sludges and filter backwash is found in DEPs Technology-Based Control Requirements for Water Treatment Plant Wastes Document which falls under Best Professional Judgement under 40 CFR § 125.3 and the limits imposed are displayed in Table 2 below.

Table 2. BPT Limits for WTP sludge and filter backwash wastewater

Parameter	Monthly Avg (mg/l)	Daily Max (mg/l)					
Suspended solids	30.0	60.0					
Iron (total)	2.0	4.0					
Aluminum (total)	4.0	8.0					
Manganese (total)	1.0	2.0					
Flow	Monitor						
рН	6-9 at a	II times					
Total Residual Chlorine	0.5	1.0					

Water Quality-Based Limitations

Toxics Screening Analysis – Procedures for Evaluating Reasonable Potential and Developing WQBELs

DEP's procedures for evaluating reasonable potential are as follows:

- 1. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken from the permit application.
- 2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion are pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water</p>

NPDES Permit Fact Sheet Southwestern PA Water Authority WTP

quality criterion]. List all toxic pollutants of concern in a Toxics Screening Analysis section of the fact sheet (see Attachment B).

- For any outfall with an applicable design flow, perform PENTOXSD modeling for all pollutants of concern. Use the
 maximum reported value from the application form or from DMRs as the input concentration for the PENTOXSD
 model run.
- 4. Compare the actual WQBEL from PENTOXSD with the maximum concentration reported on DMRs or the permit application. Use WQN data or another source to establish the existing or background concentration for naturally occurring pollutants, but generally assume zero background concentration for non-naturally occurring pollutants.
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by PENTOXSD. Establish an IMAX limit at 2.5 times the average monthly limit.
 - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
 - For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are collected on a spreadsheet titled "Toxics Screening Analysis." (Attachment B).

PENTOXSD Water Quality Modeling Program

PENTOXSD Version 2.0 for Windows is a single discharge, mass-balance water quality modeling program that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number and discharge flow rate are entered into PENTOXSD to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Pollutants are then selected for analysis based on those present or likely to be present in a discharge at levels that may cause, have the reasonable potential to cause, or contribute to excursions above state water quality standards (i.e., a reasonable potential analysis). Discharge concentrations for the selected pollutants are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). PENTOXSD then evaluates each pollutant by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, PENTOXSD may recommend average monthly and maximum daily WQBELs.

Reasonable Potential Analysis and WQBEL Development for IMP 101

Table 3: PENTOXSD Inputs

Parameter	Value					
River Mile Index	71.63					
Discharge Flow (MGD)	0.418					
Basin/Stream Characteristics						
Parameter	Value					
Area in Square Miles	4600					
Q ₇₋₁₀ (cfs)	530					
Low-flow yield (cfs/mi²)	0.115					
Elevation (ft)	762					
Slope	0.0001					

Discharges from IMP 101 are evaluated based on concentrations reported on the application and on DMRs; data from those sources are used for toxics screening as described above. The PENTOXSD model is run with the discharge and receiving stream characteristics shown in Table 3. The pollutants selected for analysis include those identified as candidates for modeling by the Toxics Screening Analysis spreadsheet (in accordance with Step 2 of the Toxics Screening Analysis procedure discussed above). Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis.

The WQBELs calculated using PENTOXSD are compared to the maximum reported effluent concentrations as described in the Toxics Screening Analysis section above to evaluate the need to impose WQBELs or monitoring requirements in the permit. Output from the PENTOXSD model run is included in Attachment C. No WQBELs are recommended based on the Water Quality Analysis.

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and chlorine demands for the receiving stream and the discharge, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/l from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is imposed in the permit. The results of the modeling, included in Attachment D, indicate that no WQBELs are required for TRC.

Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I). The limits below in Table 4 are from the current permit. The parameters listed are from the Departments Technical Support Document (TSD) "Development of Technology-Based Control Requirements for Water Treatment Plant Wastes in Pennsylvania".

Table 4: Current Permit Effluent Limits

	Mass (lb/day)		Concentration (mg/l)				
Parameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	
Total Suspended Solids	XXX	XXX	XXX	30	XXX	60	
Total Residual Chlorine	XXX	XXX	XXX	0.5	XXX	1.0	
Total Aluminum	XXX	XXX	XXX	4.0	XXX	8.0	
Total Iron	XXX	XXX	XXX	2.0	XXX	4.0	
Total Manganese	XXX	XXX	XXX	1.0	XXX	2.0	
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	

Proposed Effluent Limitations for IMP 101

The proposed effluent limitations and monitoring requirements for IMP 101 are shown below in Table 5. Note that some values were incorrectly labeled as IMAX values in the previous permit when they should have been label as Daily Max, this has been changed to reflect existing permitting practices. The monitoring frequency will remain the same as the current permit, twice per month.

Table 5: Proposed Effluent Limitation for IMP 101

Parameters	Mass (Mass (Ib/day)		Concentration			Monito Require	-
Parameters	Average Monthly	Daily Maximum	Instant. Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	2/Month	Measure
Total Suspended Solids (mg/L)	XXX	XXX	XXX	30.0	60.0	XXX	2/Month	Grab
Total Residual Chlorine (mg/L)	XXX	XXX	XXX	0.5	1.0	XXX	2/Month	Grab
Total Aluminum (mg/L)	XXX	XXX	XXX	4.0	8.0	XXX	2/Month	Grab
Total Iron (mg/L)	XXX	XXX	XXX	2.0	4.0	XXX	2/Month	Grab
Total Manganese (mg/L)	XXX	XXX	XXX	1.0	2.0	XXX	2/Month	Grab
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	2/Month	Grab

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment)
PENTOXSD for Windows Model (see Attachment C)
TRC Model Spreadsheet (see Attachment D)
Temperature Model Spreadsheet (see Attachment)
Toxics Screening Analysis Spreadsheet (see Attachment B)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved
 Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design
Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

Attachments

Attachment A: StreamStats Drainage Area Attachment B: Toxics Screening Analysis Attachment C: PENTOXSD Model run Attachment D: TRC Evaluation Model Attachment A: StreamStats Drainage Area

Outfall 001 StreamStats Report

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	4600	square miles
ELEV	Mean Basin Elevation	1933.7	feet

arameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4600	square miles	2.26	1400
ELEV	Mean Basin Elevation	1933.7	feet	1050	2580
.ow-Flow Statistics Disclain	DEFS(10) Percent (4995 equate collect) Low-Row Region 4[
One or more of the parar	neters is outside the suggested range. Estim	ates were extrapolated	with unknown errors		
Low-Flow Statistics Flow Re	DOFT(100 Percent (4590 aguses miles) Low Fine Region 4)				
Statistic			Value	U	nit
7 Day 2 Year Low Flow			622	ft	^3/s
30 Day 2 Year Low Flow	N .		833	ft	^3/s
7 Day 10 Year Low Flow	N .		354	ft	^3/s
30 Day 10 Year Low Flo	w		420	ft	^3/s
90 Day 10 Year Low Flo	ow .		634	ft	^3/s

Attachment B: Toxic Screening Analysis

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN **VERSION 2.7**

CLEAR FORM

Facility: Southwestern PA WTP

Analysis Hardness (mg/L): 100 Stream Flow, Q7-10 (cfs): 530 NPDES Permit No.: Discharge Flow (MGD):

PA0205800 0.418

Outfall:

001 Analysis pH (SU):

	Parameter		aximum Concentration in pplication or DMRs (µg/L)	Most Stringent Criterion (μg/L)	Candidate for PENTOXSD Modeling?	Most Stringent WQBEL (µg/L)	Screening Recommendation
	Total Dissolved Solids		130000	500000	No		
1	Chloride		15200	250000	No		
Group	Bromide		100	N/A	No		
5	Sulfate		48400	250000	No		
	Fluoride		650	2000	No		
	Total Aluminum		860	750	Yes	295984.1	No Limits/Monitoring
	Total Antimony		2	5.6	No		
	Total Arsenic		2	10	No		
	Total Barium		280	2400	No		
	Total Beryllium		0.1	N/A	No		
	Total Boron	<	100	1600	No (Value < QL)		
	Total Cadmium		0.3	0.271	Yes	166.625	No Limits/Monitoring
	Total Chromium	<	1	N/A	No		
	Hexavalent Chromium	<	5	10.4	No		
	Total Cobalt		0.5	19	No		
~	Total Copper	<	2	9.3	No (Value < QL)		
Group	Total Cyanide		1	N/A	No		
15	Total Iron		140	1500	No		
	Dissolved Iron	<	20	300	No (Value < QL)		
	Total Lead		16	3.2	Yes	1958.939	No Limits/Monitoring
	Total Manganese		131	1000	No		
	Total Mercury	<	0.05	0.05	No (Value < QL)		
	Total Molybdenum		0.3	N/A	No		
	Total Nickel		2	52.2	No		
	Total Phenols (Phenolics)		40	5	Yes	10000000	No Limits/Monitoring
	Total Selenium	<	5	5.0	No (Value < QL)		
	Total Silver		0.1	3.8	No		
	Total Thallium	<	2	0.24	No (Value < QL)		
	Total Zinc		21	119.8 13	No		

Attachment C: PENTOXSD model run

PENTOXSD

Modeling Input Data

Strea		Elevation (ft)		rainage Area (sq mi)		Slope	PWS (mg				pply FC	_			
371	185 71.63	762	2.00	4600.0	0 0	0.00010		0.00			✓				
								Stream D	ata						
	LFY	Trib Flow	Strear Flow			Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	<u>ry</u> pH	Strear Hard	<u>n</u> pH	Analys Hard	<u>p</u> H
	(cfsm)	(cfs)	(cfs))		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.1	0	53	30	0	700	15	0	0	100	7	0	0	0	0
Qh		0		0	0	0	0	0	0	100	7	0	0	0	0
							D	ischarge [Data						
	Name	Perm Numb		xisting Disc Flow		mitted Disc Iow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
				(mgd)	(m	ngd)	(mgd)						(mg/L)		
S	W PA WTP	PA020	5800	0.418		0	0	0	0.75	0.75	0.75	0.75	100	7	
							P	arameter D)ata						
	Parameter N	lame		Disc Con		Trib Conc	Dise Daily CV	/ Hourl	y Con		Fate Coef		Crit Mod	Max Disc Conc	
				(µg/l	_)	(µg/L))		(µg/	L)				(µg/L)	
ALUMI				1000			0.			_	0	0	1	0	
CADM	IUM			1000			0.			_	0	0	1	0	
LEAD	OLIOO (DIVIS)			1000			0.		_	_	0	0	1	0	
PHEN	OLICS (PWS)			1E+	30	0	0.	5 0.5	0	0	0	0	1	0	

Stre Co	eam ode	RMI	Elevati (ft)		ainage Area sq mi)	Slope	PWS (m	With gd)			pply FC	_			
37	7185	65.27	76	1.00	4601.0	0.0001	0	0.00			✓				
								Stream D	ata						
		LFY	Trib Flow	Stream Flow	WD Rati		Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	ary pH	<u>Strear</u> Hard	<u>m</u> pH	Analys Hard	pH
	(0	cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10)	0.1	0	530)	0 700	15	0	0	100	7	0	0	0	0
Qh			0	()	0 0	0	0	0	100	7	0	0	0	0
							[Discharge [Data						
	Nam	ne	Pern Num	ber [isting I Disc Flow	Permitted Disc Flow	Design Disc Flow	Reserve Factor		CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
				(r	ngd)	(mgd)	(mgd)						(mg/L)		
					0	0	0	0	0	0	0	0	100	7	
							P	arameter [Data						
	Para	ameter N	lame		Disc Cond			ly Hour	ly Con		n Fate Coe		Crit Mod	Max I Disc Conc	
					(µg/L) (µg/l	L)		(µg/	L)				(µg/L)	
	MUMIN				0	0		.5 0.5		_	0	0	1	0	
CADN					0	0		.5 0.5		_	0	0	1	0	
LEAD					0	0	_	.5 0.5		_	0	0	1	0	
PHEN	OLICS	(PWS)			0	0	0	.5 0.5	5 0	0	0	0	1	0	

PENTOXSD Analysis Results

Hydrodynamics

	S	WP Basir	<u>1</u>	Stream	n Code:			<u>Strear</u>	n Name:	<u>:</u>			
		19A		37	185		M	ONONGA	HELA R	RIVER			
	RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)	
_						Q7-	-10 Hyd	drodyna	mics				
	71.630	530	0	530	0.64664	0.0001	15	700	46.667	0.0505	7.6906	1000+	
	65.270	530	0	530	NA	0	0	0	0	0	0	NA	
						Q	h Hydr	odynan	nics				
	71.630	1786.5	0	1786.5	0.64664	0.0001	25.593	700	27.351	0.0998	3.8962	1000+	
	65.270	1786.5	0	1786.5	NA	0	0	0	0	0	0	NA	

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name	Permit N	Number						
71.63	SW PA WTP	PA020	5800						
					AFC				
Q	7-10: CCT (n	nin) 15	PMF	0.75	Analysis	рН 7	Analysis	s Hardness	100
	Parameter	-	Stream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
			(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	ALUMINUM		0	0	0	0	750	750	461782.8
	CADMIUM		0	0	0	0	2.014	2.133	1313.424
			Dissolved	WQC. C	hemical tra	anslator of 0).944 applied	d.	
	LEAD		0	0	0	0	64.581	81.645	50269.72
						anslator of 0).791 applied		
	PHENOLICS (PW	(S)	0	0	0	0	NA	NA	NA
					CFC				
Q7-10:	CCT (m	in) 720	PMF	0.75	Analysis	pH 7	Analysi	s Hardness	100
			Stream	Stream		Fate	WQC	WQ	WLA
	Parameter		Conc. (µg/L)	CV	Conc. (µg/L)	Coef	(µg/L)	Obj (µg/L)	(µg/L)
	ALUMINUM		0	0	0	0	NA	NA	NA
	CADMIUM		0	0	0	0	0.246	0.271	166.625
	LEAD		0	WQC. C	nemicai tra 0	ansiator of u	0.909 applied 2.517	a. 3.182	1958.939
	LEAD		_	_	_		2.517).791 applied		1936.939
	PHENOLICS (PW	S)	0	0	0	0	NA NA	NA NA	NA
					тнн				
Q7-10:	CCT (m	in) 720	PMF	0.75	Analysis	spH NA	Analysi	s Hardness	NA
			Stream	Stream	Trib	Fate	WQC	WQ	WLA
	Parameter		Conc (µg/L)	CV	Conc (µg/L)	Coef	(µg/L)	Obj (µg/L)	(µg/L)
			(P8/2/		(P8/ =/		(18/1/	(P8'-)	(P8'-)
	ALUMINUM		0	0	0	0	NA	NA	NA
	CADMIUM		0	0	0	0	NA	NA	NA
	LEAD		0	0	0	0	NA	NA	NA
	PHENOLICS (PW	(S)	0	0	0	0	5	5	NA
					CRL				
Qh:	CCT (m	in) 72	0 PMF	0.75					

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name	Permit Number						
71.63	3 SW PA WTP	PA0205800						
	Parameter	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	ALUMINUM	0	0	0	0	NA	NA	NA
	CADMIUM	0	0	0	0	NA	NA	NA
	LEAD	0	0	0	0	NA	NA	NA
	PHENOLICS (PWS	6) 0	0	0	0	NA	NA	NA

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name	Permit Number
71.63	SW PA WTP	PA0205800

CADMIUM

PHENOLICS (PWS)

LEAD

PENTOXSD Analysis Results

Recommended Effluent Limitations

SWP Basin 19A	Stream Code: 37185		М	Stream ONONGAH	Name: ELA RIVER		
RMI	Name		mit mber	Disc Flow (mgd)			
71.63	SW PA WTP	PA02	05800	0.4180	_		
	Parameter	Effluent Limit	Gove		Max. Daily Limit	WQBEL	tringent WQBEL
ALUMINUM		(µg/L) 295984.1	Crite		(μg/L) 461782.7	(µg/L) 295984.1	AFC

166.625 CFC

1E+30 INPUT

1958.939 CFC

259.962

3056.26

.560161E+30

166.625

1958.939

NA

CFC

CFC

NΑ

Attachment D: TRC Evaluation Model

TRC EVALUATION

530	= Q stream (cfs)	0.5	= CV Daily						
0.418	= Q discharg	ge (MGD)	0.5	= CV Hourly						
4	= no. sample	es	0.75	= AFC_Partial N	Mix Factor					
0.3	= Chlorine D	emand of Stream	0.75	= CFC_Partial N	Mix Factor					
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)					
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)					
	= %Factor of	of Safety (FOS)		=Decay Coeffic	ient (K)					
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 191.186					
PENTOXSD TRO		LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRO	5.1b	LTA_afc=	73.076	5.1d	LTA_cfc = 111.147					
Source			nt Limit Calcu							
PENTOXSD TRO			AML MULT =							
PENTOXSD TRO	PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ									
		INST MAX L	.IMIT (mg/l) =	1.170						
WLA afc	+ Xd + (AFC	FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(c	OS/100)							
LTA_afc	wla_afc*LTA		JWI 211) 0.0)							
WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)									
AML MULT AVG MON LIMIT INST MAX LIMIT	MIN(BAT_BP	N((cvd^2/no_samples J,MlN(LTA_afc,LTA_cf n_limit/AML_MULT)/L	c)*AML_MUL	T)	amples+1))					