

Northcentral Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0208647

APS ID 1041023

Authorization ID 1358116

Applicant Name	Kratzer Run Sewer Authority	Facility Name	Kratzer Run Sewer Authority WWTP
Applicant Address	PO Box 253	Facility Address	1265 Stronach Road
	Grampian, PA 16838-0253		Grampian, PA 16838-7911
Applicant Contact	Betty Jo Sutika, Secretary	Facility Contact	Betty Jo Sutika, Secretary
Applicant Phone	(814) 236-8346	Facility Phone	(814) 236-8346
Client ID	159928	Site ID	482999
Ch 94 Load Status	Not Overloaded	Municipality	Penn Township
Connection Status	No Limitations	County	Clearfield
Date Application Rece	eived _ June 8, 2021	EPA Waived?	No
Date Application Acce	epted June 21, 2021	If No, Reason	Discharge with Wasteload Allocation in a EPA-approved TMDL

Summary of Review

The subject facility is a municipal sewage treatment plant serving Grampian Borough and Penn Township in Clearfield County. A map indicating the discharge location is attached (Attachment A).

Sludge use and disposal description and location(s): The facility's dried sludge is disposed by landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
✓		Keith C. Allison Keith C. Allison / Project Manager	October 21, 2021
✓		Nícholas W. Hartranft Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	October 22, 2021

Discharge, Receiving Waters and Water Supply Information							
Outfall No. 001			Design Flow (MGD)	0.08			
Latitude 40° 58	8' 2.67"		Longitude	-78° 35' 12.20"			
Quad Name Cur	wensvi	le, PA	Quad Code	1117			
Wastewater Descrip	tion:	Sewage Effluent					
Receiving Waters	Kratze	er Run (CWF)	Stream Code	26659			
NHD Com ID	61831	557	RMI	2.6			
Drainage Area	5.77 n	ni ²	Yield (cfs/mi²)	0.0886			
				USGS Gage 01541000, W. Branch Susquehanna River			
Q ₇₋₁₀ Flow (cfs)	0.54		Q ₇₋₁₀ Basis	at Bower, PA (1915-2008)			
Elevation (ft)	1480		Slope (ft/ft)	0.2178			
Watershed No.	8-B		Chapter 93 Class.	CWF			
Existing Use	N/A		Existing Use Qualifier	N/A			
Exceptions to Use	None		Exceptions to Criteria	None			
Assessment Status		Impaired	<u> </u>				
Cause(s) of Impairm	nent	METALS, NUTRIENTS, PH					
			CID MINE DRAINAGE, ON-SIT				
Source(s) of Impairn	nent		IMILAR DECENTRALIZED SY	,			
TMDL Status		Final	Name Anderson C	reek			
Nearest Downstrear	n Public	: Water Supply Intake	PA-American Water Company	at Milton, PA			
PWS Waters V	Vest Bra	anch Susquehanna River	Distance from Outfall (mi)	Approx. 153			

Changes Since Last Permit Issuance: None. The above discharge and drainage characteristics are from the previous review and remain adequate.

Other Comments:

The above-listed Anderson Creek TMDL is primarily for pH and metals from Abandoned Mine Drainage (AMD) but also includes nutrient impairment for the Kratzer Run sub-watershed. This facility was included as a source of pollution and has received a wasteload allocation for phosphorus in an amendment to the TMDL in 2014 of 1.34 lbs/day and 487.35 lbs/year from a concentration of 2.0 mg/L. The daily waste load allocation of 1.34 lbs/day from the TMDL will be included at this time in addition to the concentration and annual load limits already included.

Due to the AMD-related impairments monitoring was included in the previous permit for the metals typically associated with AMD – Aluminum, Iron, and Manganese. This monitoring for the past permit term found the levels for all three of these parameters to be below their respective instream criteria and therefore, the monitor will not continue at this time. It is noted that the facility also meets its pH limits. Per the TMDL, Kratzer Run is meeting criteria related to AMD near the discharge point (site KR2).

The discharge is not expected to affect any downstream water supply at this time with the limitations and monitoring proposed.

Treatment Facility Summary								
Treatment Facility Na	ı me: Kratzer Run Sewer Au	thority WWTP						
WQM Permit No.	Issuance Date							
1793407	May 2, 1994							
'	•							
	Degree of			Avg Annual				
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)				
Sewage	Secondary	Extended Aeration	UV	0.08				
Hydraulic Capacity	Organic Capacity			Biosolids				
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal				
0.08	167	Not Overloaded	Aerobic Digestion	Landfill				

Changes Since Last Permit Issuance: UV disinfection was installed during the past permit term without permit approval.

Other Comments: The treatment plant consists of a comminutor, bar screen, 13,200-gallon aerated equalization tank, two 40,000-gallon aeration tanks, one 7,500-gallon clarifier, UV disinfection, aerobic digester and sludge drying beds. Per the application the permittee retains the capability to disinfect with sodium hypochlorite.

Compliance History

DMR Data for Outfall 001 (from September 1, 2020 to August 31, 2021)

Flow (MGD)	0.018
Flow (MGD) Daily Maximum O.0667 O.0537 O.0368 O.0399 O.0357 O.0453 O.0648 O.0488 O.0550 O.0452 O.0359 O.0359 O.0452 O.0452 O.0359 O.0452 O.0452 O.0359 O.0452 O.0452	0.0249
Daily Maximum 0.0667 0.0537 0.0368 0.0399 0.0357 0.0453 0.0648 0.0488 0.0550 0.0452 0.0359 pH (S.U.) Minimum 6.9 6.9 6.9 6.7 6.7 6.8 6.9 6.7 7.0 6.6 pH (S.U.) Maximum 7.2 7.2 7.3 7.2 7.2 7.2 7.1 7.3 7.4 7.4 7.3 DO (mg/L) Minimum 3.6 3.5 3.4 3.4 3.4 3.6 3.4 3.3 3.3 3.2 3.2 TRC (mg/L) Average Monthly GG GG<	
pH (S.U.) Minimum 6.9 6.9 6.9 6.9 6.7 6.7 6.8 6.9 6.7 7.0 6.6 pH (S.U.) Maximum 7.2 7.2 7.3 7.2 7.2 7.2 7.1 7.3 7.4 7.4 7.3 DO (mg/L) Minimum 3.6 3.5 3.4 3.4 3.4 3.6 3.4 3.3 3.3 3.2 3.2 TRC (mg/L) Average Monthly GG GG </td <td></td>	
Minimum 6.9 6.9 6.9 6.9 6.7 6.7 6.8 6.9 6.7 7.0 6.6 pH (S.U.) Maximum 7.2 7.2 7.2 7.2 7.1 7.3 7.4 7.4 7.3 DO (mg/L) Minimum 3.6 3.5 3.4 3.4 3.4 3.6 3.4 3.3 3.3 3.2 3.2 TRC (mg/L) Average Monthly GG GG <td></td>	
pH (S.U.) Maximum 7.2 7.2 7.3 7.2 7.2 7.2 7.1 7.3 7.4 7.4 7.3 DO (mg/L) Minimum 3.6 3.5 3.4 3.4 3.6 3.4 3.3 3.3 3.2 3.2 TRC (mg/L) Average Monthly GG GG <td< td=""><td>0.5</td></td<>	0.5
Maximum 7.2 7.2 7.3 7.2 7.2 7.2 7.1 7.3 7.4 7.4 7.3 DO (mg/L) Minimum 3.6 3.5 3.4 3.4 3.6 3.4 3.3 3.3 3.2 3.2 TRC (mg/L) Average Monthly GG GG <td>6.5</td>	6.5
DO (mg/L) 3.6 3.5 3.4 3.4 3.4 3.6 3.4 3.3 3.3 3.2 3.2 TRC (mg/L) Average Monthly GG GG <td></td>	
Minimum 3.6 3.5 3.4 3.4 3.4 3.6 3.4 3.3 3.3 3.2 3.2 TRC (mg/L) Average Monthly GG	7.5
TRC (mg/L) GG	
Average Monthly GG	3.2
TRC (mg/L) Instantaneous Maximum GG GG GG GG GG GG GG GG GG	
Instantaneous Maximum GG	GG
Maximum GG GG GG GG GG GG GG GG	
	GG
CBOD5 (lbs/day)	
Average Monthly < 0.5 < 0.7 < 0.5 1.0 0.7 0.8 1.0 1.0 1.0 1.0 0.5	0.3
CBOD5 (lbs/day)	
Weekly Average 0.5 1.0 0.8 2.7 0.6 1.5 1.6 2.3 1.5 1.4 0.8	0.4
CBOD5 (mg/L)	•
Average Monthly < 2 < 3 < 3 2 < 2 6 5 7 5 4	< 2
CBOD5 (mg/L)	•
Weekly Average 2 4 5 7 3 3 8 12 5 7 6	3
BOD5 (lbs/day)	
Raw Sewage Influent	4.4
Average Monthly 16 11 17 15 34 27 23 22 23 20 18 BOD5 (lbs/day) Image: Body and the second content of the secon	11
Raw Sewage Influent	
Naw Sewage Initident	14
BOD5 (mg/L)	14
Raw Sewage Influent	
Average Monthly 72 49 92 65 134 94 136 103 109 106 118	77
TSS (lbs/day)	
Average Monthly < 0.7 < 0.6 < 0.7 < 1.5 0.7 1.7 2.3 1.9 3.4 2.1 0.6	0.6
TSS (lbs/day)	0.0
Raw Sewage Influent	
Average Monthly 20 10 12 16 16 30 12 21 28 18 15	

NPDES Permit No. PA0208647

NPDES Permit Fact Sheet Kratzer Run Sewer Authority WWTP

TSS (lbs/day)												
Raw Sewage Influent												
Daily Maximum	27	14	16	28	27	47	19	28	34	23	21	15
TSS (lbs/day)												
Weekly Average	0.8	0.8	1.2	4.2	1.0	4.1	3.9	2.1	7.3	4.1	1.1	1.1
TSS (mg/L)												
Average Monthly	< 3	< 3	< 4	< 5	3	5	13	9	17	11	4	< 4
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	86	45	66	65	67	99	67	94	134	96	98	79
TSS (mg/L)		_	_		_						_	_
Weekly Average	4	3	6	10	4	12	24	11	33	21	7	8
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 1	< 2	< 1	< 1	< 2	< 1	116	< 2	< 7	< 1	29	< 1
Fecal Coliform												
(CFU/100 ml)												
Instantaneous	_					_						
Maximum	2	9.6	< 1	< 1	7.4	1	579.4	16	2419.6	5.2	217.8	1
Ammonia (lbs/day)												
Average Monthly	0.1	0.08	< 0.2	< 0.02	0.02	0.1	0.5	0.8	0.52	0.05	0.07	0.5
Ammonia (mg/L)												
Average Monthly	0.504	0.364	< 1.154	< 0.1	0.1	0.3	3.06	3.28	2.41	0.84	0.51	0.5
Total Phosphorus												
(lbs/day)												
Average Monthly	0.6	0.3	0.3	0.2	0.3	0.3	0.3	0.2	0.3	0.3	0.3	0.3
Total Phosphorus												
(mg/L)												
Average Monthly	2.62	1.33	1.64	1.09	1.33	0.658	2.0	0.87	1.44	1.49	2.01	1.86

Compliance History, Cont'd

Effluent Violations for Outfall 001, from: September 1, 2020 To: August 31, 2021

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	9/30/21	Inst. Max	2419.6	CFU/100 ml	1000	CFU/100 ml
Total Phosphorus	08/31/21	Avg Mo	2.62	mg/L	2.0	mg/L
Total Phosphorus	10/31/20	Avg Mo	2.01	mg/L	2.0	mg/L

Compliance History, Cont'd							
Summary of Inspections:	The facility was inspected most recently by the Department on November 12, 2020. This inspection identified violations including failure to obtain WQM permit approval, failure to notify DEP of physical changes, effluent violations, and failure to comply with terms of a WQM permit.						
Other Comments:	A query in WMS found the open violations listed below for Kratzer Run Sewer Authority in eFACTS.						

Open violations in eFACTS for Kratzer Run Sewer Authority

CLIENT ID	CLIENT	PROGRAM SPECIFIC ID	INSP ID	VIOLATION ID	VIOLATION DATE	VIOLATION CODE	VIOLATION
159928	KRATZER RUN SEW AUTH	PA0208647	3126571	903212	11/12/2020	92A.44	NPDES - Violation of effluent limits in Part A of permit
159928	KRATZER RUN SEW AUTH	PA0208647	3126571	903213	11/12/2020	CSL611	CSL - Failure to comply with terms and conditions of a WQM permit
159928	KRATZER RUN SEW AUTH	PA0208647	3126571	903214	11/12/2020	92A.41(A)12A	NPDES - Failure to notify DEP of planned physical changes to a facility
159928	KRATZER RUN SEW AUTH	PA0208647	3126571	903215	11/12/2020	91.21	CSL - Failure to apply for and/or obtain a WQM permit for the construction of sewage or industrial waste facilities

NPDES Permit Fact Sheet Kratzer Run Sewer Authority WWTP

Existing Effluent Limitations and Monitoring Requirements								
		Monitoring Re	quirements					
Parameter	Mass Units (lbs/day) (1)			Concentrat	Minimum ⁽²⁾	Required		
raiametei	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Metered
pH (S.U.)	XXX	XXX	6.0	XXX	9.0 Max	XXX	1/day	Grab
DO	XXX	XXX	Report	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	16.7	26.7	XXX	25	40	50	1/week	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	8-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	8-Hr Composite
TSS	20.0	30.0	XXX	30	45	60	1/week	8-Hr Composite
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/year	8-Hr Composite
Ammonia Nov 1 - Apr 30	Report	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	10.6	XXX	XXX	16	XXX	32	2/month	8-Hr Composite
Total Phosphorus (lbs/year)	XXX	487.35 Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Phosphorus	Report	XXX	XXX	2.0	XXX	XXX	2/month	8-Hr Composite
Total Aluminum	Report	XXX	XXX	Report	XXX	XXX	1/year	8-Hr Composite
Total Iron	Report	XXX	XXX	Report	XXX	XXX	1/year	8-Hr Composite
Total Manganese	Report	XXX	XXX	Report	XXX	XXX	1/year	8-Hr Composite

Development of Effluent Limitations								
Outfall No.	001		Design Flow (MGD)	0.08				
Latitude	40° 58' 2.60'		Longitude	-78° 35' 12.20"				
Wastewater Description: Sewage Effluent			-					

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: The above limitations are applicable and included in the existing permit. Due to the addition of e. coli bacteria criteria to Chapter 93 of the Department's regulations in 2021, monitoring for e. coli will now be included in the permit.

Water Quality-Based Limitations CBOD5, NH3-N and DO

The WQM7.0 model allows the Department to evaluate point source discharges of dissolved oxygen (DO), carbonaceous BOD (CBOD $_5$), and ammonia-nitrogen (NH $_3$ -N) into free-flowing streams and rivers. To accomplish this, the model simulates two basic processes: the mixing and degradation of NH $_3$ -N in the stream and the mixing and consumption of DO in the stream due to the degradation of CBOD $_5$ and NH $_3$ -N. The facility has an existing water quality-based limitation for ammonia-nitrogen of 16 mg/L as a monthly average.

WQM7.0 modeling was performed at this time (see Attachment B) for the discharge to Kratzer Run and indicated that the existing secondary limits for CBOD5 are adequate to protect the receiving stream but a more stringent May through October Monthly Average limitation for ammonia-nitrogen of 11.94 mg/l will be necessary. The more stringent limitation is due to changes in 2021 to the Department's ammonia-nitrogen criteria in Chapter 93. Based on the data for the facility listed on page 5 of this Fact Sheet, the facility should be capable of meeting the limit. No November through April limit is necessary due to typically higher flows and lower temperatures during this period. The existing DO monitoring will continue.

Disinfection/Total Residual Chlorine

The facility has an existing BAT monthly average limit of 0.5 mg/l with the typical instantaneous maximum limit of 1.6 mg/l. The attached modeling shows that the limit of 0.5 mg/l is adequate to protect the receiving stream. While chlorine is no longer used at the facility TRC monitoring will be included in the draft permit while chlorine is still the only WQM permitapproval disinfection method and the permittee retains the ability to use chlorination.

Due to the actual use of UV disinfection at the facility monitoring will be included in the draft permit for UV Light Intensity. The permittee will be asked to clarify the actual monitoring capabilities for UV in the draft cover letter so that the monitoring can be altered, if necessary.

Toxics Management

No further "Reasonable Potential Analysis" was performed to determine additional parameters of concern for this minor municipal treatment plant with no significant industrial users.

Chesapeake Bay/Nutrient Requirements

As noted above the facility has received Wasteload Allocations for Total Phosphorus under the Anderson Creek TMDL which will be included in the draft permit.

In addition, according to the Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, this facility is considered a Phase 5 Chesapeake Bay sewage discharger, and as such requires no nutrient loading limits. Per the application the Total Nitrogen has averaged 13.2 mg/L and the Total Phosphorus has averaged 1.80 mg/L. Regular Total Phosphorus monitoring will continue due to the existing effluent limitation. The existing annual monitoring for Total Nitrogen will also remain.

Best Professional Judgment (BPJ) Limitations

Comments: No BPJ limits are necessary beyond the technology-based limits noted above.

Anti-Backsliding

No proposed limitations have been made less stringent consistent with the antidegradation requirements of the Clean Water Act and 40 CFR 122.44(I).

Additional Considerations

None

Proposed Effluent Limitations and Monitoring Requirements

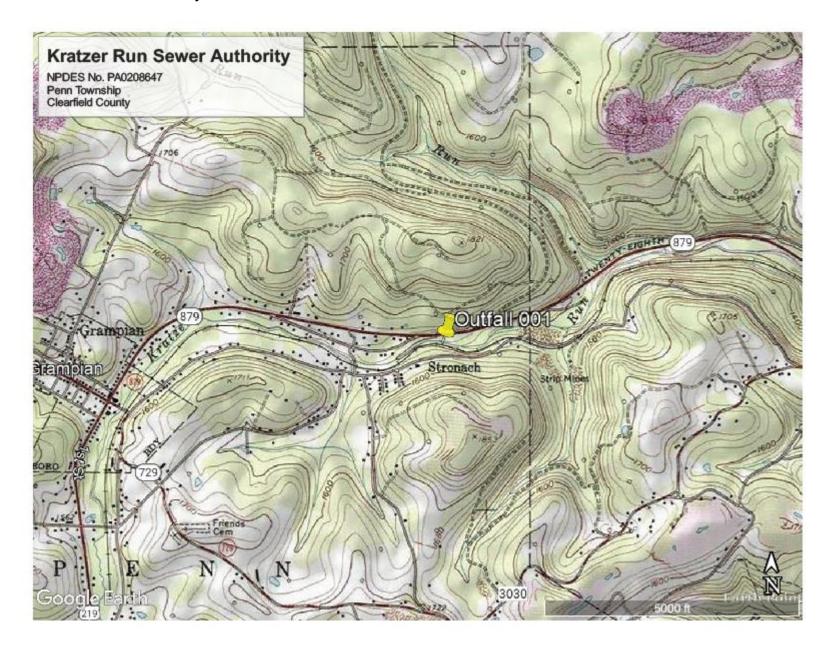
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Unit	s (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Metered
pH (S.U.)	XXX	XXX	6.0	XXX	9.0 Max	XXX	1/day	Grab
DO	XXX	XXX	Report	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	16.7	26.7	XXX	25	40	50	1/week	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	8-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	8-Hr Composite
TSS	20.0	30.0	XXX	30	45	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/year	8-Hr Composite
Ammonia Nov 1 - Apr 30	Report	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	7.97	XXX	XXX	11.94	XXX	23.88	2/month	8-Hr Composite
Total Phosphorus (lbs/year)	XXX	487.35 Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum (2)	Required
Farameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Type
		1.34						8-Hr
Total Phosphorus	Report	Daily Max	XXX	2.0	XXX	XXX	2/month	Composite
					Report			
e. Coli (No./100 ml)	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Grab
UV Light Intensity (mW/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Measured


Compliance Sampling Location: Outfall 001

Other Comments: Fecal Coliform monitoring units has been more accurately changed to No./100 ml from CFU/100 ml. Quarterly e. Coli monitoring is now included consistent with Department policy and recent changes to Chapter 93 of the Department's regulations. Monitoring for Total Aluminum, Total iron, and Total Manganese has been removed as noted above. A more stringent ammonia-nitrogen limitation is included as mentioned above.

	Tools and References Used to Develop Permit
<u> </u>	T
	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
\boxtimes	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\boxtimes	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\boxtimes	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\boxtimes	SOP: Establishing Effluent Limitations for Individual Sewage Permits, rev. 3/24/21
	Other:

Attachments:

- A. Discharge Location Map
 B. WQM7.0 Model
 C. TRC Model

Input Data WQM 7.0

	SWP Basir	Cod	le		sam Name		RMI		(ft)	Drain: Are (sq r	sa mi)	Slope (ft/ft)	PW Withd (mg	rawal gd)	Apply FC
	08B	266	359 KRAT.	ZER RUN			2.60	00	1480.00		5.77	0.00000		0.00	2
					St	ream Da	ta								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tribut np	ary pH	Ten	Stream p	pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C	()		
Q7-10 Q1-10 Q30-10	0.089	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00	7.00		0.00	0.00	
					Di	acharge]	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res	serve	Disc Temp (°C)		isc H		
		Kratz	er Run	PA	0208647	0.080	0.000	0.0	0000	0.000	25	.00	7.00		
					Pa	ra me ter	Data								
				Paramete	r Name			Trib Conc	Stream Conc	Fat Cos					
						(m	ng/L) (n	ng/L)	(mg/L)	(1/da	ys)				
			CBOD5				25.00	2.00	0.00	1	.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0	00.0				
			NH3-N				16.00	0.00	0.00	0	.70				

Input Data WQM 7.0

	SWP Basir			Stre	sam Name		RMI		evation (ft)	Drainage Area (sq mi)		ope Vft)	PW Withdr (mg	rawal	Apply FC
	08B	266	859 KRAT	ZER RUN	I		0.0	00	1181.00	15.	40 0.0	00000		0.00	Z
					St	ream Data	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depti	n Ten	Tributary np p	н	Tem	<u>Stream</u> p	рН	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
27-10 21-10 230-10	0.089	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.	00 2	00.00	7.00	(00.0	0.00	
						lacharge [Data								
			Name	Per	mit Numbe	Existing Disc Flow (mgd)	Permit Disc Flow (mgd	Di	sc Res	erve 1	Disc Femp (°C)	Di:	sc H		
						0.0000		00 0.	0000	0.000	25.00)	7.00		
					Pa	arameter [Data								
				Paramete	r Name			Trib Conc	Stream	Fate Coef					
						(m	g/L) (mg/L)	(mg/L)	(1/days)					
			CBOD5			:	25.00	2.00	0.00	1.50)				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)				
			NH3-N				25.00	0.00	0.00	0.70)				

Permit No. PA0208647

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\mathbf{Z}
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	V
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Gost	6		

WQM 7.0 Hydrodynamic Outputs

		<u>PBasin</u> 08B		<u>IM Code</u> 6659				<u>stream</u> KRATZE				
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (fl/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-1	0 Flow											
2.600		0.00	0.51	.1238	0.02178	.486	10.45	21.48	0.13	1.267	20.97	7.00
Q1-1	0 Flow											
2.600	0.33	0.00	0.33	.1238	0.02178	NA	NA	NA	0.10	1.535	21.37	7.00
Q30-	10 Flow	,										
2.600	0.70	0.00	0.70	.1238	0.02178	NA	NA	NA	0.14	1.098	20.75	7.00

WQM 7.0 D.O. Simulation

SWP Basin S 08B	tream Code 26659			Stream Name KRATZER RUN	
	26633			KRA IZEK KON	
RMI	Total Discharge	Flow (mgd) Ana	lysis Temperature	(°C) Analysis pH
2.600	0.08	0		20.971	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
10.447	0.48	6		21.483	0.125
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L	.) Reach Kn (1/days)
6.47	0.78			2.32	0.754
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
7.225	20.97	2		Owens	6
Reach Travel Time (days)		Subreact	Results		
1.267	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.127	5.83	2.11	8.10	
	0.253	5.25	1.92	8.10	
	0.380	4.73	1.74	8.10	
	0.507	4.26	1.58	8.10	
	0.633	3.84	1.44	8.10	
	0.760	3.46	1.31	8.10	
	0.887	3.11	1.19	8.10	
	1.013	2.81	1.08	8.10	
	1.140	2.53	0.98	8.10	
	1.267	2.28	0.89	8.10	

Permit No. PA0208647

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
08B	26659	KRATZER RUN

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
2.60	0 Kratzer Run	14.98	32	14.96	32	0	0
H 3-N (Chronic Allocati	ons					
RMI	Chronic Allocati Discharge Name	Ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBC	D5	NH	3-N	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple	Baseline (mg/L)	Multiple	Reach	Reduction
2.60	Kratzer Run	25	25	11.94	11.94	3	3	0	0

WQM 7.0 Effluent Limits

		m Code 659		Stream Name KRATZER RU	•		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)
2.600	Kratzer Run	PA0208847	0.080	CBOD5	25		
				NH3-N	11.94	23.88	
				Dissolved Oxygen			3

TRC_CALC

TRC EVALUATION					
Input appropriate values in A3:A9 and D3:D9					
0.54 = Q stream (cfs)			0.5	= CV Daily	
0.08 = Q discharge (MGD)			0.5	= CV Hourly	
30 = no. samples			1	= AFC_Partial Mix Factor	
0.3 = Chlorine Demand of Stream			1	1 = CFC_Partial Mix Factor	
0 = Chlorine Demand of Discharge			15	= AFC_Criteria Compliance Time (min)	
0.5 = BAT/BPJ Value			720	0 = CFC_Criteria Compliance Time (min)	
0 = % Factor of Safety (FOS)				=Decay Coefficient (K)	
Source Reference		AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc = 1.411		1.3.2.iii	WLA cfc = 1.368
PENTOXSD TRG	5.1a	LTAMULT afc = 0.373		5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc= 0.526		5.1d	LTA_cfc = 0.795
Source	rce Effluent Limit Calculations				
PENTOXSD TRG 5.1f AML MULT = 1.231					
PENTOXSD TRG					
INST MAX LIMIT (mg/l) = 1.635					
WLA afo	(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)				
LTAMULT afo	EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)				
LTA_afo	wla_afc*LTAMULT_afc				
WLA_cfc	(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)				
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)				
LTA_cfc	wla_cfc*LTAMULT_cfc				
AML MULT AVG MON LIMIT	EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)				
INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)					