

Northcentral Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0209147

APS ID 1023760

Authorization ID 1327928

Applicant and Facility Information									
Applicant Name	Centre Hall Potter Sewer Authority	Facility Name	Centre Hall Potter Sewer System						
Applicant Address	2940 Penns Valley Pike	Facility Address	2940 Penns Valley Pike						
	Centre Hall, PA 16828-8404		Centre Hall, PA 16828-8404						
Applicant Contact	Nancy Mitcheltree chpsa@comcast.net	Facility Contact	Nancy Mitcheltree						
Applicant Phone	(814) 364-2710	Facility Phone	(814) 364-2710						
Client ID	87415	Site ID	465400						
Ch 94 Load Status	Not Overloaded	Municipality	Potter Township						
Connection Status	No Limitations	County	Centre						
Date Application Rece	eived September 22, 2020	EPA Waived?	Yes						
Date Application Accepted October 5, 2020		If No, Reason							

Summary of Review

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		Jonathan P. Peterman	
		Jonathan P. Peterman / Project Manager	March 12, 2021
X		Nicholas W. Hartranft	
		Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	March 17, 2021

Discharge, Rece	eiving Water	s and Water Supp	oly Information		
Outfall No.	001		Desian Flo	ow (MGD)	0.28
_	40° 48' 56.14	1 "	 Longitude	, , ,	-77° 38' 30.03"
Quad Name	Centre Ha	II	Quad Cod		1224
Wastewater D	escription:	Sewage Effluent		•	
			Discharge Location	-	
Receiving Wa		med Tributary to S ((CWF)	inking Stream Code	2	18397
NHD Com ID	54969	,	RMI		0.19
Drainage Area	-	, , <u>←</u> 1	Yield (cfs/mi²	· 2)	N/A
Q ₇₋₁₀ Flow (cfs			Q ₇₋₁₀ Basis	,	N/A
Elevation (ft)	1177		Slope (ft/ft)	-	0.008
Watershed No	-		Chapter 93 C	Class.	CWF
Existing Use	CWF		Existing Use	•	N/A
Exceptions to	-		Exceptions to		None
Assessment S	-	Attaining Use(s)			
Cause(s) of In		N/A			
Source(s) of I	-	N/A			
TMDL Status		N/A	Name N	N/A	
Nearest Down	nstream Publi	c Water Supply Int	ake Capital Region Wa	ater	
PWS Waters	Susquel	hanna River	Flow at Intake (cfs)	2610
PWS RMI	74		Distance from C	Outfall (mi)	75
			Point of First Use		
Receiving	Cialcia a Cra	. ale	Ctroom Code	40077	
Waters	Sinking Cre	PEK	Stream Code RMI	18377	
NHD Com ID Drainage Area	54969721 19.6		Yield (cfs/mi²)	6.4 0.124	
Q ₇₋₁₀ Flow (cfs)	2.45			·	age No. 01555000
Elevation (ft)	1176		Slope (ft/ft)	0.003	ago 140. 0 1000000
Watershed No.	6-A		Chapter 93 Class.	CWF	
Existing Use	N/A		Existing Use Qualifier		
Exceptions to	•				
Use	None		Exceptions to Criteria	None	

Changes Since Last Permit Issuance: The Department's Geographical Information System indicates that the receiving stream (UNT to Sinking Creek) is an ephemeral stream. Accordingly, it was determined that Sinking Creek (0.19 miles downstream) would be the point of first use (POFU). A Q_{7-10} analysis was conducted using downstream gage (01555000) to approximate the Q_{7-10} stream flow at the point of first use. The updated Q_{7-10} data was obtained from the updated stream gage information obtained from *Stuckey, M.H., and Roland, M.A., 2011, Selected Streamflow Statistics for Streamgage Locations In and Near Pennsylvania*. The Q_{7-10} calculations, which are attached in Appendix A, indicate that the Q_{7-10} is 2.45 cfs.

Other Comments: None.

Treatment Facility Summary

Treatment Facility Name: Centre Hall Potter STP

WQM Permit No.	Issuance Date	Notes:
1495402	1/3/1996	Initial Construction.
1404406	8/12/2004	Pump Station.
WQG02140701	7/15/2007	Pump Station.

	Degree of			Design Flow
Waste Type	Treatment	Process Type	Disinfection	(MGD)
		Sequencing Batch		
Sewage	Secondary	Reactor	Ultraviolet	0.28
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.34	825	Not Overloaded	Aerobic Digestion	Landfill

Treatment System Components for Outfall 001:

- One (1) Influent screw screen / bar screen.
- One (1) Influent flume.
- Two (2) Raw sewage pumps
- Two (2) SBRs.
- One (1) effluent EQ tank
- One (1) Effluent meter
- One (1) UV Disinfection System.
 - -2 Banks
 - -40 Bulbs per bank
- Two (2) Effluent pumps
- One (1) Outfall 001 to Unnamed Tributary to Sinking Creek.
- Two (2) Aerobic Digesters
- Two (2) Gravity drying beds

Changes Since Last Permit Issuance: None.

Other Comments: None.

TMDL Impairment

The Department's Geographical Information System indicates that there are no associated TMDLs for this segment of Unnamed Tributary to Sinking Creek. No further TMDL analysis is required.

Anti-Backsliding

In accordance with 40 CFR 122.44(I)(1) and (2), this permit does not contain effluent limitations, standards, or conditions that are less stringent than the previous permit.

Chesapeake Bay Requirements

Since this facility's design flow is 0.34 MGD, the permittee will be required to monitor and report TN and TP throughout the permit term at a frequency no less than annually in accordance with the Phase II WIP Chesapeake Bay Strategy for Phase IV facilities (≥0.2 MGD to <0.4 MGD). Therefore, the existing monthly monitoring requirements for nutrients will remain.

Existing Effluent Limitations and Monitoring Requirements

Existing Limits – Outfall 001

			Effluent L	imitations			Monitoring Requirements			
Parameter		s (lbs/day)		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required		
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured		
pH (S.U.)	XXX	XXX	6.0	XXX	9.0 Max	XXX	1/day	Grab		
Dissolved Oxygen	XXX	XXX	Report	XXX	XXX	XXX	1/day	Grab		
Carbonaceous Biochemical Oxygen Demand (CBOD5) May 1 - Oct 31 Carbonaceous	47	70	XXX	20.0	30.0	40	1/week	8-Hr Composite		
Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30	58	93	XXX	25.0	40.0	50	1/week	8-Hr Composite		
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report	XXX	Report	xxx	XXX	1/week	8-Hr Composite		
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite		
Total Suspended Solids	70	105	XXX	30.0	45.0	60	1/week	8-Hr Composite		
Fecal Coliform (No./100 ml) May 1 - Oct 31	XXX	XXX	XXX	200 Geo Mean	xxx	1000	1/week	Grab		
Fecal Coliform (No./100 ml) Nov 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab		
Ultraviolet light intensity (%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Metered		
Ammonia-Nitrogen May 1 - Oct 31	14	21	XXX	6.0	9.0	12	1/week	8-Hr Composite		
Ammonia-Nitrogen Nov 1 - Apr 30	42	63	XXX	18.0	27.0	36	1/week	8-Hr Composite		
Total Nitrogen	Report	Report Total Annual	xxx	Report	xxx	xxx	1/month	8-Hr Composite		
Total Phosphorus	Report	Report Total Annual	XXX	Report	XXX	XXX	1/month	8-Hr Composite		

^{*}The existing effluent limits for Outfall 001 were based on a design flow of 0.28 MGD.

Development of Effluent Limitations									
Outfall No.	001	Design Flow (MGD)	0.28						
Latitude	40° 48' 56.14"	Longitude	-77º 38' 30.03"						
Wastewater D	Wastewater Description: Treated Sewage Effluent								

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

To establish whether or not water-quality based effluent limitations (WQBELs) are required, the Department models instream conditions. In order to determine limitations for CBOD5, ammonia-N and dissolved oxygen, the Department utilizes the WQM 7.0 v1.0b model and in order to determine limitations for toxics, the Department utilizes the Toxics Management Spreadsheet.

WQM 7.0 for Windows, Version 1.0b, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen The model was previously run using the latest information on Q7-10 stream flow, background water quality, average annual design flow, and other discharge characteristics. The existing water quality-based effluent limit for CBOD₅ (20 mg/l) was used as inputs for the modeling as well as the existing water-quality based effluent limit for NH3-N (6.0 mg/l). The DO minimum daily average criterion from §93.7 (5.0 mg/L for CWF) was used for the in-stream objective for the model. There have been no changes to the watershed or discharge. The summary of the output is as follows:

Davamatar	Effl	uent Limit	
Parameter	30 Day Average	Maximum	Minimum
CBOD5	20	N/A	N/A
Ammonia-N	6.0	12	N/A
Dissolved Oxygen	N/A	N/A	3

The model indicates that the effluent limits for ammonia-nitrogen and CBOD5 as shown above are still protective of water quality. The model does not recommend water-quality based effluent limitations with regards to dissolved oxygen. Refer to the Appendix B for the WQM 7.0 inputs and results. Comments: None.

Best Professional Judgment (BPJ) Limitations

See Dissolved Oxygen section below.

Comments: None.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst the abovementioned technology, water quality, and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or BPJ.

Proposed Limits - Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

			Effluent L	imitations			Monitoring Re	quirements
Parameter		s (lbs/day)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	9.0 Max	XXX	1/day	Grab
Dissolved Oxygen	XXX	XXX	Report	XXX	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5) May 1 - Oct 31	47	70	XXX	20.0	30.0	40	1/week	8-Hr Composite
Carbonaceous Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30	58	93	XXX	25.0	40.0	50	1/week	8-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Total Suspended Solids	70	105	XXX	30.0	45.0	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) May 1 - Oct 31	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
Fecal Coliform (No./100 ml) Nov 1 - Apr 30	XXX	xxx	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Ultraviolet light intensity (%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Metered
Ammonia-Nitrogen May 1 - Oct 31	14	21	XXX	6.0	9.0	12	1/week	8-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	42	63	XXX	18.0	27.0	36	1/week	8-Hr Composite
Total Nitrogen	Report	Report Total Annual	XXX	Report	XXX	XXX	1/month	8-Hr Composite
Total Phosphorus	Report	Report Total Annual	XXX	Report	XXX	XXX	1/month	8-Hr Composite

^{*}The proposed effluent limits for Outfall 001 were based on a design flow of 0.28 MGD.

Effluent Limit Determination for Outfall 001

General Information

The associated mass-based limits (lbs/day) for all parameters were based on the formula: design flow (average annual) (MGD) x concentration limit (mg/L) at design flow x conversion factor (8.34). All effluent limits were then rounded down in accordance with the rounding rules established in the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001), Chapter 5 - Specifying Effluent Limitations in NPDES Permits. The existing monitoring frequencies and sample types for these parameters generally correspond with the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001) Table 6-3 and will remain.

Flow

Reporting of the daily maximum flow is consistent with monitoring requirements for other treatment plants and will remain.

Carbonaceous Biochemical Oxygen Demand (CBOD₅)

The results of the WQM 7.0 model show that the previously applied water quality-based effluent limits for CBOD₅ are protective of water quality.

Total Suspended Solids (TSS)

The previously applied technology based secondary treatment standards (25 PA Code §92a.47 (a) (1&2)) for TSS will remain.

pН

CFR Title 40 §133.102(c) and 25 PA Code §95.2(1) provide the basis of effluent limitations for pH.

Fecal Coliforms

The existing fecal coliform limits with I-max limits were previously updated from the previous Chapter 92 code to correspond with what is specified in the updated 25 PA Code § 92a.47 (a)(4)&(5). The existing effluent limits will remain.

Ammonia-Nitrogen (NH3-N)

The results of the WQM 7.0 model show that the existing water quality-based effluent limits for ammonia-nitrogen are appropriate.

Dissolved Oxygen (DO)

25 PA Code §93.7 provides specific water quality criteria for DO and monitoring for this parameter will ensure that the facility is not creating or contributing to an in-stream excursion below these water quality standards

Influent BOD5 and TSS

The Department requires the reporting of raw sewage influent monitoring for BOD₅ and TSS in all POTW permits. This provides the Department with the ability to monitor the percent removal of each parameter as stipulated in section 2 of the Part A conditions and maintain records of the BOD₅ loading as required by 25 Pa. Code Chapter 94. The monitoring frequencies and sample types are identical to the effluent sampling.

UV Intensity (%)

The existing monitoring frequency (Daily) for UV corresponds with the TRC (disinfection) requirements found in the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001) Table 6-3 and will remain. The units have been previously verified for this facility.

Compliance History

<u>Summary of Inspections</u> -The most recent Clean Water Program onsite inspections for this facility were a Compliance Evaluation Inspection on 1/27/20. No issues were noted in the inspection.

<u>WMS Query Summary</u> - A WMS Query was run at *Reports - Violations & Enforcements – Open Violations for Client Report* to determine whether there are any unresolved violations associated with the client that will affect issuance of the permit (per CSL Section 609). This guery revealed no open violations.

<u>Summary eDMR Data</u> -The facility has generally been in compliance with the effluent limits. No violations are noted below.

Compliance History

DMR Data for Outfall 001 (from February 1, 2020 to January 31, 2021)

DMR Data for Outfall 00						4110.00	1111 00	11111 00	MAY 00	4 DD 00	MAD OO	EED 00
Parameter	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20
Flow (MGD)	0.440	0.400		0.440			0.440	0.44=		0.400	0.400	0.400
Average Monthly	0.119	0.123	0.114	0.112	0.117	0.117	0.116	0.115	0.121	0.122	0.130	0.128
Flow (MGD)	0.4-0	0.074	0.450		0.450	0.450	0.400	0.400			0.470	
Daily Maximum	0.176	0.254	0.150	0.141	0.153	0.152	0.162	0.168	0.164	0.201	0.170	0.174
pH (S.U.)				0.04		- 40		- 10				
Minimum	7.25	7.07	7.3	6.94	7.09	7.18	7.1	7.19	7.01	7.03	7.06	6.87
pH (S.U.)					0.04							
Maximum	7.98	7.72	7.83	8.22	8.04	7.86	7.78	7.68	7.74	7.64	7.71	7.76
DO (mg/L)		7.04	5.00	5 00	0.05	0.00	- 00	4.5.4	- 44	5.00	0.00	0.0
Minimum	5.8	7.01	5.36	5.22	3.85	3.06	5.39	4.54	5.44	5.63	6.33	6.6
CBOD5 (lbs/day)	0.0	4.0		0.0		0	0		0.00	4	_	
Average Monthly	< 3.0	< 4.0	< 3	< 3.0	< 3	< 3	< 3	< 3	< 3.00	< 4	< 5	< 4
CBOD5 (lbs/day)	5 0	- 0		0.0		•	•	_	_	_	_	0.0
Weekly Average	5.0	5.0	< 4	3.0	4	< 3	6	5	5	5	7	6.0
CBOD5 (mg/L)	0.0	4.04	0.0	0.0	0.40	0.04	0.57	0.70	0.57	4.54	4.70	4.00
Average Monthly	< 3.6	< 4.04	< 3.0	< 3.2	< 3.46	< 3.01	< 3.57	< 3.76	3.57	< 4.51	< 4.78	< 4.08
CBOD5 (mg/L)	5.00	5.50	0.0	0.70	0.00	0.05	F 00	5.40	5.40	E 45	0.40	F F F
Weekly Average	5.02	5.59	< 3.0	3.78	3.96	3.05	5.26	5.42	5.18	5.45	6.13	5.55
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average Monthly	241	299	285	215	219	373	288	415	296	233	322	307
BOD5 (lbs/day)	241	299	200	213	219	3/3	200	415	290	233	322	307
` ,												
Raw Sewage Influent br/> Weekly Average	297	430	360	234	248	558	355	510	370	295	358	398
BOD5 (mg/L)	291	430	300	234	240	556	300	310	370	295	336	390
Raw Sewage Influent												
<pre></pre>												
Monthly	243	292	294	225	231	384	295	425	302	245	301	285
TSS (lbs/day)	210	202	201	220	201	001	200	120	002	210	001	200
Average Monthly	3.0	5.0	3	4.0	5	5	4.0	6	5	< 6	5	3
TSS (lbs/day)	0.0	0.0	Ŭ	1.0	- J		1.0	J		10	Ŭ	
Raw Sewage Influent												
 Average												
Monthly	222	270	175	191	241	2.72	292	355	322	< 285	261	259
TSS (lbs/day)				-			•					
Raw Sewage Influent												
 br/> Weekly Average	316	363	266	284	301	3.41	340	431	350	349	324	284
TSS (lbs/day)												
Weekly Average	5.0	10	4	6.0	8	10	5.0	8	7	10	7	5

NPDES Permit No. PA0209147

NPDES Permit Fact Sheet Centre Hall Potter Sewer System

TSS (mg/L)												
Average Monthly	3.5	4.9	3.4	4.9	4.9	5.8	4.0	6.0	5.9	6.6	5.4	3.5
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	224	265	185	201	254	281	297	354	330	300	243	240
TSS (mg/L)												
Weekly Average	5.2	10.0	4.0	6.6	8.4	11.0	6.0	8.8	8.0	12.0	7.2	4.8
Fecal Coliform												
(No./100 ml)						_	_	_		_	_	_
Geometric Mean	< 1.0	< 1.0	< 1	< 1.0	< 1	< 2	< 1	< 1	< 1	< 1	< 1	< 1
Fecal Coliform												
(No./100 ml)												
Instantaneous	0	1.0	2	1.0	. 4	5.2	1	4.4	3.4	4	2.4	2.4
Maximum	2	1.0	2	1.0	< 1	5.2	1	1.1	3.4	1	3.1	3.1
UV Transmittance (%) Minimum	100	100	100	100	100	100	100	100	100	100	100	50
Total Nitrogen	100	100	100	100	100	100	100	100	100	100	100	30
(lbs/day)												
Average Monthly	11.0	< 6.0	7	4.0	5	11.0	5	5	4	9	9	5
Total Nitrogen (mg/L)	11.0	V 0.0	•	1.0	Ŭ	11.0	Ŭ		•	Ŭ	Ŭ	
Average Monthly	11.225	< 6.441	7.52	4.792	5.157	11.24	4.29	5.71	4.204	11.285	9.078	5.155
Total Nitrogen (lbs)												
Total Annual					< 2485							
Ammonia (lbs/day)												
Average Monthly	< 0.09	< 0.2	< 0.1	< 1.0	< 0.09	< 0.09	< 0.2	< 0.09	< 0.2	< 0.4	< 0.6	< 0.1
Ammonia (lbs/day)												
Weekly Average	< 0.1	< 0.5	< 0.1	< 1.0	< 0.1	< 0.1	< 0.5	< 0.1	< 0.5	2	2	< 0.1
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.2	< 0.1	< 1.0	< 0.1	< 0.1	< 0.2	< 0.1	< 0.2	< 0.455	< 0.684	0.1
Ammonia (mg/L)											0.40=	
Weekly Average	< 0.1	< 0.5	< 0.1	1.0	< 0.1	< 0.1	< 0.5	< 0.1	< 0.5	1.877	2.435	0.1
Total Phosphorus												
(lbs/day)	20		•	0.0		2.2	_	•	0.7			4
Average Monthly	30	0.8	2	2.0	1	3.0	1	2	0.7	1	1	1
Total Phosphorus												
(mg/L)	1.00	0.04	2.07	1.60	1 40	2.00	1.16	1.00	0.700	1.05	1 4	1 20
Average Monthly	1.02	0.84	2.07	1.69	1.48	2.89	1.16	1.98	0.782	1.35	1.4	1.38
Total Phosphorus (lbs) Total Annual					600							
Total Alliual					UUO							

	Tools and References Used to Develop Permit
	The state of the s
	WQM for Windows Model (see Attachment B)
	PENTOXSD for Windows Model (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
\boxtimes	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
\boxtimes	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved
	Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\boxtimes	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

APPENDIX A Q₇₋₁₀ ANALYSIS AND STREAM DATA

Q₇₋₁₀ Analysis (POFU) Centre Hall Potter Sewer Authority Facility: Outfall: 001 Reference Stream Gage Information. Stream Name Penns Creek 1555000 Reference Gage Penns Creek at Penns Creek, PA Station Name Gage Drainage Area (sq. ml.) 301 Q₇₋₁₀ at gage (cfs) 37.6 0.1249 Yield Ratio (cfs/mi²) Q₇₋₁₀ at Outfall Drainage Area at site (sq. mi.) 19.6 2.4484 Q₇₋₁₀ at discharge site (cfs) Q₇₋₁₀ at discharge site (mgd) 1.5824 Low Flow Yield Ratio of 0.1 cfs/mi2 (For Approx. Comparison Only) Q₇₋₁₀ at discharge site (cfs) 1.9600 1,2668 Q₇₋₁₀ at discharge site (mgd) Q₇₋₁₀ at Downstream Reach #2 61.2 Drainage Area at Reach (sq. ml.) Q₇₋₁₀ at reach (cfs) 7.6449 Q₇₋₁₀ at reach (mgd) 4.9410 Elev. 1079 Basin Characteristics Report at [Site / Reach]

Date: Wed Jan 20, 2016 2:40:45 PM GMT-5

Study Area: Pennsylvania

NAD 1983 Latitude: 40.8149 (40 48 54) NÁD 1983 Longitude: -77.6391 (-77 38 21)

Label	Value
DRNAREA	19.6
STRATOT	30.91
STRDEN	1.58
BSLOPD	9.1
CENTROIDX	26153
CENTROIDY	196371.6
OUTLETX	30435
OUTLETY	201565
LONG_OUT	-77.63921
BSLOPDRAW	9.34
FOREST	65
PRECIP	41
URBAN	0.
GLACIATED	0
ROCKDEP	4.5
CARBON	17
STORAGE	3
ELEV	1562.8
NAXTEMP	56
DRN	3.1
IMPNLCD01	1
LC01DEV	7
LC11IMP	0.59
LC11DEY	6.56

NPDES Permit No.:	PA0209147	
RMI at POFU:	6.4	1176
Was Ecoflows Used?	No▼	To a contract of the contract
Correlation From Ecoflows	N/A	}
Gheck D Discharge at Outfall (w/) (mgd)	1	28
	sf (cfs)	wf (cfs)
Dilution Ratio = sf/wf	2.4484	0.43322405
Diagon (was sin in		to 1

Drainage Area at Reach (sq. ml.)

RMI

Q₇₋₁₀ at reach (cfs)

Q₇₋₁₀ at reach (mgd)

Q₇₋₁₀ at reach (mgd)

Q _{7.10} at Down	stream Reach #3
Drainage Area at Reach (sq. mi.)	[Drainage Area @ Reach #3]
RMI	[RMI @ Reach #3]
Q ₇₋₁₀ at reach (cfs)	#VALUE!

28.1

5.36

3.5102

2.2687

Elev. 1166

26 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued [ft³/s; cubic feet per second; —, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01546000	1912–1934	17	1.8	2.2	6.8	3.7	12,1	-11.2
01546400	1986–2008	23	13.5	14.0	19.6	15.4	- 22.3	- 18.7
01546500	1942–2008	67	26.8	29.0	41.3	31.2	44.2	33.7
01547100	1969-2008	40	102	105	128	111	133	117
01547200	1957–2008	52	99.4	101	132	106	142	115
01547500	²1971–2008	38	28.2	109	151	131	172	153
01547500	31956-1969	14	90.0	94.9	123	98.1	131	105
01547700	1957-2008	52	.5	.6	2.7	1.1	3.9	2.2
01547800	1971-1981	11	1.6	1.8	2.4	2.1	2.9	3.5
01547950	1970-2008	39	12.1	13.6	28.2	17.3	36.4	23.8
01548005	²1971–2000	25	142	151	206	178	-241	223
01548005	³1912–1969 –	58	105	114	147	125		140
01548500	1920-2008	89	21.2	24.2	50.1	33.6	68.6	49.3
01549000	1910-1920	11	26.0	32.9	78.0	46.4	106	89.8
01549500	1942-2008	67	.6	.8	2.5	1.4	3.9	2.6
01549700	1959–2008	50	33.3	37.2	83.8	51.2	117	78.4
01550000	1915-2008	94	6,6	7.6	16.8	11.2	24.6	18.6
01551500	21963-2008	46	520	578	1,020	678	1,330	919
01551500	³ 1901–1961	61	400	439	742	523	943	752
01552000	1927–2008	80	20.5	22.2	49.5	29.2	69.8	49.6
01552500	1942-2008	67	9	1.2	3.1	1.7	4.4	3.3
01553130	1969-1981	13	1.0	-1.1	1.5	1.3	1.8	1.7
01553500	²1968–2008	41	760	838	1,440	1,000	1,850	1,470
01553500	⁻³ 1941–1966	26	562	619	880	690	1,090	881
01553700	1981-2008	28	- 9.1	10.9	15.0	12.6	17.1	15.2
01554000	²1981–2008	28	1,830	1,990	3,270	2,320	4,210	3,160
01554000	³1939–1979	41	1,560	1,630	2,870	1,880	3,620	2,570
01554500	1941–1993	53	16.2	22.0	31.2	25.9	35.7	31.4
01555000	1931–2008	78	33,5	37.6	58.8	43.4	69.6	54.6
01555500	1931–2008	78	4.9	6.5	18.0	9.4	24.3	16.6
01556000	1918-2008	91	43.3	47.8	66.0	55.1	75.0	63.7
01557500	1946-2008	63	2.8	3.2	6.3	4.2	8.1	5.8
01558000	1940-2008	69	56,3	59.0	79,8	65.7	86.2	73.7
01559000	_1943_2008	66	104	177	249	198	279	227
01559500	1931–1958	28	9.3	10.5	15.0	12.4	17.8	15.8
01559700	1963–1978	16	.1	.1	.2	.1	.3	.2
01560000	1941–2008	68	8.5	9.4	15.6	12.0	20.2	16.2
01561000	1932–1958	27	.4	.5	1.6	.8	2.5	1.7
01562000	1913–2008	96	64.1	67.1	106	77.4	122	94.5
01562500	1931–1957	27	1.1	1.6	3.8	2,3	5.4	3.7
01563200	² 1974–2008	35				112	266	129
01563200	31948-1972	25	10.3	28.2		64.5	113	95,5
01563500	² 1974–2008	35	384	415	519	441	580	493
-01563500	31939–1972	34	153	242	343	278	399	333
01564500	1940–2008	69	3.6	4.2	10.0	6.2	14.4	10.6

Table 1 13

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued [Latitude and Longitude in decimal degrees; mi², square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated
01541303	West Branch Susquehanna River at Hyde, Pa.	41.005	-78.457	474	Y
01541308	Bradley Run near Ashville, Pa.	40.509	-78.584	6.77	N
01541500	Clearfield Creek at Dimeling, Pa.	40.972	-78.406	371	Y
01542000	Moshannon Creek at Osceola Mills, Pa.	40.850	-78.268	68.8	N
01542500	WB Susquehanna River at Karthaus, Pa.	41.118	-78.109	1,462	Y
01542810	Waldy Run near Emporium, Pa.	41.579	-78.293	5.24	- N
01543000	Driftwood Branch Sinnemahoning Creek at Sterling Run, Pa.	41.413	-78.197	272	i N
01543500	Sinnemahoning Creek at Sinnemahoning, Pa.	41.317	-78.103	685	N
01544000	First Fork Sinnemahoning Creek near Sinnemahoning, Pa.	41.402	-78.024	245	Y
01544500	Kettle Creek at Cross Fork, Pa.	41,476	-77.826	136	N
01545000	Kettle Creek near Westport, Pa.	41.320	-77.874	233	Y
01545500	West Branch Susquehanna River at Renovo, Pa.	41.325	-77.751	2,975	Y
01545600	Young Womans Creek near Renovo, Pa.	41.390	-77.691	46.2	N
01546000	North Bald Eagle Creek at Milesburg, Pa.	40.942	-77.794	119	N
01546400	Spring Creek at Houserville, Pa.	40.834	-77.828	58.5	N
01546500	Spring Creek near Axemann, Pa.	40.890	-77.794	87.2	N
01547100	Spring Creek at Milesburg, Pa.	40.932	-77.786	142	N
01547200	Bald Eagle Creek below Spring Creek at Milesburg, Pa.	40.943	-77.786	265	N
01547500	Bald Eagle Creek at Blanchard, Pa.	41.052	-77,604	339	Υ
01547700	Marsh Creek at Blanchard, Pa.	41.060	-77,606	44.1	N
01547800	South Fork Beech Creek near Snow Shoe, Pa.	41.024	-77.904	12.2	N
01547950	Beech Creek at Monument, Pa.	41.112	-77.702	152	N
01548005	Bald Eagle Creek near Beech Creek Station, Pa.	41.081	-77.549	562	Y
01548500	Pine Creek at Cedar Run, Pa.	41.522	-77,447	604	N
01549000	Pine Creek near Waterville, Pa.	41.313	-77.379	750	N
01549500	Blockhouse Creek near English Center, Pa.	41,474	-77,231	37.7	N
01549700	Pine Creek below Little Pine Creek near Waterville, Pa.	41.274	-77.324	944	Y
01550000	Lycoming Creek near Trout Run, Pa.	41.418	-77.033	173	N
01551500	WB Susquehanna River at Williamsport, Pa.	41.236	-76.997	5,682	Y
01552000	Loyalsock Creek at Loyalsockville, Pa.	41,325	-76,912	435	N
01552500	Muncy Creek near Sonestown, Pa.	41.357	-76.535	23.8	N
01553130	Sand Spring Run near White Deer, Pa.	41.059	-77.077	4.93	N
01553500	West Branch Susquehanna River at Lewisburg, Pa.	40.968	-76.876	6,847	Y
01553700	Chillisquaque Creek at Washingtonville, Pa.	41.062	-76.680	51.3	Ń
01554000	Susquehanna River at Sunbury, Pa.	40.835	-76.827	18,300	Y
01554500	Shamokin Creek near Shamokin, Pa.	40.810	-76.584	54.2	N
01555000	Penns Creek at Penns Creek, Pa.	40.867	-77.048	301	N
01555500	East Mahantango Creek near Dalmatia, Pa.	40.611	-76.912	162	N
01555500	Frankstown Branch Juniata River at Williamsburg, Pa.	40,463	-78.200	291	N.
01557500	Bald Eagle Creek at Tyrone, Pa.	40,684	-78.234	44.1	У.
01557500	Little Juniata River at Spruce Creek, Pa.	40.613	-78.141	220	N
01559000	Juniata River at Huntingdon, Pa.	40.485	-78.019	816	LF
01559500	Standing Stone Creek near Huntingdon, Pa.	40.524	-77.971	128	N
01559700	Sulphur Springs Creek near Manns Choice, Pa.	39.978	-78.619	5.28	N
01333/00	outpitut oprings Creek near triains Choice, ra.	40.072	-78.493	3.28 172	IN

APPENDIX B WQM 7.0 MODEL RESULTS

Input Data WQM 7.0

	SWP Basir			Str	eam Name		RMI		vation (ft)	Drainage Area (sq mi)		lope \ft/ft)	PWS Withdrawal (mgd)	Apply FC
	06A	18:	377 SINKI	NG CREE	K		6.40	00	1176.00	19.	60 0.0	00000	0.00	V
					St	ream Dat	а			10 10 DOT STATE OF 10 THE PER THE				
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> p p	эΗ	<u>S</u> Temp	i <u>tream</u> pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00	0.000 0.000 0.000		0.0	0.00	0.0	0 20	0.00	7.00	0.0	0.00	
					Di	scharge	Data							
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	erve T ctor	Disc Temp (°C)	Disc pH		
		Cent	re Hall SA	PA	0209147	0.000	0.280	0.0	000 (0.000	25.00	0 7.	.00	
					Pa	ırameter	Data							
			1	⊃aramete	r Name			rib onc	Stream Conc	Fate Coef				
						(m	ıg/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5		•		20.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)			
			NH3-N				6.00	0.00	0.00	0.70)			

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RM	l El	evation (ft)	Drainag Area (sq mi		lope ft/ft)	PWS Withdra (mgd	awal	Apply FC
	06A	183	377 SINKII	NG CREE	K		0.0	00	1079.00	61	.20 0.	00000		0.00	V
	-				St	ream Data	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tei	<u>Tributar</u> np	¥ pΗ	Tem	Stream np	рН	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°(C)		(°C	;)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	7.64 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	00 2	20.00	7.00		0.00	0.00	
					Di	scharge [Data					· · ·]		
			Name	Per	mit Number	Existing Disc r Flow (mgd)	Permit Disc Flov (mgc	Di Fl	sc Re	serve actor	Disc Temp (°C)		isc oH		
						0.0000	0.00	00 0.	0000	0.000	25.0	0	7.00		
•					Pa	arameter [Data								
				Paramete	r Nama		sc onc	Trib Conc	Stream Conc	Fate Coef					
			,	aramete	i Haino	(m	g/L) (mg/L)	(mg/L)	(1/days)				
	-		CBOD5			:	25.00	2.00	0.0	0 1.5	0		-		
			Dissolved	Oxygen			3.00	8.24	0.0	0.0	10				
			NH3-N			:	25.00	0.00	0.0	0 0.7	0				

WQM 7.0 Hydrodynamic Outputs

		<u>'P Basin</u> 06A		<u>ım Code</u> 8377				Stream INKING	•			
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-1	0 Flow											
6.400	2.44	0.00	2.44	.4332	0.00182	.62	25.56	41.22	0.18	0.351	20.75	7.00
5.360	3.50	0.00	3.50	.4332	0.00307	.646	29.19	45.18	0.21	1.571	20.55	7.00
Q1-1	0 Flow											
6.400	2.17	0.00	2.17	.4332	0.00182	NA	NA	NA	0.17	0.370	20.83	7.00
5.360	3.12	0.00	3.12	.4332	0.00307	NA	NA	NΑ	0.20	1.664	20.61	7.00
Q30-	10 Flow	1										
6.400	2.81	0.00	2.81	.4332	0.00182	NA	NA	NA	0.19	0.328	20.67	7.00
5.360	4.03	0.00	4.03	.4332	0.00307	NA	NA	NA	0.22	1.464	20.49	7.00

WQM 7.0 Modeling Specifications

Par	ameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WL.	A Method	EMPR	Use Inputted W/D Ratio	
Q1-	10/Q7-10 Ratio	0.89	Use Inputted Reach Travel Times	
Q30)-10/Q7-10 Ratio	1.15	Temperature Adjust Kr	V
D.C). Saturation	90.00%	Use Balanced Technology	V
D.C), Goal	5		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
06A	18377	SINKING CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
6.40	Centre Hall SA	9.11	12	9.11	12	0	0
5.36)	NA	NA	9.25	NA	NA	NA
H3-N (Chronic Allocati	ons					
H3-N (RMI	Chronic Allocati Discharge Name	ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
RMI		Baseline Criterion	WLA	Criterion	WLA		

Dissolved Oxygen Allocations

	-	<u>CBC</u>	<u>DD5</u>	<u>NH</u>	<u>3-N</u>	Dissolve	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
6.40 (Centre Hall SA	20	20	6	6	3	3	0	0
5.36		NA	NA	NA	NA	NA	NA	NA	NA

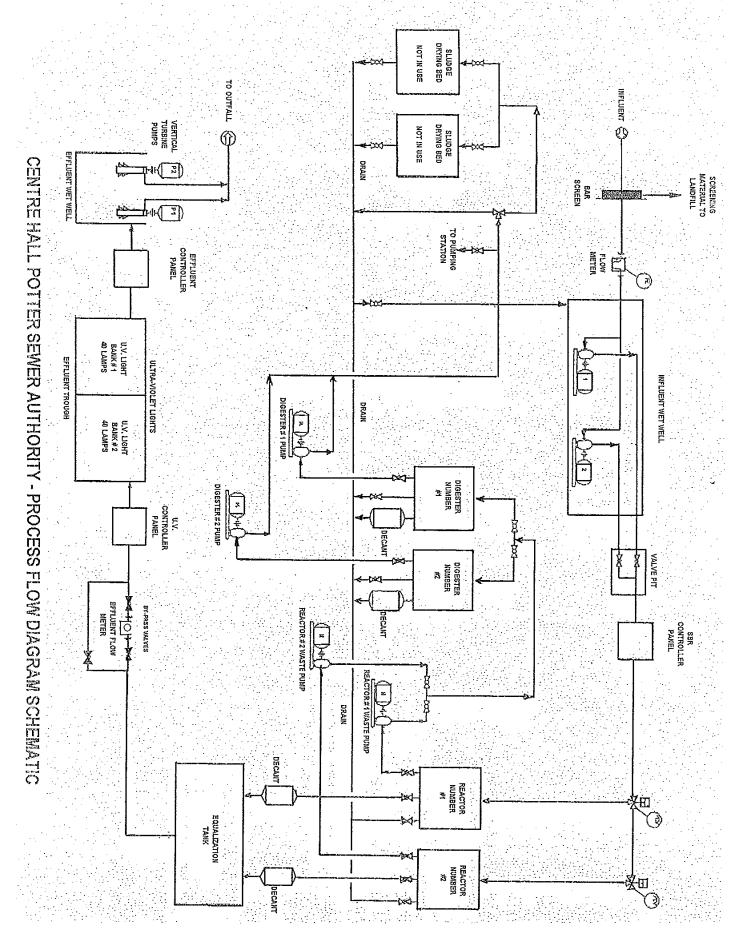
WQM 7.0 D.O.Simulation

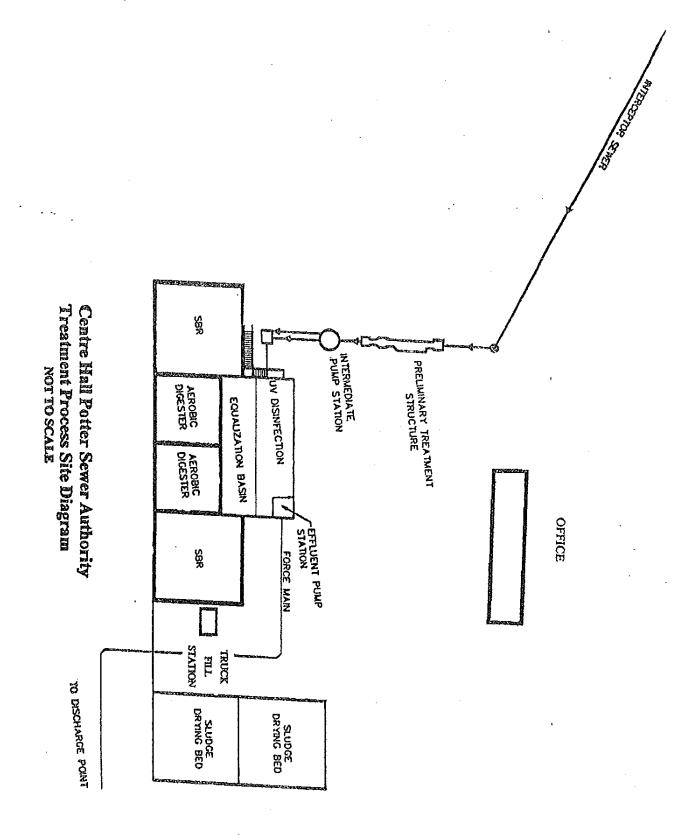
	vi Qi	101 110	91010	malacion	
SWP Basin St	ream Code			Stream Name	
06A	18377		;	SINKING CREEK	
RMI 6.400 Reach Width (ft) 25.557 Reach CBOD5 (mg/L) 4.71 Reach DO (mg/L) 7.453	Total Discharge 0.280 Reach Der 0.620 Reach Kc (0.862 Reach Kr (**) oth (ft)) 1/days) 2 1/days)	<u>R</u>	lysis Temperature (°C 20.754 Reach WDRatio 41.215 each NH3-N (mg/L) 0.90 Kr Equation Tsivoglou	Analysis pH 7.000 Reach Velocity (fps) 0.181 Reach Kn (1/days) 0.742 Reach DO Goal (mg/L) 5
Reach Travel Time (days) 0.351	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.035 0.070 0.105 0.140 0.175 0.210 0.245 0.280 0.316 0.351	4.57 4.43 4.29 4.16 4.03 3.91 3.79 3.67 3.56 3.45	0.88 0.86 0.84 0.82 0.79 0.77 0.75 0.73 0.72	7.31 7.20 7.10 7.03 6.97 6.92 6.89 6.87 6.85 6.85	
RMI 5.360 Reach Width (ft) 29.189 Reach CBOD5 (mg/L) 3.06 Reach DO (mg/L) 7.226 Reach Travel Time (days) 1.571	Total Discharge 0.286 Reach Del 0.646 Reach Kc (0.264 Reach Kr (6.172 TravTime (days)) oth (ft) 3 1/days) 4 1/days)	<u>R</u>	lysis Temperature (°C 20.551 Reach WDRatio 45.177 Leach NH3-N (mg/L) 0.51 Kr Equation Tsivoglou D.O. (mg/L)	C) Analysis pH 7.000 Reach Velocity (fps) 0.209 Reach Kn (1/days) 0.730 Reach DO Goal (mg/L) 5
	0.157 0.314 0.471 0.628 0.785 0.942 1.099 1.256 1.414 1.571	2.93 2.81 2.69 2.58 2.47 2.37 2.27 2.18 2.09 2.00	0.45 0.41 0.36 0.32 0.29 0.26 0.23 0.20 0.18	8.09 8.16 8.16 8.16 8.16 8.16 8.16 8.16 8.16	

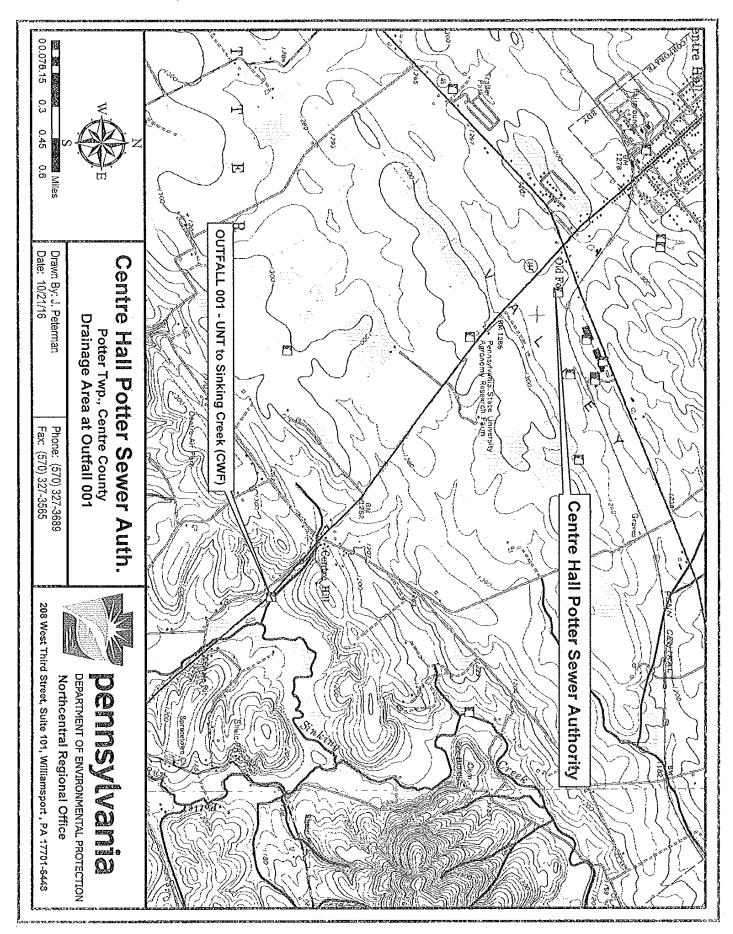
WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
06A	18377	SINKING CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
6.400 Centre Hall SA		9.11	12	9.11	12	0	0
5.36	0	NA	NA	9.25	NA	NA	NA
IH3-N (Chronic Allocati	ons					
IH3-N(RMI	Chronic Allocati Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
RMI		Baseline Criterion	WLA	Criterion	WLA		


Dissolved Oxygen Allocations


	-	CBC	<u>DD5</u>	<u>NH</u>	<u>3-N</u>	Dissolve	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
6.40 (Centre Hall SA	20	20	6	6	3	3	0	0
5.36		NA	NA	NA	NA	NA	NA	NA	NA


WQM 7.0 Effluent Limits

		im <u>Code</u> 8377		<u>Stream Nam</u> SINKING CRE	_		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
6.400	Centre Hall SA	PA0209147	0.000	CBOD5	20		
				NH3-N	6	12	
				Dissolved Oxygen			3

APPENDIX C FACILITY MAP AND SCHEMATIC

