

# Northcentral Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

# NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0209261

APS ID 1010557

Authorization ID 1304010

|                        | Applicant and                    | Facility Information |                                              |  |  |
|------------------------|----------------------------------|----------------------|----------------------------------------------|--|--|
| Applicant Name         | Liberty Township, Montour County | Facility Name        | Liberty Township Mooresburg Village<br>WWTP  |  |  |
| Applicant Address      | 197 Mooresburg Road              | Facility Address     | 1316 Bald Top Road                           |  |  |
|                        | Danville, PA 17821-7030          | <u></u>              | Danville, PA 17821                           |  |  |
| Applicant Contact      | Linda Llewellyn, Twp Sec.        | Facility Contact     | Gary Krick, Supervisor                       |  |  |
| Applicant Phone        | (570) 275-2211                   | Facility Phone       | (570) 275-2211                               |  |  |
| Client ID              | 25304                            | Site ID              | 257852                                       |  |  |
| Ch 94 Load Status      | Not Overloaded                   | Municipality         | Liberty Township                             |  |  |
| Connection Status      | No Limitations                   | County               | Montour                                      |  |  |
| Date Application Rece  | eivedJanuary 31, 2020            | EPA Waived?          | No                                           |  |  |
| Date Application Acce  | pted February 4, 2020            | If No, Reason        | Discharge is subject to an EPA-approved TMDL |  |  |
| Purpose of Application | Renewal of a NPDES Permit        |                      |                                              |  |  |

#### **Summary of Review**

The subject facility is a Publicly Owned Treatment Work (POTW) serving Liberty Township, Montour County in the vicinity of the village of Mooresburg.

A map of the discharge location is attached.

#### **Public Participation**

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Approve | Deny | Signatures                                                                            | Date           |
|---------|------|---------------------------------------------------------------------------------------|----------------|
| X       |      | Keith C. Allison<br>Keith C. Allison / Project Manager                                | April 21, 2020 |
| X       |      | Nícholas W. Hartranft<br>Nicholas W. Hartranft, P.E. / Environmental Engineer Manager | April 22, 2020 |

| scharge, Receiv              | ing Wate                | rs and Water Supply Info | rmation                        |                         |  |
|------------------------------|-------------------------|--------------------------|--------------------------------|-------------------------|--|
| Outfall No. 00               | )1                      |                          | Design Flow (MGD)              | 0.013                   |  |
| Latitude 40                  | 0° 58′ 54.26            | 6"                       | Longitude                      | -76° 42' 10.42"         |  |
| Quad Name _                  | Quad Name Riverside, PA |                          | Quad Code                      | 1132                    |  |
| Wastewater Des               | scription:              | Sewage Effluent          |                                |                         |  |
| Receiving Water              | rs Maus                 | es Creek (CWF)           | Stream Code                    | 27331                   |  |
| NHD Com ID                   | 6564                    | •                        | RMI                            | 4.97                    |  |
| Drainage Area                | 0.30 ı                  | ni <sup>2</sup>          | Yield (cfs/mi²)                | 0.168                   |  |
| Q <sub>7-10</sub> Flow (cfs) | 0.05                    |                          | Q <sub>7-10</sub> Basis        | Streamgage No. 01420500 |  |
| Elevation (ft)               | 620                     |                          | Slope (ft/ft)                  | 0.00758                 |  |
| Watershed No.                | 5-E                     |                          | Chapter 93 Class.              | CWF                     |  |
| Existing Use                 | N/A                     |                          | Existing Use Qualifier         | N/A                     |  |
| Exceptions to Us             | se <u>None</u>          |                          | Exceptions to Criteria         | None                    |  |
| Assessment Sta               | itus                    | Impaired                 |                                |                         |  |
| Cause(s) of Imp              | airment                 | SILTATION,               |                                |                         |  |
| Source(s) of Imp             | pairment                | AGRICULTURE              |                                |                         |  |
| TMDL Status                  |                         | Final                    | Name Mahoning C                | reek Watershed TMDL     |  |
| Nearest Downst               | ream Publ               | c Water Supply Intake    | Cherokee Pharmaceuticals, L    | LC                      |  |
| PWS Waters                   | Susque                  | nanna River              | Flow at Intake (cfs) 5,000,000 |                         |  |
| PWS RMI                      | 135.7                   |                          | Distance from Outfall (mi)     | 8.6                     |  |

Changes Since Last Permit Issuance: None. The above discharge and drainage characteristics were determined for the previous review and remain adequate.

#### Other Comments:

The discharge has received wasteload allocations for Total Phosphorus and Sediment under the Mahoning Creek Watershed TMDL, which are further discussed in the Development of Effluent Limitations section below.

No downstream water supply is expected to be affected by the discharge at this time with the limitations and monitoring proposed.

|                       | Treatment Facility Summary                |                         |                             |                          |  |  |  |  |  |  |  |
|-----------------------|-------------------------------------------|-------------------------|-----------------------------|--------------------------|--|--|--|--|--|--|--|
| Treatment Facility Na | me: Mooresburg Wastewat                   | er Treatment Plant      |                             |                          |  |  |  |  |  |  |  |
| WQM Permit No.        | Issuance Date                             |                         |                             |                          |  |  |  |  |  |  |  |
| 4796402               | 6/13/96                                   | Original p              | permit for treatment system |                          |  |  |  |  |  |  |  |
| Amendment A-1         | Amendment A-1 10/12/18 Phosphorus Removal |                         |                             |                          |  |  |  |  |  |  |  |
|                       |                                           |                         | •                           |                          |  |  |  |  |  |  |  |
| Waste Type            | Degree of<br>Treatment                    | Process Type            | Disinfection                | Avg Annual<br>Flow (MGD) |  |  |  |  |  |  |  |
| Sewage                | Secondary With Phosphorus Reduction       | Septic Tank Sand Filter | Hypochlorite                | 0.013                    |  |  |  |  |  |  |  |
|                       |                                           |                         |                             |                          |  |  |  |  |  |  |  |
|                       |                                           |                         |                             |                          |  |  |  |  |  |  |  |
| Hydraulic Capacity    | Organic Capacity                          |                         |                             | Biosolids                |  |  |  |  |  |  |  |
| (MGD)                 | (lbs/day)                                 | Load Status             | Biosolids Treatment         | Use/Disposal             |  |  |  |  |  |  |  |
| 0.013                 |                                           | Not Overloaded          |                             | •                        |  |  |  |  |  |  |  |

Changes Since Last Permit Issuance: 4796402 Amendment No. 1 was issued in 2018 but the Township has not installed the phosphorus removal yet because the TP limits have been met.

Other Comments: The treatment facility, as approved by WQM Permit No. 4796402 consists receipt of septic tank effluent from individual homes, a dosing tank, two sand filters, and chlorination with a contact tank.

#### **Hauled in Waste**

Per the application, the permittee has not accepted any trucked in waste in the past three years and does not anticipate receiving any over the next permit term.

#### Sludge/Biosolids Disposal

Septic tank septage is removed to a permitted facility for ultimate disposal or beneficial reuse. No sludge is typically produced from the main facility due to the nature of the treatment.

### **Compliance History**

### DMR Data for Outfall 001 (from February 1, 2019 to January 31, 2020)

| Parameter                | JAN-20 | DEC-19 | NOV-19 | OCT-19 | SEP-19 | AUG-19 | JUL-19 | JUN-19 | MAY-19 | APR-19 | MAR-19 | FEB-19 |
|--------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Flow (MGD)               |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly          | 0.0034 | 0.0035 | 0.0039 | 0.0039 | 0.0036 | 0.0038 | 0.0036 | 0.0038 | 0.0041 | 0.0040 | 0.0036 | 0.0036 |
| Flow (MGD)               |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum            | 0.0036 | 0.0039 | 0.0043 | 0.0043 | 0.0039 | 0.0040 | 0.0039 | 0.0041 | 0.0043 | 0.0042 | 0.0041 | 0.0040 |
| pH (S.U.)                |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Minimum            | 6.2    | 6.4    | 6.2    | 6.2    | 6.3    | 6.3    | 6.3    | 6.2    | 6.2    | 6.2    | 6.2    | 6.2    |
| pH (S.U.)                |        |        |        |        |        |        |        |        |        |        |        |        |
| Instantaneous            |        |        |        |        |        |        |        |        |        |        |        |        |
| Maximum                  | 6.5    | 6.7    | 6.7    | 6.5    | 6.6    | 6.7    | 6.6    | 6.5    | 6.5    | 6.6    | 6.5    | 6.6    |
| DO (mg/L)                |        |        |        |        |        |        |        |        |        |        |        |        |
| Minimum                  | 8.0    | 8.0    | 8.0    | 7.0    | 6.0    | 6.0    | 6.0    | 6.0    | 7.0    | 8.0    | 8.0    | 8.0    |
| TRC (mg/L)               | 0.22   | 0.22   | 0.25   | 0.24   | 0.24   | 0.22   | 0.22   | 0.22   | 0.20   | 0.00   | 0.24   | 0.22   |
| Average Monthly          | 0.32   | 0.33   | 0.35   | 0.31   | 0.34   | 0.32   | 0.33   | 0.33   | 0.29   | 0.29   | 0.31   | 0.32   |
| TRC (mg/L) Instantaneous |        |        |        |        |        |        |        |        |        |        |        |        |
| Maximum                  | 0.51   | 0.47   | 0.62   | 0.61   | 0.59   | 0.48   | 0.63   | 0.64   | 0.56   | 0.50   | 0.74   | 0.61   |
| CBOD5 (lbs/day)          | 0.51   | 0.47   | 0.02   | 0.01   | 0.59   | 0.40   | 0.03   | 0.04   | 0.30   | 0.50   | 0.74   | 0.01   |
| Average Monthly          | 0.12   | 0.07   | 0.07   | 0.069  | 0.1    | 0.07   | 0.066  | 0.074  | 0.08   | 0.08   | 0.11   | 0.10   |
| CBOD5 (lbs/day)          | 0.12   | 0.07   | 0.07   | 0.000  | 0.1    | 0.07   | 0.000  | 0.07 4 | 0.00   | 0.00   | 0.11   | 0.10   |
| Weekly Average           | 0.18   | 0.07   | 0.07   | 0.075  | 0.123  | 0.07   | 0.070  | 0.075  | 0.08   | 0.09   | 0.12   | 0.12   |
| CBOD5 (mg/L)             | 00     | 0.01   | 0.01   | 0.0.0  | 020    | 0.01   | 0.0.0  | 0.0.0  | 0.00   | 0.00   | 0112   | 51.12  |
| Average Monthly          | 5.0    | 2.2    | 2.2    | 2.2    | 2.2    | 2.3    | 2.2    | 2.2    | 2.2    | 3.0    | 4.0    | 4.0    |
| CBOD5 (mg/L)             |        |        |        |        |        |        |        |        |        |        |        |        |
| Weekly Average           | 7.0    | 2.2    | 2.2    | 2.2    | 2.2    | 2.4    | 2.2    | 2.2    | 2.2    | 3.0    | 4.0    | 4.0    |
| TSS (lbs/day)            |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum            | 0.11   | 0.13   | 0.14   | 0.13   | 0.12   | 0.13   | 0.15   | 0.14   | 0.14   | 0.13   | 0.12   | 0.19   |
| TSS (mg/L)               |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly          | 4.0    | 4.0    | 4.0    | 4.0    | 4.0    | 4.0    | 5.0    | 4.0    | 4.0    | 4.0    | 4.0    | 7.0    |
| TSS (mg/L)               |        |        |        |        |        |        |        |        |        |        |        |        |
| Weekly Average           | 4.0    | 4.0    | 4.0    | 4.0    | 4.0    | 4.0    | 5.0    | 4.0    | 4.0    | 4.0    | 4.0    | 8.0    |
| Fecal Coliform           |        |        |        |        |        |        |        |        |        |        |        |        |
| (No./100 ml)             |        |        |        | 4.0    |        |        |        | 4.0    |        |        |        |        |
| Average Monthly          | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    |
| Fecal Coliform           |        |        |        |        |        |        |        |        |        |        |        |        |
| (No./100 ml)             |        |        |        |        |        |        |        |        |        |        |        |        |
| Instantaneous            | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 4.0    | 1.0    | 4.0    |
| Maximum                  | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    | 1.0    |

# NPDES Permit Fact Sheet Liberty Township Mooresburg Village Sanitary Sewer STP

### NPDES Permit No. PA0209261

| Total Nitrogen<br>(lbs/day)<br>Annual Average  |       | 0.04  |       |       |       |       |        |       |        |       |       |       |
|------------------------------------------------|-------|-------|-------|-------|-------|-------|--------|-------|--------|-------|-------|-------|
| Total Nitrogen (mg/L) Annual Average           |       | 1.3   |       |       |       |       |        |       |        |       |       |       |
| Ammonia (lbs/day) Average Monthly              | 0.009 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.0003 | 0.003 | 0.0035 | 0.10  | 0.22  | 0.084 |
| Ammonia (lbs/day)<br>Weekly Average            | 0.011 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.0003 | 0.003 | 0.0035 | 0.16  | 0.22  | 0.088 |
| Ammonia (mg/L)<br>Average Monthly              | 0.26  | 0.10  | 0.10  | 0.10  | 0.10  | 0.10  | 0.01   | 0.10  | 0.10   | 3.3   | 7.9   | 2.8   |
| Ammonia (mg/L)<br>Weekly Average               | 0.42  | 0.10  | 0.10  | 0.10  | 0.10  | 0.10  | 0.01   | 0.10  | 0.10   | 5.3   | 8.2   | 3.0   |
| Total Phosphorus<br>(lbs/day)<br>Daily Maximum | 0.075 | 0.069 | 0.051 | 0.079 | 0.068 | 0.063 | 0.057  | 0.048 | 0.042  | 0.067 | 0.034 | 0.032 |
| Total Phosphorus<br>(mg/L)<br>Average Monthly  | 2.1   | 2.0   | 1.5   | 2.1   | 2.2   | 1.9   | 1.6    | 1.3   | 1.07   | 1.4   | 1.3   | 1.0   |
| Total Phosphorus<br>(mg/L)<br>Daily Maximum    | 2.8   | 2.3   | 1.6   | 2.3   | 2.2   | 1.9   | 1.8    | 1.4   | 1.2    | 2.0   | 1.5   | 1.1   |

|                         | Compliance History, Cont'd                                                                                                                                     |  |  |  |  |  |  |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Summary of Inspections: | The facility has been inspected annually by the Department over the past permit term. The most recent inspection on February 7, 2020 identified no violations. |  |  |  |  |  |  |  |  |
| Other Comments:         | A query in WMS found no open violations in eFACTS for Liberty Township, Montour County.                                                                        |  |  |  |  |  |  |  |  |

|                               |            | <b>Existing Effluer</b>  | nt Limitations a        | nd Monitoring I | Requirements |                        |             |                   |
|-------------------------------|------------|--------------------------|-------------------------|-----------------|--------------|------------------------|-------------|-------------------|
|                               |            |                          | Monitoring Requirements |                 |              |                        |             |                   |
| Parameter                     | Mass Units | (lbs/day) <sup>(1)</sup> |                         | Concentrat      |              | Minimum <sup>(2)</sup> | Required    |                   |
| Parameter                     | Average    | Daily                    |                         | Average         | Weekly       | Instant.               | Measurement | Sample            |
|                               | Monthly    | Maximum                  | Minimum                 | Monthly         | Average      | Maximum                | Frequency   | Туре              |
| Flow (MGD)                    | Report     | Report                   | XXX                     | XXX             | XXX          | XXX                    | 1/week      | Weir              |
| pH (S.U.)                     | XXX        | XXX                      | 6.0                     | XXX             | XXX          | 9.0                    | 1/day       | Grab              |
| Dissolved Oxygen              | XXX        | XXX                      | 5.0<br>Inst Min         | XXX             | XXX          | XXX                    | 1/day       | Grab              |
| Total Residual Chlorine (TRC) | XXX        | XXX                      | XXX                     | 0.37            | XXX          | 1.21                   | 1/day       | Grab              |
| Carbonaceous Biochemical      |            | 4.3                      |                         |                 |              |                        |             | 8-Hr              |
| Oxygen Demand (CBOD5)         | 2.7        | Wkly Avg                 | XXX                     | 25.0            | 40.0         | 50                     | 2/month     | Composite         |
| Carbonaceous Biochemical      |            |                          |                         |                 |              |                        |             |                   |
| Oxygen Demand (CBOD5)         | Danaut     | Danart                   | VVV                     | Danast          | VVV          | VVV                    | O/ma a math | 8-Hr              |
| Raw Sewage Influent           | Report     | Report                   | XXX                     | Report          | XXX          | XXX                    | 2/month     | Composite<br>8-Hr |
| Total Suspended Solids        | XXX        | 3.25                     | xxx                     | 30              | 45           | 60                     | 2/month     | Composite         |
| Total Suspended Solids        |            |                          |                         |                 | -            |                        |             | 8-Hr              |
| Raw Sewage Influent           | Report     | Report                   | XXX                     | Report          | XXX          | XXX                    | 2/month     | Composite         |
| Fecal Coliform (No./100 ml)   |            |                          |                         |                 |              |                        |             |                   |
| Oct 1 - Apr 30                | XXX        | XXX                      | XXX                     | 2000            | XXX          | 10000                  | 2/month     | Grab              |
| Fecal Coliform (No./100 ml)   |            |                          |                         |                 |              |                        |             |                   |
| May 1 - Sep 30                | XXX        | XXX                      | XXX                     | 200             | XXX          | 1000                   | 2/month     | Grab              |
|                               | Report     |                          |                         | Report          |              |                        |             | 8-Hr              |
| Total Nitrogen                | Annl Avg   | XXX                      | XXX                     | Annl Avg        | XXX          | XXX                    | 1/year      | Composite         |
| Ammonia-Nitrogen              |            | 2.9                      |                         | 40.0            | <b></b> -    |                        | 0/ 11       | 8-Hr              |
| Nov 1 - May 31                | 2.0        | Wkly Avg                 | XXX                     | 18.0            | 27.0         | 36                     | 2/month     | Composite         |
| Ammonia-Nitrogen              | 0.7        | 1.0                      | V/V/V                   | 0.0             | 0.0          | 40                     | 0/          | 8-Hr              |
| Jun 1 - Oct 31                | 0.7        | Wkly Avg                 | XXX                     | 6.0             | 9.0          | 12                     | 2/month     | Composite         |
| Total Dhaanharua              | XXX        | 0.08                     | XXX                     | Poport          | Report       | XXX                    | 2/month     | 8-Hr              |
| Total Phosphorus              | λλλ        | 0.08                     | λλλ                     | Report          | Daily Max    | λλλ                    | 2/month     | Composite         |

| Development of Effluent Limitations |                              |                   |                 |  |  |  |  |  |
|-------------------------------------|------------------------------|-------------------|-----------------|--|--|--|--|--|
| Outfall No.                         | 001                          | Design Flow (MGD) | 0.013           |  |  |  |  |  |
| Latitude                            | 40° 58' 54.40"               | Longitude         | -76° 42' 10.20" |  |  |  |  |  |
| Wastewater D                        | Pescription: Sewage Effluent |                   |                 |  |  |  |  |  |

#### **Technology-Based Limitations**

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

| Pollutant               | Limit (mg/l)    | SBC             | Federal Regulation | State Regulation |
|-------------------------|-----------------|-----------------|--------------------|------------------|
| CBOD <sub>5</sub>       | 25              | Average Monthly | 133.102(a)(4)(i)   | 92a.47(a)(1)     |
| CBOD5                   | 40              | Average Weekly  | 133.102(a)(4)(ii)  | 92a.47(a)(2)     |
| Total Suspended         | 30              | Average Monthly | 133.102(b)(1)      | 92a.47(a)(1)     |
| Solids                  | 45              | Average Weekly  | 133.102(b)(2)      | 92a.47(a)(2)     |
| pН                      | 6.0 – 9.0 S.U.  | Min – Max       | 133.102(c)         | 95.2(1)          |
| Fecal Coliform          |                 |                 |                    |                  |
| (5/1 – 9/30)            | 200 / 100 ml    | Geo Mean        | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (5/1 – 9/30)            | 1,000 / 100 ml  | IMAX            | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (10/1 – 4/30)           | 2,000 / 100 ml  | Geo Mean        | -                  | 92a.47(a)(5)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (10/1 – 4/30)           | 10,000 / 100 ml | IMAX            | -                  | 92a.47(a)(5)     |
| Total Residual Chlorine | 0.5             | Average Monthly | -                  | 92a.48(b)(2)     |

Comments: The above limits are applicable and already included in the existing permit except for a more stringent water quality-based TRC limit which will remain.

#### **Water Quality-Based Limitations**

#### CBOD5, NH3-N & DO

The WQM7.0 model allows the Department to evaluate point source discharges of dissolved oxygen (DO), carbonaceous BOD (CBOD $_5$ ), and ammonia-nitrogen (NH $_3$ -N) into free-flowing streams and rivers. To accomplish this, the model simulates two basic processes: the mixing and degradation of NH $_3$ -N in the stream and the mixing and consumption of DO in the stream due to the degradation of CBOD $_5$  and NH $_3$ -N. The facility has existing water quality-based limits for ammonia-nitrogen and Dissolved Oxygen.

WQM7.0 modeling performed for the discharge to Mauses Creek for the previous review (see Attachment B) indicated that the existing CBOD5, DO, and NH3 limits are adequate to protect the receiving stream.

#### **Total Residual Chlorine**

The Department uses a modeling spreadsheet to analyze the toxicity of a discharge's Total Residual Chlorine (TRC) in a receiving stream. The attached modeling shows that the existing water quality-based limit of 0.37 mg/L is adequate to protect the receiving stream.

#### **Toxics Management**

No further "Reasonable Potential Analysis" was conducted to determine additional parameters as candidates for limitations or monitoring for this minor sewage treatment facility with no industrial users.

#### Mahoning Creek TMDL/Chesapeake Bay/ Nutrient Requirements

Pursuant to the Mahoning Creek Watershed TMDL, the Liberty Township facility has received a daily maximum loading limitation for Total Phosphorus of 0.8 lbs/day. In addition, the discharge has received a daily maximum loading limitation for TSS. These limitations were included in the previous permit renewal with a compliance schedule for meeting the Total Phosphorus loading.

In addition, according to the Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, this facility is considered a Phase 5 Chesapeake Bay sewage discharger, and as such requires no nutrient loading limits. Per a review of the facility DMRs over the past two years the Total Nitrogen has averaged 14.8 mg/L while the Total Phosphorus over the past year has averaged 1.5 mg/L. Because the total nitrogen levels in the discharge have adequately been characterized, existing annual Total Nitrogen monitoring will be removed from this proposed draft permit consistent with the Phase III WIP wastewater supplement. Total Phosphorus monitoring will remain due to the TMDL limitation.

#### **Best Professional Judgment (BPJ) Limitations**

Comments: No additional BPJ limits are necessary for this discharge at this time beyond the technology and water quality-based limitations noted above.

#### **Anti-Backsliding**

No proposed limitations were made less stringent consistent with the anti-degradation requirements of the Clean Water Act and 40 CFR 122.44(I).

#### **Proposed Effluent Limitations and Monitoring Requirements**

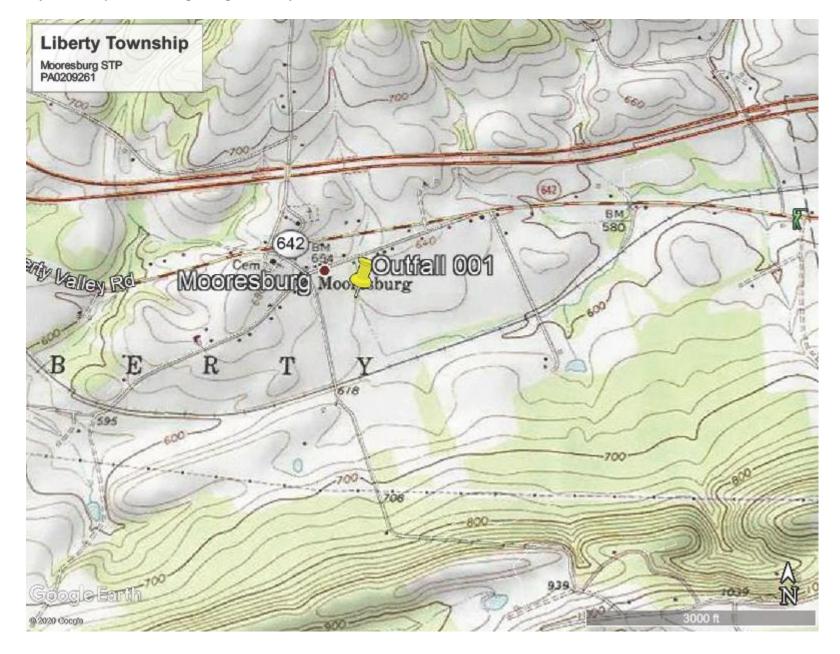
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

#### Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

|                                                                          |                    | Monitoring Requirements |                 |                    |                   |                     |                          |                   |
|--------------------------------------------------------------------------|--------------------|-------------------------|-----------------|--------------------|-------------------|---------------------|--------------------------|-------------------|
| Parameter                                                                | Mass Units         | (lbs/day) (1)           |                 | Concentrat         | Minimum (2)       | Required            |                          |                   |
| Farameter                                                                | Average<br>Monthly | Daily<br>Maximum        | Minimum         | Average<br>Monthly | Weekly<br>Average | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type    |
| Flow (MGD)                                                               | Report             | Report                  | XXX             | XXX                | XXX               | XXX                 | 1/week                   | Weir              |
| pH (S.U.)                                                                | XXX                | XXX                     | 6.0<br>Inst Min | XXX                | XXX               | 9.0                 | 1/day                    | Grab              |
| Dissolved Oxygen                                                         | XXX                | XXX                     | 5.0<br>Inst Min | XXX                | XXX               | XXX                 | 1/day                    | Grab              |
| Total Residual Chlorine (TRC)                                            | XXX                | XXX                     | XXX             | 0.37               | XXX               | 1.21                | 1/day                    | Grab              |
| Carbonaceous Biochemical Oxygen Demand (CBOD5)                           | 2.7                | 4.3<br>Wkly Avg         | XXX             | 25.0               | 40.0              | 50                  | 2/month                  | 8-Hr<br>Composite |
| Carbonaceous Biochemical<br>Oxygen Demand (CBOD5)<br>Raw Sewage Influent | Report             | Report                  | XXX             | Report             | XXX               | XXX                 | 2/month                  | 8-Hr<br>Composite |
| Total Suspended Solids                                                   | XXX                | 3.25                    | XXX             | 30                 | 45                | 60                  | 2/month                  | 8-Hr<br>Composite |
| Total Suspended Solids Raw Sewage Influent                               | Report             | Report                  | XXX             | Report             | XXX               | XXX                 | 2/month                  | 8-Hr<br>Composite |
| Fecal Coliform (No./100 ml) Oct 1 - Apr 30                               | XXX                | XXX                     | XXX             | 2000               | XXX               | 10000               | 2/month                  | Grab              |
| Fecal Coliform (No./100 ml) May 1 - Sep 30                               | XXX                | XXX                     | XXX             | 200                | XXX               | 1000                | 2/month                  | Grab              |
| Ammonia-Nitrogen<br>Nov 1 - May 31                                       | 2.0                | 2.9<br>Wkly Avg         | XXX             | 18.0               | 27.0              | 36                  | 2/month                  | 8-Hr<br>Composite |
| Ammonia-Nitrogen<br>Jun 1 - Oct 31                                       | 0.7                | 1.0<br>Wkly Avg         | XXX             | 6.0                | 9.0               | 12                  | 2/month                  | 8-Hr<br>Composite |

### Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

|                  |            |               |                       | Monitoring Requirements |           |          |             |           |
|------------------|------------|---------------|-----------------------|-------------------------|-----------|----------|-------------|-----------|
| Parameter        | Mass Units | (lbs/day) (1) | Concentrations (mg/L) |                         |           |          | Minimum (2) | Required  |
| Farameter        | Average    | Daily         |                       | Average                 | Weekly    | Instant. | Measurement | Sample    |
|                  | Monthly    | Maximum       | Minimum               | Monthly                 | Average   | Maximum  | Frequency   | Type      |
|                  |            |               |                       |                         | Report    |          |             | 8-Hr      |
| Total Phosphorus | XXX        | 0.08          | XXX                   | Report                  | Daily Max | XXX      | 2/month     | Composite |


Compliance Sampling Location: Outfall 001

Other Comments: The only proposed change from the existing limitations and monitoring requirements is the removal of Total Nitrogen monitoring as mentioned above.

|             | Tools and References Used to Develop Permit                                                                                                                                                                        |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | WOM for Windows Model (one Attachment D)                                                                                                                                                                           |
|             | WQM for Windows Model (see Attachment B)                                                                                                                                                                           |
|             | PENTOXSD for Windows Model (see Attachment )  TRC Model Spreadshoot (see Attachment C)                                                                                                                             |
|             | TRC Model Spreadsheet (see Attachment C)                                                                                                                                                                           |
|             | Temperature Model Spreadsheet (see Attachment )                                                                                                                                                                    |
|             | Toxics Screening Analysis Spreadsheet (see Attachment )                                                                                                                                                            |
|             | Water Quality Toxics Management Strategy, 361-0100-003, 4/06.                                                                                                                                                      |
|             | Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.                                                                                                             |
|             | Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.                                                                                                                                                |
|             | Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.                                                                                                                  |
|             | Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.  Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.        |
|             | Pennsylvania CSO Policy, 385-2000-011, 9/08.                                                                                                                                                                       |
|             | Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.                                                                                                                                        |
|             | Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.                                                                                           |
|             | Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.                                                                                                                                              |
|             | Implementation Guidance Design Conditions, 391-2000-006, 9/97.                                                                                                                                                     |
|             | Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.                                                    |
|             | Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.                                                                             |
|             | Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.                                                                   |
|             | Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.                                                              |
|             | Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.                                                                                                                                    |
|             | Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.                                             |
| $\boxtimes$ | Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.                                                                                                                           |
|             | Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.                                                                                                                                              |
|             | Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.                                                                                                       |
|             | Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.       |
|             | Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.                                                                               |
|             | Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. |
|             | Design Stream Flows, 391-2000-023, 9/98.                                                                                                                                                                           |
|             | Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.                                     |
|             | Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.                                                                                                                         |
|             | Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.                                                                                                                   |
|             | SOP: Establishing Effluent Limitations for Individual Sewage Permits                                                                                                                                               |
|             | Other:                                                                                                                                                                                                             |

#### Attachments:

- A. Discharge Location Map
- B. WQM7.0 Modeling
- C. TRC Model



### Input Data WQM 7.0

|                          | SWP<br>Basin | Strea<br>Cod         |                | Stre                    | eam Name                |             | RMI                               | Ele          | evation<br>(ft) | Drainag<br>Area<br>(sq mi |                      | ope<br>V<br>t/ft) | PWS<br>Vithdrawal<br>(mgd) | Apply<br>FC |
|--------------------------|--------------|----------------------|----------------|-------------------------|-------------------------|-------------|-----------------------------------|--------------|-----------------|---------------------------|----------------------|-------------------|----------------------------|-------------|
|                          | 05E          | 273                  | 331 MAUS       | ES CREE                 | ΕK                      |             | 4.97                              | 70           | 620.00          | C                         | 0.0                  | 00000             | 0.00                       | <b>✓</b>    |
|                          |              |                      |                |                         | St                      | ream Dat    | a                                 |              |                 |                           |                      |                   |                            |             |
| Design<br>Cond.          | LFY          | Trib<br>Flow         | Stream<br>Flow | Rch<br>Trav<br>Time     | Rch<br>Velocity         | WD<br>Ratio | Rch<br>Width                      | Rch<br>Depth | n Tem           | <u>Tributar</u><br>np     | Υ<br>pH              | <u>Sí</u><br>Temp | <u>tream</u><br>pH         |             |
| Conu.                    | (cfsm)       | (cfs)                | (cfs)          | (days)                  | (fps)                   |             | (ft)                              | (ft)         | (°C             | ;)                        |                      | (°C)              |                            |             |
| Q7-10<br>Q1-10<br>Q30-10 | 0.168        | 0.00<br>0.00<br>0.00 | 0.00           | 0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000 | 0.0         | 0.00                              | 0.           | 00 2            | 0.00                      | 6.50                 | 0.0               | 0.00                       |             |
|                          |              |                      |                |                         | Di                      | scharge I   | Data                              |              |                 |                           |                      |                   |                            |             |
|                          |              |                      | Name           | Per                     | rmit Numbe              | Disc        | Permitte<br>Disc<br>Flow<br>(mgd) | Di<br>Fl     | sc Res          | serve<br>actor            | Disc<br>Temp<br>(°C) | Disc<br>pH        |                            |             |
|                          |              | Moor                 | esburgWW       | /TP PA                  | 0209261                 | 0.0130      | 0.013                             | 30 0.        | 0130            | 0.000                     | 25.00                | 0 7.              | 00                         |             |
|                          |              |                      |                |                         | Pa                      | arameter I  | Data                              |              |                 |                           |                      |                   |                            |             |
|                          |              |                      |                | Paramete                | r Name                  | Di<br>C     |                                   | Trib<br>Conc | Stream<br>Conc  | Fate<br>Coef              |                      |                   |                            |             |
| 4                        |              |                      |                | aramoto                 |                         | (m          | g/L) (r                           | ng/L)        | (mg/L)          | (1/days                   | s)                   |                   |                            |             |
|                          |              |                      | CBOD5          |                         |                         |             | 25.00                             | 2.00         | 0.00            | 1.5                       | 50                   |                   |                            |             |
|                          |              |                      | Dissolved      | Oxygen                  |                         |             | 3.00                              | 8.24         | 0.00            | 0.0                       | 00                   |                   |                            |             |
|                          |              |                      | NH3-N          |                         |                         |             | 6.00                              | 0.00         | 0.00            | 0.7                       | 70                   |                   |                            |             |

# Input Data WQM 7.0

|                 | SWP<br>Basir |              |                | Stre                | eam Name        |             | RMI                             |              | evation<br>(ft) | Draina<br>Area<br>(sq n | a                    | Slope<br>(ft/ft) | PW:<br>Withdr<br>(mg | awal | Apply<br>FC |
|-----------------|--------------|--------------|----------------|---------------------|-----------------|-------------|---------------------------------|--------------|-----------------|-------------------------|----------------------|------------------|----------------------|------|-------------|
|                 | 05E          | 273          | 331 MAUS       | ES CREE             | ΕK              |             | 3.9                             | 70           | 580.00          |                         | 1.76                 | 0.00000          |                      | 0.00 | <b>V</b>    |
|                 |              |              |                |                     | St              | ream Dat    | a                               |              |                 |                         |                      |                  |                      |      |             |
| Design<br>Cond. | LFY          | Trib<br>Flow | Stream<br>Flow | Rch<br>Trav<br>Time | Rch<br>Velocity | WD<br>Ratio | Rch<br>Width                    | Rch<br>Depth | n Ter           | <u>Tributa</u><br>np    | <u>ıry</u><br>pH     | Ten              | <u>Stream</u><br>np  | рН   |             |
| Conu.           | (cfsm)       | (cfs)        | (cfs)          | (days)              | (fps)           |             | (ft)                            | (ft)         | (°C             | C)                      |                      | (°C              | <b>C)</b>            |      |             |
| Q7-10<br>Q1-10  | 0.168        | 0.00         | 0.00           | 0.000               | 0.000           | 0.0         | 0.00                            | 0.0          | 00 2            | 20.00                   | 6.50                 |                  | 0.00                 | 0.00 |             |
| Q30-10          |              | 0.00         | 0.00           | 0.000               | 0.000           |             |                                 |              |                 |                         |                      |                  |                      |      |             |
|                 |              |              |                |                     | Di              | scharge l   | Data                            |              |                 |                         |                      |                  |                      |      |             |
|                 |              |              | Name           | Pe                  | rmit Number     | Disc        | Permitt<br>Disc<br>Flow<br>(mgd | Dis          | sc Res          | serve<br>actor          | Disc<br>Temp<br>(°C) |                  | isc<br>oH            |      |             |
|                 |              |              |                |                     |                 | 0.000       | 0.00                            | 00 0.0       | 0000            | 0.000                   | 25.                  | .00              | 7.00                 |      |             |
|                 |              |              |                |                     | Pa              | arameter l  | Data                            |              |                 |                         |                      |                  |                      |      |             |
|                 |              |              |                | Paramete            | r Namo          |             |                                 | Trib<br>Conc | Stream<br>Conc  | Fate<br>Coe             |                      |                  |                      |      |             |
|                 |              |              |                | raramete            | i Name          | (m          | g/L) (                          | mg/L)        | (mg/L)          | (1/day                  | /s)                  |                  |                      |      |             |
|                 | -            |              | CBOD5          | A.                  |                 |             | 25.00                           | 2.00         | 0.00            | 0 1                     | .50                  |                  |                      |      |             |
|                 |              |              | Dissolved      | Oxygen              |                 |             | 3.00                            | 8.24         | 0.00            | 0 0                     | .00                  |                  |                      |      |             |
|                 |              |              | NH3-N          |                     |                 |             | 25.00                           | 0.00         | 0.00            | 0 0                     | .70                  |                  |                      |      |             |

# WQM 7.0 Hydrodynamic Outputs

|       | SWP Basin Stream Code |             |                       |                          |                |       | Stream | <u>Name</u>  |          |                       |                  |                |
|-------|-----------------------|-------------|-----------------------|--------------------------|----------------|-------|--------|--------------|----------|-----------------------|------------------|----------------|
|       |                       | 05E         | 2                     | 7331                     |                |       | М      | AUSES        | CREEK    |                       |                  |                |
| RMI   | Stream<br>Flow        | PWS<br>With | Net<br>Stream<br>Flow | Disc<br>Analysis<br>Flow | Reach<br>Slope | Depth | Width  | W/D<br>Ratio | Velocity | Reach<br>Trav<br>Time | Analysis<br>Temp | Analysis<br>pH |
|       | (cfs)                 | (cfs)       | (cfs)                 | (cfs)                    | (ft/ft)        | (ft)  | (ft)   |              | (fps)    | (days)                | (°C)             |                |
| Q7-1  | 0 Flow                |             |                       |                          |                |       |        |              |          |                       |                  |                |
| 4.970 | 0.05                  | 0.00        | 0.05                  | .0201                    | 0.00758        | .341  | 3.22   | 9.45         | 0.06     | 0.952                 | 21.43            | 6.59           |
| Q1-1  | 0 Flow                |             |                       |                          |                |       |        |              |          |                       |                  |                |
| 4.970 | 0.05                  | 0.00        | 0.05                  | .0201                    | 0.00758        | NA    | NA     | NA           | 0.06     | 0.980                 | 21.50            | 6.60           |
| Q30-  | 10 Flow               | ,           |                       |                          |                |       |        |              |          |                       |                  |                |
| 4.970 | 0.06                  | 0.00        | 0.06                  | .0201                    | 0.00758        | NA    | NA     | NA           | 0.07     | 0.862                 | 21.20            | 6.58           |

# WQM 7.0 Modeling Specifications

| Parameters         | Both   | Use Inputted Q1-10 and Q30-10 Flows | <b>✓</b> |
|--------------------|--------|-------------------------------------|----------|
| WLA Method         | EMPR   | Use Inputted W/D Ratio              |          |
| Q1-10/Q7-10 Ratio  | 0.93   | Use Inputted Reach Travel Times     |          |
| Q30-10/Q7-10 Ratio | 1.27   | Temperature Adjust Kr               | <b>~</b> |
| D.O. Saturation    | 90.00% | Use Balanced Technology             | <b>✓</b> |
| D.O. Goal          | 5      |                                     |          |

# **WQM 7.0 Wasteload Allocations**

| SWP Basin | Stream Code | Stream Name  |
|-----------|-------------|--------------|
| 05E       | 27331       | MAUSES CREEK |

| RMI    | Discharge Name   | Baseline<br>Criterion<br>(mg/L) | Baseline<br>WLA<br>(mg/L) | Multiple<br>Criterion<br>(mg/L) | Multiple<br>WLA<br>(mg/L) | Critical<br>Reach | Percent<br>Reduction |
|--------|------------------|---------------------------------|---------------------------|---------------------------------|---------------------------|-------------------|----------------------|
| 4.97   | 0 MooresburgWWT  | 10.46                           | 12                        | 10.46                           | 12                        | 0                 | 0                    |
|        |                  |                                 |                           |                                 |                           |                   |                      |
| H3-N ( | Chronic Allocati | ons                             |                           |                                 |                           |                   |                      |
| H3-N ( | Chronic Allocati | Ons  Baseline Criterion (mg/L)  | Baseline<br>WLA<br>(mg/L) | Multiple<br>Criterion<br>(mg/L) | Multiple<br>WLA<br>(mg/L) | Critical<br>Reach | Percent<br>Reduction |

#### **Dissolved Oxygen Allocations**

|      |                | CBC                | <u>DD5</u>         | NH                 | <u>3-N</u>         | Dissolved          | <u>Oxygen</u>      | Critical | Percent   |
|------|----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------|-----------|
| RMI  | Discharge Name | Baseline<br>(mg/L) | Multiple<br>(mg/L) | Baseline<br>(mg/L) | Multiple<br>(mg/L) | Baseline<br>(mg/L) | Multiple<br>(mg/L) |          | Reduction |
| 4.97 | MooresburgWWTP | 25                 | 25                 | 6                  | 6                  | 3                  | 3                  | 0        | 0         |

# WQM 7.0 D.O.Simulation

| SWP Basin Str            |                       |                | Stream Name  |                        |                      |
|--------------------------|-----------------------|----------------|--------------|------------------------|----------------------|
| 05E                      |                       | r              | MAUSES CREEK |                        |                      |
| RMI                      | RMI Total Discharge F |                |              | lysis Temperature (°C) |                      |
| 4.970                    | 0.013                 | 3              |              | 21.426                 | 6.594                |
| Reach Width (ft)         | Reach Der             | oth (ft)       |              | Reach WDRatio          | Reach Velocity (fps) |
| 3.221                    | 0.341                 | l              |              | 9.446                  | 0.064                |
| Reach CBOD5 (mg/L)       | Reach Kc (            | <u>1/days)</u> | <u>R</u>     | each NH3-N (mg/L)      | Reach Kn (1/days)    |
| 8.56                     | 1.037                 |                |              | 1.71                   | 0.781                |
| Reach DO (mg/L)          | Reach Kr (1           |                |              | Kr Equation            | Reach DO Goal (mg/L) |
| 6.748                    | 26.09                 | 2              |              | Owens                  | 5                    |
| Reach Travel Time (days) |                       | Subreach       | Results      |                        |                      |
| 0.952                    | TravTime              | CBOD5          | NH3-N        | D.O.                   |                      |
|                          | (days)                | (mg/L)         | (mg/L)       | (mg/L)                 |                      |
|                          | 0.095                 | 7.70           | 1.59         | 8.03                   | •                    |
|                          | 0.190                 | 6.93           | 1.47         | 8.03                   |                      |
|                          | 0.286                 | 6.24           | 1.37         | 8.03                   |                      |
|                          | 0.381                 | 5.61           | 1.27         | 8.03                   |                      |
|                          | 0.476                 | 5.05           | 1.18         | 8.03                   |                      |
|                          | 0.571                 | 4.55           | 1.10         | 8.03                   |                      |
|                          | 0.666                 | 4.09           | 1.02         | 8.03                   |                      |
|                          | 0.762                 | 3.68           | 0.94         | 8.03                   |                      |
|                          | 0.857                 | 3.31           | 0.88         | 8.03                   |                      |
|                          |                       | 2.98           | 0.81         | 8.03                   |                      |

# **WQM 7.0 Effluent Limits**

|       | SWP Basin Stream 05E 273 |                  |                       | Stream Name      | -                                    |                                  |                                  |
|-------|--------------------------|------------------|-----------------------|------------------|--------------------------------------|----------------------------------|----------------------------------|
| RMI   | Name                     | Permit<br>Number | Disc<br>Flow<br>(mgd) | Parameter        | Effl. Limit<br>30-day Ave.<br>(mg/L) | Effl. Limit<br>Maximum<br>(mg/L) | Effl. Limit<br>Minimum<br>(mg/L) |
| 4.970 | MooresburgWWTP           | PA0209261        | 0.013                 | CBOD5            | 25                                   |                                  |                                  |
|       |                          |                  |                       | NH3-N            | 6                                    | 12                               |                                  |
|       |                          |                  |                       | Dissolved Oxygen |                                      |                                  | 3                                |

### TRC\_CALC

| 1A  | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С             | D                      | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                | G                     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
| 2   | TRC EVALU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IATION        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |
| 3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | reatment Plant         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |
| 4   | AND THE PROPERTY OF THE PROPER | = Q stream (  | -                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = CV Daily       |                       |
| 5   | WITH THE PARTY OF  | = Q discharg  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = CV Hourly      |                       |
| 6   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = no. sample  |                        | THE RESIDENCE PROPERTY AND ADDRESS OF THE PERSON NAMED AND ADD | = AFC_Partial N  |                       |
| 7   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4             | emand of Stream        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = CFC_Partial N  |                       |
| 8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             | emand of Discharge     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Compliance Time (min) |
| 9   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = BAT/BPJ V   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Compliance Time (min) |
| 4.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | of Safety (FOS)        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =Decay Coeffic   |                       |
| 10  | Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reference     | AFC Calculations       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reference        | CFC Calculations      |
| 11  | TRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3.2.iii     | WLA afc =              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3.2.iii        | WLA cfc = 0.784       |
|     | PENTOXSD TRO PENTOXSD TRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | LTAMULT afc =          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.1c             | LTAMULT cfc = 0.581   |
| 14  | PENTOXSD IKG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 5.1b        | LTA_afc=<br>WQBEL_afc= |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.1d             | LTA_cfc = 0.456       |
| 15  | Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -             |                        | Limit Cald                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ulations         | WQBEL_cfc= 0.561      |
|     | PENTOXSD TRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.1f          |                        | L MULT =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                       |
|     | PENTOXSD TRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | AVG MON LIMI           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | AFC                   |
| 18  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | INST MAX LIMI          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 7.1. 0                |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |
|     | WLA afc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ( 019/e/-k*Al | FC_tc)) + [(AFC_Yc*Q   | e* 010/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1*a(-k*AEC +a))  |                       |
|     | WEA alo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | C_Yc*Qs*Xs/Qd)]*(1-F   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1"e(-K"AFO_(C)). | ••                    |
|     | LTAMULT afc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -             | (cvh^2+1))-2.326*LN(   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.5)            |                       |
|     | LTA_afc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | wla_afc*LTA   |                        | - · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                |                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |
|     | WLA_cfc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | FC_tc) + [(CFC_Yc*Qs   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *e(-k*CFC_tc) ). |                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | C_Yc*Qs*Xs/Qd)]*(1-F   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |
|     | LTAMULT_cfc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | cvd^2/no_samples+1     | ))-2.326*L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .N(cvd^2/no_san  | nples+1)^0.5)         |
|     | LTA_cfc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | wla_cfc*LTA   | MULT_cfc               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |
|     | AML MULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EXP(2.326*LI  | N((cvd^2/no_samples    | +1)^0.5)-(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ).5*LN(cvd^2/no  | samples+1))           |
|     | AVG MON LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | J,MIN(LTA_afc,LTA_c    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |
|     | INST MAX LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | n_limit/AML_MULT)/L1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |                       |
| -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |