

Northwest Regional Office CLEAN WATER PROGRAM

Application Type
Renewal
NonMunicipal
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. **PA0209996**APS ID **1058074**

Authorization ID 1387216

Applicant Name	Salvation Army	Facility Name	Camp Allegheny
Applicant Address	700 North Bell Avenue P O Box 742	Facility Address	140 Jenkins Circle
	Carnegie, PA 15106	_	Ellwood City, PA 16117-7068
Applicant Contact	Philip Lloyd	Facility Contact	Chad Henry
Applicant Phone	(412) 446-1513	Facility Phone	(207) 730-9830
Client ID	130925	Site ID	445265
Ch 94 Load Status	Not Overloaded	Municipality	Wayne Township
Connection Status	No Limitations	County	Lawrence
ate Application Rece	eived February 28, 2022	EPA Waived?	Yes
ate Application Acce	epted	If No, Reason	

Summary of Review

No changes in discharge quality or quantity were proposed as part of this renewal.

The permittee is currently registered for and using eDMR for reporting.

There are currently no open violations listed in EFACTS for the permittee (8/10/2023). 8/16/2023 CWY

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Jordan A. Frey, E.I.T. Jordan A. Frey, E.I.T. / Project Manager	August 10, 2023
Х		Chad W. Yurisic Chad W. Yurisic, P.E. / Environmental Engineer Manager	8/16/2023

Outfall No. 001			_ Design Flow (MGD)	.06
Latitude 40° 5	3' 5.60"		_ Longitude	-80° 13' 52.28"
Quad Name Po	rtersville		_ Quad Code	40080H2
Wastewater Descrip	otion:	Sewage Effluent		
Receiving Waters	Slippe	ry Rock Creek (CWF)	Stream Code	34032
NHD Com ID	12621	6865	RMI	3.07
Drainage Area	400		Yield (cfs/mi²)	0.119
Q ₇₋₁₀ Flow (cfs)	47.6		Q ₇₋₁₀ Basis	USGS# 03106500 ('71-'08)
Elevation (ft)	837		Slope (ft/ft)	0.208
Watershed No.	20-C		Chapter 93 Class.	CWF
Existing Use			Existing Use Qualifier	
Exceptions to Use			Exceptions to Criteria	
Assessment Status	-	Attaining Use(s)		
Cause(s) of Impairr	nent			
Source(s) of Impair	ment			
TMDL Status	•		Name	
Background/Ambie	nt Data		Data Source	
pH (SU)		8.1	WQN 922 ('05-'16) (July-Sept	r) (Geo. Mean)
Temperature (°F)		20	Default for CWF	
Hardness (mg/L)		104.6	WQN 922 ('05-'08) (July-Sept	(Median)
Other:		0.02	WQN 922 ('05-'16) (July-Sept) (Median)
Nearest Downstrea	m Public	Water Supply Intake	Pennsylvania American Wate	r Company – Ellwood City
PWS Waters	Connoqu	enessing Creek	Flow at Intake (cfs)	67
PWS RMI 2	2.0		Distance from Outfall (mi)	8.28

Changes Since Last Permit Issuance:

Other Comments: Nearest downstream PWS surface water intake has been relocated from Slippery Rock Creek to the mouth of the Connoquenessing Creek since the previous permit renewal

Treatment Facility Summary Treatment Facility Name: Camp Allegheny **WQM Permit No. Issuance Date** 2/28/1992 3792401 Degree of **Avg Annual Waste Type Treatment Process Type** Disinfection Flow (MGD) Extended Aeration Secondary Hypochlorite Sewage 0.06 **Hydraulic Capacity Organic Capacity Biosolids** (lbs/day) **Biosolids Treatment** (MGD) **Load Status Use/Disposal** 0.06 120 Not Overloaded Aerobic Digestion

Changes Since Last Permit Issuance: None

Other Comments: None

Compliance History

DMR Data for Outfall 001 (from January 1, 2022 to December 31, 2022)

Parameter	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22
Flow (MGD)												
Average Monthly	0.0115	0.0126	0.0046	0.0023	0.001	0.0022	0.00259	0.0068	0.0079	0.0088	0.0152	0.0023
Flow (MGD)												
Daily Maximum	0.0369	0.0208	0.0163	0.0152	0.0075	0.0204	0.01345	0.0424	0.0243	0.0345	0.0734	0.0103
pH (S.U.)												
Minimum	6.92	6.41	7.11	6.51	6.98	6.25	6.7	6.65	6.53	6.06	6.0	6.11
pH (S.U.)												
Maximum	8.34	8.11	8.34	8.07	7.94	7.95	8.29	8.14	8.18	8.16	8.15	8.22
DO (mg/L)												
Minimum	9.2	10.1	11.2	8.7	6.50	6.7	6.2	4.5	5.3	17.2	17.6	18.9
TRC (mg/L)												
Average Monthly	0.5	0.5	0.5	0.5	0.4	0.4	0.40	0.30	0.3	0.4	0.38	0.44
TRC (mg/L)												
Instantaneous												
Maximum	1.01	1.19	1.02	1.0	0.76	1.09	1.02	1.0	1.1	1.03	0.75	0.86
CBOD5 (mg/L)												
Average Monthly	< 4.0	< 19.4	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	5.1
TSS (mg/L)												
Average Monthly	< 9.0	17.0	28.8	< 5.0	16.5	< 5.0	< 5.0	< 5.0	< 5.0	17.5	< 9.0	< 1.0
Fecal Coliform												
(CFU/100 ml)					_	_						
Geometric Mean	< 11	< 1	> 101	118	8	< 2	> 2420	20	< 45	> 1868	< 45	< 1.0
Fecal Coliform												
(CFU/100 ml)												
Instantaneous	400		0.400	400	00	_	0.400	50	4000	0.400	4000	1 10
Maximum	130	2	> 2420	196	36	5	> 2420	52	1986	> 2420	1986	< 1.0
Ammonia (mg/L)	. 0.20	. 0. 20	. 0. 20	. 0.20	. 0.20	.00	. 0.20	. 0.20	.00	. 0.00	. 0.20	.02
Average Monthly	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.3	< 0.30	< 0.30	< 0.3	< 0.09	< 0.30	< 0.3

	Development of Effluent Limitations										
Outfall No.	001		Design Flow (MGD)	.06							
Latitude	40° 53' 5.00'		Longitude	-80° 13' 52.00"							
Wastewater D	escription:	Sewage Effluent	-								

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: None

Water Quality-Based Limitations

No new parameters were found to be candidates for limitations by Reasonable Potential Analysis during the last permit renewal (8/16/2023 CWY)

No limitations were determined to be needed through WQM 7.0 or PENTOXSD Modeling. Previous permit cycle's WQM 7.0 modeling was used due to the facility being small and no significant changes having occurred during the last permit cycle.

A Reasonable Potential Analysis was not performed in accordance with State practices using the Department's Toxics Management Spreadsheet because no sampling other than sewage-related parameters was performed for this facility with the renewal application (the facility design flow is less than 0.1 MGD, there are no industrial or commercial users, and the facility does not accept hauled in waste). (8/16/2023 CWY)

The modeling reach extended to the downstream public water supply to demonstrate human health criteria was being met.

Best Professional Judgment (BPJ) Limitations

Comments: A dissolved oxygen limit of a minimum of 4 mg/l and monitoring for ammonia nitrogen, total nitrogen, and total phosphorus were placed in the permit during the previous permit cycle in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits (BPNPSM-PMT-033)." Sampling data in the eDMRs for ammonia nitrogen, total nitrogen, and total phosphorus do not indicate a need for limits at this time.

The TRC spreadsheet calculated a less stringent TRC IMAX limit. The existing instantaneous maximum limit for TRC will be retained due to anti-backsliding provisions.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
r ai ailietei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.2	1/day	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30.0	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	Grab
Total Nitrogen	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite
Ammonia	XXX	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite

Compliance Sampling Location: Outfall 001, after disinfection.

ATTACHMENT A

		WATER QUALITY PO	EENING ANALYS PLLUTANTS OF (RSION 2.3			
Facility: Camp Allegheny			NPDES Permit N	o.: PA0209	996	Outfall: 001
Analysis Hardness (mg/L): 104.6			Discharge Flow (I			ysis pH (SU): 8.1
Parameter		aximum Concentration in pplication or DMRs (µg/L)	Most Stringent Criterion (µg/L)	Candidate for PENTOXSD Modeling?	Most Stringent WQBEL (μg/L)	Screening Recommendation
Cotal Dissolved Solids		529000	500000	Yes	263480000	No Limits/Monitoring
Chloride		14500	250000	No		FALSE
Bromide		120	N/A	No		
Gulfate		76000	250000	No		FALSE
,4-Dioxane			N/A			
Total Copper		40	9,69	Yes	835	No Limits/Monitorin
otal Lead	<	20	3.37	Yes	1727	No Limits/Monitorin
fotal Zinc		290	124.5	Yes	7122	No Limits/Monitorin
		-			-	
		· ·				
4 (20)						
	<u> </u>				·	
	⊢					
	┝					
	\vdash					
	Η-				· .	
e de la companya del companya de la companya del companya de la co	\vdash					
· , , , ,						
		-				
			 			1
			 	 		
		1 4 74		 		
	\vdash	·		+		
		1 1 1 1 1 1 1 1 1				
		1				
		10.00				
			1	1		1

Input Data WQM 7.0

	SWP Basin	Strea Coo		Stre	eam Name		RMI	Ele	evation (ft)	Drainag Area (sq mi)		Slope (ft/ft)	PWS Withdra (mgd	awal	Apply FC
	20C	340	32 SLIPP	ERY RO	CK CREEK		3.0	70	835.49	397	.90 0.	.00000		0.00	~
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Ten	Tributan np	ℓ pH	Ten	Stream p	pН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.119	47.50 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00	0.00	0.00	2	0.00	8.10	
					Di	scharge l	Data				and the state of t				
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Di:	sc Res	serve actor	Disc Temp (°C)		sc H		
	A. S	Cam	p Allegheny	/ PA	0209996	0.060	0.000	0.0	0000	0.000	20.0	00	6.70		
					Pa	rameter	Data								
				Paramete	- Mana			Trib Conc	Stream Conc	Fate Coef					
				-aramete	i Name	(m	ıg/L) (ı	mg/L)	(mg/L)	(1/days)				
	_		CBOD5				25.00	2.00	0.00) 1.5	0				
			Dissolved	Oxygen			4.00	8.24	0.00	0.0	0				
			NH3-N				25.00	0.02	0.00	0.7	0				

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)		With	VS drawal igd)	Apply FC
	20C	340	32 SLIPP	ERY ROC	CK CREEK		0.25	50	818.00	409.	0.0	0000	0.00	✓
		*****			St	ream Dat	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p	Н	<u>Strea</u> Temp	m pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.119	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0	0.00	0.00	20.00	8.10	
					Di	scharge	Data				<i>x</i>			
			Name	Pei	rmit Number	Disc	Permitt Disc Flow (mgd	Dis Flo	c Res	erve 7 ictor	Disc Femp (°C)	Disc pH	** - ** - ** - ** - ** - ** - ** - **	
						0.000	0.000	0.0	0000	0.000	25.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name	Ċ	Conc (Trib Conc mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)				
	_					(II	ng/L) (ı	ng/L)	(ing/L)	(17days)				
			CBOD5				25.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00	ס			
			NH3-N				25.00	0.00	0.00	0.70	0			

WQM 7.0 Hydrodynamic Outputs

	<u>sw</u>	P Basin	Strea	m Code				Stream	<u>Name</u>			
		20C	3	4032			SLIP	PERY RO	CK CRE	EK		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity	Reach Trav Time (days)	Analysis Temp	Analysis pH
and a second			(***)		. ,	. ,						
Q7-1	0 Flow											
3.070	47.50	0.00	47.50	.0928	0.00117	.986	111.22	112.85	0.43	0.397	20.00	80.8
Q1-1	0 Flow											
3.070	30.40	0.00	30.40	.0928	0.00117	NA	NA	NA	0.34	0.509	20.00	8.07
Q30-	10 Flow	1										
3.070	64.60	0.00	64.60	.0928	0.00117	NA	NA	NA	0.52	0.334	20.00	8.09

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code 34032		SLIP	Stream Name	EK	
<u>RMI</u>	Total Discharge	Flow (mgd) Ana	ysis Temperature	(°C)	Analysis pH
3.070	0.060)		20.000		8.080
Reach Width (ft)	Reach Dep	oth (ft)		Reach WDRatio	<u> </u>	Reach Velocity (fps)
111.221	0.986	3		112.851		0.434
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/l	<u>)</u>]	Reach Kn (1/days)
2.04	0.027			0.07		0.700
Reach DO (mg/L)	Reach Kr (*			Kr Equation	Re	each DO Goal (mg/L)
8.235	2.379	9		Tsivoglou		6
Reach Travel Time (days)		Subreach	Results			
0.397	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.040	2.04	0.07	8.24		
	0.079	2.04	0.07	8.24		
	0.119	2.04	0.06	8.24		
	0.159	2.04	0.06	8.24		
	0.198	2.03	0.06	8.24		
	0.238	2.03	0.06	8.24		
	0.278	2.03	0.06	8.24		
	0.318	2.03	0.06	8.24		
	0.357	2.03	0.05	8.24		
	0.397	2.02	0.05	8.24		

WQM 7.0 Wasteload Allocations

,	SWP Basin S	34032			SLIP	Stream PERY RO		EK		
NH3-N	Acute Allocat	ions								
RMI	Discharge Na	ime Ci	iseline riterion mg/L)	Baseline WLA (mg/L)	Multiple Criterio (mg/L)	n V	iltiple VLA ng/L)	Critical Reach	Percent Reductio	n
3.07	0 Camp Allegher	ıy	2.31	50	2	.31	50	0	0	
NH3-N	Chronic Alloc	ations	;							
RMI	Discharge Nan	ne Crit	eline erion g/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Mult Wi (mg	ĹA	Critical Reach	Percent Reduction	
3.07	0 Camp Allegher	ny	.54	25		.54	25	0	0	_
Dissolv RMI	ed Oxygen A				NH Baseline (mg/L)	3-N Multiple (mg/L)			Critical	Percent Reduction
3.0	7 Camp Alleghe	ny		25 25	25	25	4	4	0	0

WQM 7.0 Effluent Limits

	SWP Basin Stream 20C 340	<u>1 Code</u> 032		Stream Name	_		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effi. Limit Minimum (mg/L)
3.070	Camp Allegheny	PA0209996	0.060	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

PENTOXSD

Modeling Input Data

Stream Code		Elevati (ft)		ainage Area sq mi)	Slope	PWS \ (mg				pply FC				
3403	3.07	83	5.49		0.00000		0.00			✓				
							Stream Da	ata						
	LFY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	r <u>y</u> pH	<u>Strear</u> Hard	<u>n</u> pH	<u>Analys</u> Hard	<u>is</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)		(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.119	47.5	(0 0	0	0	0	0	0	0	104.6	8.1	0	0
Qh		0	() (0	0	0	0	100	7	0	0	0	0
						D	ischarge [Data						
	Name	Pern Num	ber [isting P Disc Flow	ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(1	mgd)	(mgd)	(mgd)						(mg/L)		
Cam	p Allegheny	PA020	9996	0.06	0	0	0	0	0	0	0	100	6.7	
						Pa	arameter D	ata						
	Parameter I	Name		Disc Conc	Trib Conc	Diso Daily CV	Hourl	y Con		Fate Coef		Crit Mod	Max Disc Conc	
				(µg/L)	(µg/L)		(µg/l	L)				(µg/L)	
COPPE	R			40	0	0.			0	0	0	1	0	
LEAD				20	0	0.			0	0	0	1	0	
TOTAL ZINC	DISSOLVED	SOLIDS	(PWS)	52900 290		0. 0.			0	0	0	1	0	

Thursday, February 23, 2017

Version 2.0d

Page 1 of 2

Strea Cod		Elevation (ft)		ainage Area sq mi)	Slope	PWS (mg				pply FC				
340	32 0.25	818	3.00	409.00	0.00000		0.00			V				
							Stream D	ata						
		Trib	Stream	WD	Rch	Rch	Rch	Rch	Tributa	ıry	Stream	<u>n</u>	Analysi	is
	LFY	Flow	Flow	Ratio	Width	Depth	Velocity	Trav Time	Hard	pН	Hard	pН	Hard	pН
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.119	0) (0 0	0	0	0	0	0	104.6	8.1	0	0
Qh		0	()	0 0	0	0	0	100	7	0	0	0	0
						D	ischarge I	Data						
	Name	Pern Numi	oer [isting F Disc Flow	Permitted Disc Flow	Design Disc Flow	Reserve Factor		CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			i)	mgd)	(mgd)	(mgd)						(mg/L)		
_				0	0	0	0	0	0	0	0	100	7	_
						P	arameter [Data						
	Parameter N	Name		Disc Cond	Cond	C	y Hour	ly Con	c CV	n Fate Coe		Crit M od	Conc	
00000				(µg/L)			- 01	(µg/		0	0		(µg/L) 0	
COPPE	EK			0	0	0.				0	0	1	0	
	DISSOLVED	SOLIDS	(PIWS)	0	0	0.				0	0	1	0	
ZINC	DIGGOLVED	JOLIDO	(. VI O)	0	0		.5 0.8			0	0	1	0	

Page 2 of 2

Hydrodynamics

<u>s</u>	WP Basir	1	Stream Code:				Stream	n Name	į		
	20C		34	032		SL	IPPERY!	ROCK C	REEK		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)
					Q7		lrodyna	mics			
3.070	47.5	0	47.5	0.09281	0.0012	0.9856	111.22	112.85	0.4342	0.3969	503.653
0.250	48.821	0.0015	48.819	NA	0	0	0	0	0	0	NA
					Q	h Hydr	odynan	nics			
3.070	216.98	0	216.98	0.09281	0.0012	1.9216	111.22	57.879	1.0157	0.1697	185.555
0.250	222.24	0.0015	222.24	NA	0	0	0	0	0	0	NA

Wasteload Allocations

RMI	Name	Permit Number							
3.07	Camp Allegheny	PA0209996							
	Parameter	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	
	COPPER	0	0	0	0	NA	NA	NA	-
,	LEAD	0	0	0	0	NA	NA	NA	
	ZINC	0	0	0	0	NA	NA	NA	
TOTAL	. DISSOLVED SOLI	OS (PWS) 0	0	0	0	NA	NA	NA	

Version 2.0d

Recommended Effluent Limitations

SWP Basin	SWP Basin Stream Code 20C 34032		SI	Stream	<u>Name:</u> DCK CREEK	<	
RMI	Name		rmit mber	Disc Flow (mgd)		·	
3.07	Camp Allegheny	PA02	09996	0.0600	_		
	1997 / Par	Effluent Limit		***************************************	Max. Daily	Most S	tringent
P	arameter	(µg/L)	Gove Crite	•	Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion
COPPER		40	INP	UT	62.406	835.705	AFC
LEAD		20	INP	UT	31.203	1727.272	CFC
TOTAL DISSO	DLVED SOLIDS (PWS	529000	INP	UT	825325.1	2.6348E+08	THH
ZINC		290	INP	UT	452.447	7122.568	AFC

Wasteload Allocations

RMI	Name	Permit Numl	ber						
3.07	Camp Allegheny	PA020999	6						
					AFC				
Q7-	10: CCT (min) 15	PMF	0.172	Analysis	pH 7.996	Analysis	s Hardness 1	04.548
	Parameter		tream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	COPPER		0	0	0	0	14.014	14.598	1303.834
		Dis	solved	WQC. C	hemical tra	nslator of 0.	96 applied		
	LEAD		0	0	0	0	67.784	86.402	7716.907
		Dis	solved	wac. c	hemical tra	nslator of 0.	785 applie	d.	
	ZINC		0	0	0	0	121.681	124.418	11112.35
		Dis	solved	WQC. C	hemical tra	nslator of 0.	978 applie	d.	
TOTAL	DISSOLVED SOLID		0	0	0	0	NA	NA	NA
				(CFC				
Q7-10:	CCT (min	503.653	PMF	= 1	Analysis	pH 8.08	Analys	is Hardness	104.591
	Parameter		ream	Stream CV	Trib Conc.	Fate Coef	WQC	WQ Obj	WLA
		(1	μg/L)		(µg/L)		(µg/L)	(μg/Ĺ)	(µg/L)
	COPPER		0	0	0	0	9.306	9.694	4970.37
		Dis	ssolved	I WQC. C	hemical tra	inslator of 0.	96 applied		
	LEAD		0	0	0	0	2.643	3.369	1727.272
		Dis	solved	I WQC. C		inslator of 0.			
	ZINC		0	0	0	0	122.719	124.461	63816.63
		Dis	ssolved	WQC. C	hemical tra	inslator of 0.	986 applie	d.	
TOTAL	DISSOLVED SOLIDS	S (PWS)	0	0	0	0	NA	NA	NA
				-	тнн				
Q7-10:	CCT (min	503.653	PMF	NA	Analysis	spH NA	Analys	is Hardness	NA
	Parameter		tream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
		(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	COPPER		0	0	0	0	NA	NA	NA
	LEAD		0	0	0	0	NA	NA	NA
	ZINC		0	0	0	0	NA	NA	NA
TOTAL	DISSOLVED SOLID	, .	0	0	0 MI 25 with	0	500000	500000 of 48.8209.	2.6348E+0
		V	vuo ap	•		ı a uesigii Si	edani now	UI 40.0208.	
Oh:	COT /	195 555	: DRAI		CRL				
Qh:	CCT (min) 185.555	, PIVII	F I					

Thursday, February 23, 2017

Version 2.0d

Page 1 of 2

TRC Spreadsheet

Input appropria	te values in A	3:A9 and D3:D9				
47.6	= Q stream (c	fs)	0.5	= CV Daily		
0.06	= Q discharge	e (MGD)	0.5	= CV Hourly		
30	= no. samples	3	1	= AFC_Partial N	lix Factor	
0.3	= Chlorine De	emand of Stream	1	= CFC_Partial N	lix Factor	
(= Chlorine De	mand of Discharge	15	= AFC_Criteria	Compliance Time (min) Compliance Time (min) ient (K) CFC Calculations WLA cfc = 159.498 LTAMULT cfc = 0.581 LTA_cfc = 92.725 BAT/BPJ	
0.5	= BAT/BPJ Va	alue	720	= CFC_Criteria	Compliance Time (min)	
(= % Factor of	Safety (FOS)		=Decay Coeffic	ient (K)	
Source	Reference	AFC Calculations		Reference	CFC Calculations	
TRC	1.3.2.iii	WLA afc =	WLA afc = 163.609		WLA cfc = 159.498	
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581	
PENTOXSD TRG	5.1b	LTA_afc=	60.965	5.1d	LTA_cfc = 92.725	
Source		Efflue	nt Limit Calcu	lations		
PENTOXSD TRG	5.1f		AML MULT =	1.231		
PENTOXSD TRG	5.1g		LIMIT (mg/l) = .IMIT (mg/l) = ^		J	
WLA afc	•	C_tc)) + [(AFC_Yc*Qs*.019/G :_Yc*Qs*Xs/Qd)]*(1-FOS/100		c))		
LTAMULT afc LTA_afc	•	cvh^2+1))-2.326*LN(cvh^2+1				
WLA_cfc	•	C_tc) + [(CFC_Yc*Qs*.011/Q :_Yc*Qs*Xs/Qd)]*(1-FOS/100	-	e))		
LTAMULT_cfc LTA_cfc		cvd^2/no_samples+1))-2.326				
EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AML MULT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT) AVG MON LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc) INST MAX LIMIT						

Figure 4 - TRC Spreadsheet

Camp Allegheny

Wayne Township, Lawrence County

PA0209996 Discharge pH

<u>Date</u>	pH min	pH max	10^ -pH min 10^ -pH max & pH max) -Log (Ave pH)
Jul-14	6.15	7.61	7.08E-07 2.45E-08 3.66E-07 6.4
Sep-14	6.38	7.37	4.17E-07 4.27E-08 2.3E-07 6.6
Jul-15	6.2	6.8	6.31E-07 1.58E-07 3.95E-07 6.4
Aug-15	6.7	7	2E-07 1E-07 1.5E-07 6.8
Sep-15	7.2	8	6.31E-08 1E-08 3.65E-08 7.4
Jul-16	6.1	7	7.94E-07 1E-07 4.47E-07 6.3
Aug-16	7	7.6	1E-07 2.51E-08 6.26E-08 7.2
Sep-16	7.9	8.1	1.26E-08 7.94E-09 1.03E-08 8.0
			Median: 6.7