

Northwest Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Renewal

Non-Municipal

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. APS ID

Authorization ID

PA0210510 1049069 1385445

Applicant Name	Ohanna Rental Properties LLC	Facility Name	Ohanna Rental Properties STP
Applicant Address	9201 State Road	Facility Address	14301 West Ridge Road
	Cranesville, PA 16410-1613		West Springfield, PA 16443
Applicant Contact	Timothy Daggett	Facility Contact	Timothy Dagget
Applicant Phone	(814) 528-3719	Facility Phone	(814) 881-1287
Applicant E Mail	tdaggett62@gmail.com	Facility E Mail	
Client ID	365948	Site ID	245005
Municipality	Springfield Township	County	Erie
Ch 94 Load Status	Not Overloaded	Connection Status	Self-Imposed Connection Prohibition
Date Application Rece	ived February 17, 2022	EPA Waived?	Yes
Date Application Acce	pted February 24, 2022	If No, Reason	

Summary of Review

This renewal is in response to a late renewal permit violation notice. The annual fee was submitted late on 18 January 2022. There are no open violations in WMS for Client ID 365948 as of 6/12/2023. CWY

New owner without previous owner's sludge records. Moore Sanitation under contract for sludge removal.

NPDES renewal and WQM transfer

Operator Thomas W Holtz, 814-490-5541, tnhtz@yahoo.com

Public Participation

Purpose of Application

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
V		William H. Mentzer	
		William H. Mentzer, P.E. Environmental Engineering Specialist	May 23, 2023
X		Chad W. Yurisic Chad W. Yurisic, P.E. Environmental Engineer Manager	6/12/2023

Discharge, Receiving	Waters and Water Supply Inforr	nation	
Outfall No.	001	Design Flow (MGD)	0.0035
Latitude DP	41° 56′ 55.00″	Longitude DP	-80° 29' 36.00"
Latitude NHD	41º 56' 55.13"	Longitude NHD	-80° 29' 35.54"
Quad Name	East Springfield	Quad Code	0302
Wastewater Descrip	otion: Treated domestic wastes f	rom the Ohanna Rental Propertion	es
Receiving Waters	Unnamed Tributary to Turkey Cre	eek Stream Code	62716
NHD Com ID	123921995	RMI	0.17
Drainage Area	0.05	Yield (cfs/mi²)	0.0163
Q ₇₋₁₀ Flow (cfs)	0.0054 (dry stream for modelling)	Q ₇₋₁₀ Basis	Conneaut & Elk Crk avg
Elevation (ft)	673.46	Slope (ft/ft)	0.00364
Watershed No.	15-A	Chapter 93 Class.	CWF, MF
Existing Use	statewide	Existing Use Qualifier	none
Exceptions to Use	none	Exceptions to Criteria	none
Comments	Aquatic life protection downstrear	m at 62716 RMI 0.13, Drainage	0.74 square miles, Elevation
670.10 feet Slope 0	.00364 foot/foot, and 0.012-cfs stre	am flow. Tributary 62716 Mouth	n drainage 1.77-square miles,
0.0288-cfs, Elevation	on 666.43 feet		
Assessment Status	Aquatic life supporting		
Cause(s) of Impairn	nent		
Source(s) of Impair	ment		
TMDL Status		Name	
Background/Ambier	nt Data	Data Source	
pH (SU)	<u></u> ,		
Temperature (°F)	·		
Hardness (mg/L)			
Other:			
Nearest Downstrea	m Public Water Supply Intake	State of Ohio	
	Furkey Creek	Flow at Intake (cfs)	NA
_	1.55	Distance from Outfall (mi)	1.78

Changes Since Last Permit Issuance: none

Other Comments: none

WQM Permit No.	Issuance Date			
2593411	1550ance Date	June 8, 1994		
2593411 T-1	Sexting 191 2010 S	· · · · · · · · · · · · · · · · · · ·		
	Degree of			Avg Annua
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Septic Tank Sand Filter	Hypochlorite	0.0035
	•			
lydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa
	6	Not Overloaded	Anaerobic Digestion	Other WWTF

Changes Since Last Permit Issuance: none

Other Comments: The earlier transferred WQM permit states a 0.0003-MGD mean and hydraulic design flow. The original WQM permit did not state a design flow. This flow is lower than the NPDES application 0.0035-MGD 24-hour waste that was in the original 1993 NPDES application

Month Annual Average Design Hydraulic Design Organic Design	Year	Flow MGD 0.0035 0.0030	Load PPD 6.0				
Annual Average	2019	0.000675					
G	2020	0.001103					
	2021	0.000730					
High Mon Average	2021	0.000883					
рН				6.9		7.2	48
TRC				0.15	0.22	0.30	24
F Coliform				1	52	<u>759</u>	24
CBOD5				2	3.1	4.3	24
TSS				2	4.3	5.25	24
Amm				0.2	0.653	1.73	24
N				0.2	0.678	0.98	24
P				0.02	0.137	0.44	24
DO				4.0	4.71	6.2	24

One time high maximum fecal coliform.

а

Compliance History

DMR Data for Outfall 001 (from May 1, 2021 to April 30, 2022)

Parameter	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21
Flow (MGD)												
Average Monthly	0.000445	0.0002130	0.000602	0.000303	0.000651	0.00064	0.0007	0.00068	0.00075	0.00059	0.00085	0.00086
pH (S.U.)												
Instantaneous												
Minimum	6.8	6.8	6.8	6.8	7.0	7.1	7.0	6.9	6.9	6.9	6.9	6.9
pH (S.U.)												
Instantaneous												
Maximum	7.1	7.2	7.1	7.4	7.4	7.4	7.4	7.6	7.4	7.1	7.2	7.3
DO (mg/L)												
Instantaneous												
Minimum	4.8	4.4	5.0	5.1	5.2	4.9	4.7	4.7	4.7	4.5	4.0	4.4
TRC (mg/L)												
Average Monthly	0.14	0.20	0.14	0.16	0.22	0.19	0.15	0.19	0.18	0.17	0.15	0.19
CBOD5 (mg/L)				_								
Average Monthly	< 4.0	< 4.0	< 4.0	E	< 4.0	< 4.0	< 4.0	4	3.0	< 4.0	3.0	< 4.0
TSS (mg/L)				_								
Average Monthly	6.5	5.0	< 5.0	E	< 5.0	< 5.0	< 5.0	4	4.0	< 5.0	4.0	< 5.0
Fecal Coliform												
(CFU/100 ml)				_	4.0		4.0			40=		
Geometric Mean	1.0	5.0	< 1.0	Е	4.0	2	4.0	6.0	1.0	187	174	1.0
Total Nitrogen (mg/L)		4.00		_								
Average Monthly	1.3	1.06	0.925	Е	1.73	0.985	< 0.30	0.30	0.30	1.51	1.13	0.57
Ammonia (mg/L)				_	4							
Average Monthly	1.3	1.06	0.925	Е	1.73	0.985	< 0.30	0.30	0.30	1.51	1.13	0.57
Total Phosphorus												
(mg/L)	0.40	0.000	0.000	_	0.000	0.407	0.040	0.400	0.4.47	0.000	0.444	0.004
Average Monthly	0.10	0.069	0.069	Е	0.206	0.187	0.216	0.169	0.147	0.098	0.111	0.064

Compliance History

No listed violations

Developmen	t of Effluent Limitations		
Outfall No.	001	Design Flow (MGD)	.0035
Latitude	41° 56' 55.27"	Longitude	-80° 29' 36.61"
Wastewater D	Description: Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
DO	4.0	Daily Minimum		BPJ
(Escherichia) E. coli	Monitor	Annually		BPJ

Comments: none

Water Quality-Based Limitations

A Sewage program "Reasonable Potential Analysis" determined the following parameters were candidates for limitations: Phosphorus, CBOD5, ammonia and DO. Phosphorus at 1.0-mg/L is a small flow Lake Erie basin limitation.

The following limitations were determined through water quality modeling (output files attached):

Para	ameter		Limit (mg/	1)	SBC		Model	
Name	Perion	Minimum	Average	Maximum	NA	Minimum	Average	Maximum
CBOD5							25.0	50.0
Ammonia	summer		8.0	16.0			8.72	16.44
	winter		24.0	48.0			26.16	52.32
DO		4.0				5.0		

Comments:

The receiving waters are a tributary 62616 dry reach. Perennial stream conditions are assumed downstream at RMI 0.13 where the discharge chlorine is expected to be not detectable because of natural assimilation.

Minimum reported DO is 4.0-mgL with no known dry stream impairments. The recommend 5.0-mg/L is for trout protection in flowing streams and does not apply to dry streams.

The 5-mg/L limit is caused by the change from WQN6.3 to WQM7.0 when fish criteria evaluation became an option. In WQM6.3 the dry stream reach was evaluated separately with a 3-mg/L DO goal. In WQM 7.0 the dry stream reach could be evaluated with the perennial stream reach using a 5.0-mg/L in stream goal.

Best Professional Judgment (BPJ) Limitations

Comments: Applies to DO. A 4.0-mg/L daily minimum is reported. Minimum dry stream DO should be above 6.0-mg/L Two step modelling recommends a 4.0-mg/L daily minimum while one step modelling recommends a 5.0-mg/L daily minimum.

Anti-Backsliding

Might be applicable to ammonia as the current model raised the ammonia limitation slightly. There is no need to change the permit requirements as ammonia is less than 2-mg/L and the WQ requirements can be rounded down to the existing limitations.

	SWP Basir			Stre	eam Nam	e	RMI		ation	Drainage Area (sq mi)	Slope (ft/ft)	Witho	Irawal	Apply FC
	15	627	05 TURK	EY CREE	K		3.1	60	670.10	0.74	0.000	00	0.00	✓
						Stream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	I	<u>Strear</u> emp	<u>n</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		Ç	(°C)		
Q7-10 Q1-10 Q30-10	0.016	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	ס	0.00	0.00	0 20	0.00 7	.50	0.00	0.00	
						Discharge	Data						1	
			Name	Per	mit Numl	Disc	Permitt Disc Flow (mgd	Disc Flow	Res	erve Te ctor	sc mp C)	Disc pH		
		h				0.000	0 0.000	0.00	000	0.000	0.00	7.00		
						Parameter								
			1	Paramete	r Name			Trib S Conc	Stream Conc	Fate Coef				
					0000000000000	(m	ng/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50		·		
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

	SWP Basir			Stre	eam Nam	е	RMI	Eleva		Drainage Area (sq mi)	Slo	With	NS drawal ngd)	Apply FC
	15	627	705 TURKI	EY CREE	K		3.3	50 6	373.85	0.0	0.00	0000	0.00	
5					;	Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p	Н	<u>Strea</u> Temp	<u>m</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))		(°C)		
Q7-10 Q1-10 Q30-10	0.016	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000		l .	0.00	0.00	20	0.00	7.50	0.00	0.00	
						Discharge								
			Name	Pei	mit Numb	Existing Disc per Flow (mgd)	Permitt Disc Flow (mgd	Flow	Res	erve T ctor	Disc emp (°C)	Disc pH		
		Ohan	na Rental	PA	0210510	0.003	5 0.00	35 0.00	35 (0.000	20.00	7.10		
						Parameter	Data							
			ı	Paramete	r Name				tream Conc	Fate Coef				
				ui ui ii oto		(m	ıg/L) (ı	mg/L) (mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.10	0.00	0.70	Ü			

	SWP Basin	Strea		Stre	am Nam	e	RMI		vation (ft)	Draina Area (sq m	ì	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	15	62	705 TURK	EY CREE	K		3.03	30	666.43	5	1.77 0	.00000		0.00	✓
						Stream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributa</u> np	ry pH	Tem	Stream np	D pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	;)		
Q7-10 Q1-10 Q30-10	0.016	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000)	0.00	0.00	0 2	0.00	7.50	8	0.00	0.00	
						Discharge	Data								
			Name	Per	mit Numt	Disc	Permitte Disc Flow (mgd)	Disc Flo	c Res w Fa	erve ctor	Disc Temp (°C)		isc bH		
		1				0.000	0.000	0.0	000	0.000	0.0	00	7.00		
						Parameter	Data								
			,	⊃aramete	r Name	С	onc C	Conc	Stream	Fate Coef					
	_					(m	g/L) (n	ng/L)	(mg/L)	(1/day	s)				
			CBOD5				25.00	2.00	0.00	1.	50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.	00				
			NH3-N				25.00	0.00	0.00	0.	70				

	SWP Basir			Stre	am Nam	е	RMI		vation (ft)	Drainage Area (sq mi)	Slo _l (ft/f	With	WS drawal ngd)	Apply FC
	15	62	705 TURK	EY CREE	K		1.5	50	592.05	7.0	0.00	0000	0.00	~
						Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pl	Н	<u>Strea</u> Temp	<u>m</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))		(°C)		
Q7-10 Q1-10 Q30-10	0.016	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000)	0.00	0.0	0 20	0.00	7.50	0.00	0.00	
						Discharge	Data							
			Name	Per	mit Numb	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	erve T ctor	Disc emp (°C)	Disc pH		
		2				0.000	0.000	0.0	000	0.000	0.00	7.00		
						Parameter								
			j	Paramete	r Name	С	onc C	Conc	Stream Conc	Fate Coef				
	_					(m	ıg/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

	SWP Basin	Strea Cod		Stre	am Nam	е	RMI		vation (ft)	Drainage Area (sq mi)	: Slop (ft/f	With	WS drawal ngd)	Apply FC
	15	627	705 TURK	EY CREE	K		0.00	00	572.00	8.	01 0.00	000	0.00	✓
8						Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p	Н	<u>Strea</u> Temp	<u>m</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.016	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	ס	0.00	0.0	0 2	0.00	7.50	0.00	0.00	
						Discharge I	Data							
			Name	Per	mit Numl	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	erve T ctor	Disc emp (°C)	Disc pH		
						0.000	0.000	0.0	0000	0.000	0.00	7.00		
						Parameter	Data							
			ï	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
			80			(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)			
			NH3-N				25.00	0.00	0.00	0.70)			

WQM 7.0 D.O.Simulation

	tream Code			Stream Name	
15	62705			TURKEY CREEK	
RMI 3.350 Reach Width (ft) 1.066 Reach CBOD5 (mg/L) 22.04 Reach DO (mg/L) 5.417	Total Discharge 0.00 Reach De 0.25 Reach Kc (1.47 Reach Kr (22.05	4 pth (ft) 3 1/days) 4 1/days)		lysis Temperature (°C) 20.000 Reach WDRatio 4.213 leach NH3-N (mg/L) 7.61 Kr Equation Owens	Analysis pH 7.135 Reach Velocity (fps) 0.023 Reach Kn (1/days) 0.700 Reach DO Goal (mg/L) NA
Reach Travel Time (days) 0.504	TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.050 0.101 0.151 0.202 0.252 0.302 0.353 0.403 0.454	20.46 19.00 17.64 16.37 15.20 14.11 13.10 12.16 11.29 10.49	7.35 7.10 6.85 6.61 6.38 6.16 5.95 5.74 5.54 5.35	5.78 6.03 6.23 6.41 6.57 6.72 6.86 6.99 7.11 7.23	
RMI 3.160 Reach Width (ft) 2.802 Reach CBOD5 (mg/L) 5.06 Reach DO (mg/L) 7.878	Total Discharge 0.00 Reach De 0.26 Reach Kc (1.01 Reach Kr (20.36	4 pth (ft) 5 <u>1/days)</u> 1 1/days)		lysis Temperature (°C) 20.000 Reach WDRatio 10.574 leach NH3-N (mg/L) 1.92 Kr Equation Owens	Analysis pH 7.331 Reach Velocity (fps) 0.023 Reach Kn (1/days) 0.700 Reach DO Goal (mg/L) 5
7.878 Reach Travel Time (days) 0.342	TravTime (days) 0.034 0.068 0.103 0.137 0.171 0.205 0.239 0.273 0.308 0.342	Subreach	1.88 1.83 1.79 1.75 1.71 1.63 1.59 1.55	B.O. (mg/L) 8.19 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24	

WQM 7.0 D.O.Simulation

	ream Code			Stream Name	
15	62705			TURKEY CREEK	
RMI 3.030 Reach Width (ft) 3.917 Reach CBOD5 (mg/L) 2.81 Reach DO (mg/L) 8.243	Total Discharge 0.00 Reach De 0.29 Reach Kc (0.11) Reach Kr (19.62	4 pth (ft) 4 1/days) 0 1/days)		lysis Temperature (°C) 20.000 Reach WDRatio 13.321 leach NH3-N (mg/L) 0.77 Kr Equation Owens	Analysis pH 7.406 Reach Velocity (fps) 0.029 Reach Kn (1/days) 0.700 Reach DO Goal (mg/L) 5
Reach Travel Time (days) 3.087	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.309 0.617 0.926 1.235 1.544 1.852 2.161 2.470 2.779 3.087	2.71 2.62 2.54 2.45 2.37 2.29 2.21 2.14 2.07 2.00	0.62 0.50 0.40 0.33 0.26 0.21 0.17 0.14 0.11	8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24	
RMI 1.550 Reach Width (ft) 7.905 Reach CBOD5 (mg/L) 2.00 Reach DO (mg/L) 8.243	Total Discharge 0.00 Reach De 0.38 Reach Kc (0.00 Reach Kr (14.60	4 pth (ft) 2 <u>1/days)</u> 0 1/days)		lysis Temperature (°C) 20.000 Reach WDRatio 20.680 leach NH3-N (mg/L) 0.03 Kr Equation Owens	Analysis pH 7.471 Reach Velocity (fps) 0.039 Reach Kn (1/days) 0.700 Reach DO Goal (mg/L) 5
8.243 Reach Travel Time (days) 2.435	TravTime (days) 0.243 0.487 0.730 0.974 1.217 1.461 1.704 1.948 2.191 2.435	Subreach	0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01	B.O. (mg/L) 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.2	

WQM 7.0 Hydrodynamic Outputs

	<u>sw</u>	<u>P Basin</u> 15		<u>m Code</u> 2705				Stream URKEY				
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
	(613)	(013)	(013)	(013)	(10/10)	(117)	(11)		(103)	(ddys)	(0)	
Q7-10	0 Flow											
3.350	0.00	0.00	0.00	.0054	0.00374	.253	1.07	4.21	0.02	0.504	20.00	7.14
3.160	0.01	0.00	0.01	.0054	0.00535	.265	2.8	10.57	0.02	0.342	20.00	7.33
3.030	0.03	0.00	0.03	.0054	0.00952	.294	3.92	13.32	0.03	3.087	20.00	7.41
1.550	0.11	0.00	0.11	.0054	0.00245	.382	7.91	20.68	0.04	2.435	20.00	7.47
Q1-10	0 Flow											
3.350	0.00	0.00	0.00	.0054	0.00374	NA	NA	NA	0.02	0.518	20.00	7.12
3.160	0.01	0.00	0.01	.0054	0.00535	NA	NA	NA	0.02	0.401	20.00	7.29
3.030	0.02	0.00	0.02	.0054	0.00952	NA	NA	NA	0.02	3.777	20.00	7.37
1.550	0.07	0.00	0.07	.0054	0.00245	NA	NA	NA	0.03	3.081	20.00	7.46
Q30-	10 Flow	,										
3.350	0.00	0.00	0.00	.0054	0.00374	NA	NA	NA	0.02	0.491	20.00	7.15
3.160	0.02	0.00	0.02	.0054	0.00535	NA	NA	NA	0.03	0.302	20.00	7.36
3.030	0.04	0.00	0.04	.0054	0.00952	NA	NA	NA	0.03	2.663	20.00	7.43
1.550	0.15	0.00	0.15	.0054	0.00245	NA	NA	NA	0.05	2.064	20.00	7.48

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	•
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	95.00%	Use Balanced Technology	✓
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
15	62705	TURKEY CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
3.35	0 Ohanna Rental	NA	50	14.9	42.61	2	15
3.16	0	NA	NA	12.36	NA	NA	NA
3.03	0	NA	NA	11.11	NA	NA	NA
1.55	0	NA	NA	9.85	NA	NA	NA
H3-N (Chronic Allocati	ons					
	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
RMI							
000000000	i0 Ohanna Rental	NA	25	1.77	8.72	2	65
000000000			25 NA	1.77 1.56	8.72 NA	2 NA	65 NA
3.35	0	NA					

Dissolved Oxygen Allocations

		CBC	DD5	<u>NH</u>	<u>3-N</u>	Dissolve	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
3.35 (Dhanna Rental	25	25	8.72	8.72	5	5	0	0
3.16		NA	NA	NA	NA	NA	NA	NA	NA
3.03		NA	NA	NA	NA	NA	NA	NA	NA
1.55		NA	NA	NA	NA	NA	NA	NA	NA

WQM 7.0 Effluent Limits

	SWP Basin Stream	n Code		Stream Nam	<u>e</u>		
	15 62	705		TURKEY CRE	EK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
3.350	Ohanna Rental	PA0210510	0.004	CBOD5	25		
				NH3-N	8.72	17.44	
				Dissolved Oxygen			5

	C charger	D Chestnut Gro	E	F	G	Н		J Wednesd:	K L ay, May 10, 2023	М
,	Site	Ohanna Ren	tal Properities S	STP			Revised		ay, May 17, 2023	
	icipality ounty	Springfield T Erie	ownship							
	ES Permit	PA0210510								
Handanakan	0.5	AND AND ORDER TOWN								
		N 25 N 25 N			TRC EVAL	.UATION				
	oriate values in E 0.012	34:B8 and E4:8			0.5	CV Daily				
	1.0035	= Q discharge				CV Hourly				
	30	= no. sample:				AFC_Partial M				
	0.3	SECURITY STATES	emand of Stream emand of Discha			CFC_Partial N	lix Factor Compliance Time	(m in)		
	8	= BAT/BPJ V		uge			Compliance Time			
	0		f Safety (FOS)			Decay Coeffici		B 200		
	Source TRC	Reference 1.3.2.iii	AFC Calculation	vVLA afc =	0.720	Refere 1.3.2			CFC Calculations WLA cfc = 0.704	
PENTOXSD T		5.1a		LTAMULT afc =		5.1		LTAI	MULT cfc = 0.581	
PENTOXSD T	TRG	5.1b		LTA_afc=	0.272	5.1	d		LTA_cfc = 0.409	
Source			1		4.	Effluer	it Limit Calculatio	ns		
PENTOX SD T	TRG	5.1f			AML MULT = 1		it Ellille Odlodida	113		
PENTOXSD T	TRG	5.1g			1 LIMIT (mg/l) = 0		AF	C.		
					(LIMIT (mg/l) = 1	.094				
WLA afc		/ 0.19/e/_k*AF/	C_tc)) + [(AFC_Y	'c*Os* 019/Od*a	(_k*AFC_tc))					
. LAS GIG			C_Yc*Qs*Xs/Qd)		, o_tojj					
LTAMULT afc			cvh^2+1))-2.326*	LN(cvh^2+1)^0.5	5)					
LTA_afc		wla_afc*LTAM	IULI_arc							
WLA_cfc			C_tc) + [(CFC_Y		(-k*CFC_tc))					
LTAMULT cfc			C_Yc*Qs*Xs/Qd)		cvd^2/no_sample	-±1 MO E)				
LTA_cfc		wla_cfc*LTAM		:511)-2.320 LIN	cvu zmo_sample	511 0.0)				
		E (E (C C C C C C C C C C C C C C C C C	100 USA	r magazia	Division was	1 10				
AML MULT AVG MON LIMI	IT		N((CVO~2/NO_Sam J,MIN(LTA_afc,L*		*LN(cvd^2/no_sar JLT)	npies+i))				
INST MAX LIMI			_limit/A ML_MUL							
Stream	FC_tc/1440)))+X Chlorine Requir Reach/Node	red	= 2	perennial 1	Chlorine [2	Dem and	+ Ch	Iorine Residual		
Stream Stream	Flow Code	Conditions		Dry 62716	Perennial 62716					
Ou ouiii	Function			OUTFALL	02110					
Samples			DMI	30	30					
reach	outfall Reach End		RMI RMI	0.32 0.13	0.13					
reach	rodon End		feet	1003.2	686.4					
drainage	trace de later a la		sq miles	0.05	0.74					
TRC	limitation	average maximum	mg/L mg/L	0.031 0.101	0.335 1.094					
				673.85						
		modelled	feet		670.1					
elevation		modelled	feet	670.10	666.43					
elevation slope low flow										
elevation slope low flow discharge	50.57	modelled	feet foot/foot cfs/sq mi mgd	670.10 0.004 0.016 0.0035	666.43 0.005 0.016 0.0035					
elevation slope low flow discharge Runoff	Period discharge where	modelled modelled	feet foot/foot cfs/sq mi mgd hours	670.10 0.004 0.016 0.0035 24.000	666.43 0.005 0.016 0.0035 24.000	l stream condit	ions and aquatic	life.		
elevation slope low flow discharge Runoff		modelled modelled	feet foot/foot cfs/sq mi mgd hours	670.10 0.004 0.016 0.0035 24.000	666.43 0.005 0.016 0.0035 24.000	l stream condit	ions and aquatic	life.		
elevation slope low flow discharge Runoff Dry stream d	discharge where	modelled modelled	feet foot/foot cfs/sq mi mgd hours s expected to be	670.10 0.004 0.016 0.0035 24.000 e not detectble	666.43 0.005 0.016 0.0035 24.000 prior to perennia	l stream condil	ions and aquatic	life.		
elevation slope low flow discharge Runoff Dry stream d	discharge where	modelled modelled	feet foot/foot cfs/sq mi mgd hours s expected to be	670.10 0.004 0.016 0.0035 24.000 e not detectble 0.00082	666.43 0.005 0.016 0.0035 24.000 prior to perennia	l stream condit	ions and aquatic	life.		
elevation slope low flow discharge Runoff Dry stream d stream stream stream	discharge where flow flow flow	modelled modelled	feet foot/foot cfs/sq mi mgd hours s expected to be	670.10 0.004 0.016 0.0035 24.000 e not detectble	666.43 0.005 0.016 0.0035 24.000 prior to perennia	l stream condil	ions and aquatic	life.		
elevation slope low flow discharge Runoff Dry stream d stream stream stream stream	discharge where flow flow flow chlorine	modelled modelled the chlorine is total demand	feet foot/foot cfs/sq mi mgd hours s expected to be cfs MGD MGD mg/L	670.10 0.004 0.016 0.0035 24.000 e not detectble 0.00082 0.000527	666.43 0.005 0.016 0.0035 24.000 prior to perennia 0.01206 0.007796	l stream condil	ions and aquatic	life.		
elevation slope low flow discharge Runoff Dry stream d stream stream stream stream discharge	discharge where flow flow flow	modelled modelled the chlorine is total demand demand	feet foot/foot cfs/sq mi mgd hours s expected to be cfs MGD MGD mg/L mg/L	670.10 0.004 0.016 0.0035 24.000 e not detectble 0.00082 0.000527 0.004027 0.3	666.43 0.005 0.016 0.0035 24.000 prior to perennia 0.01206 0.007796 0.011296 0.3	l stream condit	ions and aquatic	life.		
elevation slope low flow discharge Runoff Dry stream d stream stream stream stream discharge	flow flow flow flow chlorine discharge	modelled modelled the chlorine is total demand demand	feet foot/foot cfs/sq mi mgd hours s expected to be cfs MGD MGD mg/L	670.10 0.004 0.016 0.0035 24.000 e not detectble 0.00082 0.000527 0.004027	666.43 0.005 0.016 0.0035 24.000 prior to perennia 0.01206 0.007796 0.011296	l stream condil	ions and aquatic	life.		
elevation slope low flow discharge Runoff Dry stream d stream stream stream stream discharge	flow flow flow flow chlorine discharge	modelled modelled the chlorine is total demand demand	feet foot/foot cfs/sq mi mgd hours s expected to be cfs MGD MGD mg/L mg/L	670.10 0.004 0.016 0.0035 24.000 e not detectble 0.00082 0.000527 0.004027 0.3	666.43 0.005 0.016 0.0035 24.000 prior to perennia 0.01206 0.007796 0.011296 0.3	l stream condil	ions and aquatic	life.		
elevation slope low flow discharge Runoff Dry stream d stream stream stream stream discharge	flow flow flow flow chlorine discharge	modelled modelled the chlorine is total demand demand	feet foot/foot cfs/sq mi mgd hours s expected to be cfs MGD MGD mg/L mg/L	670.10 0.004 0.016 0.0035 24.000 e not detectble 0.00082 0.000527 0.004027 0.3	666.43 0.005 0.016 0.0035 24.000 prior to perennia 0.01206 0.007796 0.011296 0.3	l stream condil	ions and aquatic	life.		
elevation slope slope slope discharge Runoff Dry stream d stream	flow flow flow flow chlorine discharge	modelled modelled the chlorine is total demand demand Waste	feet foot/foot cfs/sq mi mgd hours s expected to be cfs MGD MGD mg/L mg/L	670.10 0.004 0.016 0.0035 24.000 e not detectble 0.00082 0.000827 0.004027 0.3	666.43 0.005 0.016 0.0035 24.000 prior to perennia 0.01206 0.007796 0.011296 0.3	l stream condil	ions and aquatic	life.		
elevation slope low flow discharge Runoff Dry stream d stream stream stream discharge stream	flow flow flow flow chlorine discharge Total Stream/	modelled modelled the chlorine is total demand demand	feet foot/foot cfs/sq mi mgd hours s expected to be cfs MGD MGD mg/L mg/L ratio	670.10 0.004 0.016 0.0035 24.000 e not detectble 0.00082 0.000527 0.004027 0.3	666.43 0.005 0.016 0.0035 24.000 prior to perennia 0.01206 0.007796 0.011296 0.3	l stream condit	ions and aquatic	life.		
elevation elevation slope low flow discharge Runoff Dry stream d stream stream stream discharge stream	flow flow flow flow chlorine discharge Total Stream/	modelled modelled modelled the chlorine is total demand demand Waste	feet foot/foot cfs/sq mi mgd hours s expected to be cfs MGD MGD mg/L ratio	670.10 0.004 0.016 0.0035 24.000 e not detectble 0.00082 0.000527 0.004027 0.3 1.2	666.43 0.005 0.016 0.0035 24.000 prior to perennia 0.01206 0.007796 0.011296 0.3 3.2	l stream condit	ions and aquatic	life.		
elevation slope low flow discharge Runoff Dry stream d stream stream stream discharge stream	flow flow flow flow chlorine discharge Total Stream/	modelled modelled modelled the chlorine is total demand demand Waste	feet foot/foot cfs/sq mi mgd hours s expected to be cfs MGD MGD mg/L ratio	670.10 0.004 0.016 0.0035 24.000 e not detectble 0.00082 0.000527 0.004027 0.3 1.2	666.43 0.005 0.016 0.0035 24.000 prior to perennia 0.01206 0.007796 0.011296 0.3 3.2	l stream condit	ions and aquatic	life.		
elevation slope low flow discharge Runoff Dry stream d stream stream stream stream discharge stream	flow flow flow flow chlorine discharge Total Stream/	modelled modelled modelled the chlorine is total demand demand Waste	feet foot/foot cfs/sq mi mgd hours s expected to be cfs MGD MGD mg/L ratio	670.10 0.004 0.016 0.0035 24.000 e not detectble 0.00082 0.000527 0.004027 0.3 1.2	666.43 0.005 0.016 0.0035 24.000 prior to perennia 0.01206 0.007796 0.011296 0.3 3.2	l stream condit	ions and aquatic	life.		
elevation slope low flow discharge Runoff Dry stream d stream stream stream discharge stream	flow flow flow flow chlorine discharge Total Stream/	modelled modelled modelled the chlorine is total demand demand Waste	feet foot/foot cfs/sq mi mgd hours s expected to be cfs MGD MGD mg/L ratio	670.10 0.004 0.016 0.0035 24.000 e not detectble 0.00082 0.000527 0.004027 0.3 1.2	666.43 0.005 0.016 0.0035 24.000 prior to perennia 0.01206 0.007796 0.011296 0.3 3.2	l stream condit	ions and aquatic	life.		

	SWP Basir			Stre	eam Nam	е	RMI	Eleva		Drainage Area (sq mi)	Slo	With	NS drawal ngd)	Apply FC
	15	627	705 TURKI	EY CREE	K		3.3	50 6	373.85	0.0	0.00	0000	0.00	
5					;	Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p	Н	<u>Strea</u> Temp	<u>m</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))		(°C)		
Q7-10 Q1-10 Q30-10	0.016	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000		l .	0.00	0.00	20	0.00	7.50	0.00	0.00	
						Discharge								
			Name	Pei	mit Numb	Existing Disc per Flow (mgd)	Permitt Disc Flow (mgd	Flow	Res	erve T ctor	Disc emp (°C)	Disc pH		
		Ohan	na Rental	PA	0210510	0.003	5 0.00	35 0.00	35 (0.000	20.00	7.10		
						Parameter	Data							
			ı	Paramete	r Name				tream Conc	Fate Coef				
				ui ui ii oto		(m	ıg/L) (ı	mg/L) (mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.10	0.00	0.70	Ü			

roposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum (2)	Required
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50.0	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30.0	XXX	60.0	2/month	8-Hr Composite
E. Coli	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	XXX	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	XXX	2/month	Grab
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	24.0	XXX	48.0	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	8.0	XXX	16.0	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	1.0	XXX	XXX	2/month	8-Hr Composite

Compliance Sampling Location: Outfall 001 after disinfection