

Northwest Regional Office CLEAN WATER PROGRAM

Renewal Application Type Facility Type Non-Municipal Minor Major / Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.

PA0210668

APS ID

1090573

Auth

norization ID	1443433

Applicant Name	Perseus House Inc.	Facility Name	Andromeda House
Applicant Address	1511 Peach Street	Facility Address	39132 Mount Pleasant Road
	Erie, PA 16501-2104		Spartansburg, PA 16434-1120
Applicant Contact	Nick Viglione	Facility Contact	Scott Martin
Applicant Phone	(814) 572-6096	Facility Phone	
Applicant E Mail	nviglione@perseushouse.org	Facility E Mail	smartin@pereushouse.org
Client ID	44570	Site ID	250325
Municipality	Bloomfield Township	County	Crawford
Ch 94 Load Status	Not Overloaded	Connection Status	No Limitations
Application Received	May 30, 2023	EPA Waived?	Yes
Application Accepted	June 20, 2023	If No, Reason	

Summary of Review

No open violations listed. 8/15/2023 CWY E Coli monitoring added.

Don Green Sanitation conveyed approximately 7,200-gallons of sludge to the McKean Township Sewer Authority for additional treatment and disposal.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
		William H. Mentzer	
^		William H. Mentzer, P.E. Environmental Engineering Specialist	July 13, 2023
X		Chad W. Yurisic Chad W. Yurisic, P.E. Environmental Engineer Manager	8/15/2023

Outfall No.	001		Design Flow (MGD)	0.0038
atitude - NPDES	41° 49' 53	.93"	Longitude - NPDES	-79º 46' 28.10"
_atitude - NHD	41° 49' 54		Longitude - NHD	-79° 46' 37.20"
Quad Name	Lake Cana	adohta	Quad Code	0407
Wastewater:	Treated bo	parding school don	nestic wastes	
Receiving Waters	Unnamed	tributary to Pine H	ollow Run Stream Code	54656
NHD Com ID	10046774	5	RMI	2.75
Drainage Area	0.16		Yield (cfs/mi²)	0
Q ₇₋₁₀ Flow (cfs)	0		Q ₇₋₁₀ Basis	Intermittent stream
Elevation (ft)	1624.74		Slope (ft/ft)	0.00660
Watershed No.	16-E		Chapter 93 Class.	CWF
Existing Use	statewide		Existing Use Qualifier	none
Exceptions to Use	none		Exceptions to Criteria	none
Comments	The monit	oring location is of	ter chlorination and prior to pump	aina —
Comments				
Assessment Status		outfall is at tributar	y Node RMI 1,01 or stream RMI	2.75
Assessment Status	The NHD Attaining U	outfall is at tributar Jse(s)	y Node RMI 1,01 or stream RMI	2.75
Assessment Status Impairment Cause(s)	The NHD Attaining U	outfall is at tributar Jse(s)	y Node RMI 1,01 or stream RMI	2.75
Assessment Status Impairment Cause(s) Impairment Source(s	The NHD Attaining U	outfall is at tributar Jse(s)	y Node RMI 1,01 or stream RMI	2.75
Assessment Status Impairment Cause(s) Impairment Source(s TMDL Status	Attaining (outfall is at tributar Jse(s)	y Node RMI 1,01 or stream RMI	2.75
Assessment Status Impairment Cause(s) Impairment Source(s TMDL Status Background/Ambient	Attaining (outfall is at tributar Jse(s)	y Node RMI 1,01 or stream RMI	2.75
Assessment Status Impairment Cause(s) Impairment Source(s TMDL Status Background/Ambient pH (SU)	Attaining U	outfall is at tributar	y Node RMI 1,01 or stream RMI	2.75
Assessment Status Impairment Cause(s) Impairment Source(s TMDL Status Background/Ambient pH (SU) Temperature (°F)	Attaining U Data 7.0	outfall is at tributar Jse(s)	y Node RMI 1,01 or stream RMI	2.75
	Attaining U Data 7.0 68	default default default	y Node RMI 1,01 or stream RMI	2.75
Assessment Status Impairment Cause(s) Impairment Source(s TMDL Status Background/Ambient pH (SU) Temperature (°F) Hardness (mg/L)	The NHD Attaining U Data 7.0 68 100	default default default default default default	y Node RMI 1,01 or stream RMI	2.75
Assessment Status Impairment Cause(s) Impairment Source(s TMDL Status Background/Ambient pH (SU) Temperature (°F) Hardness (mg/L) 5 Day CBOD	The NHD Attaining U Data 7.0 68 100 2.0	default default default default default default	Name Data Source Data Stream conditions	2.75
Assessment Status Impairment Cause(s) Impairment Source(s TMDL Status Background/Ambient pH (SU) Temperature (°F) Hardness (mg/L) 5 Day CBOD Ammonia Nitrogen Other:	The NHD Attaining I Data 7.0 68 100 2.0 0.1	default default default default default default default at perer	Name Data Source Data Stream conditions	2.75
Assessment Status Impairment Cause(s) Impairment Source(s TMDL Status Background/Ambient pH (SU) Temperature (°F) Hardness (mg/L) 5 Day CBOD Ammonia Nitrogen	The NHD Attaining I Data 7.0 68 100 2.0 0.1	default default default default default default at perer default at perer	Name Data Source Data Stream conditions nnial stream conditions	2.75

Changes Since Last Permit Issuance: none

Other Comments:

The receiving stream flow is based on Oil Creek at Rouseville, Pa.

Discharge drainage precision is limited to 0.16 square miles as indicated through measured values ranging between 0.156 to 1.66 square miles.

	Tre	atment Facility Summa	ary	
Treatment Facility Na	me: Andromeda House			
WQM Permit No.	Issuance Date			
2092404A1	4/11/2006			
2096408	10/29/1996			
2092404	9/10/93			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Extended Aeration	Hypochlorite	0.0038
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.0038	8.2	Not Overloaded	Aerated Sludge Holding	

Changes Since Last Permit Issuance: none

Other Comments:

The treatment facility has been rebuilt for compliance with the current NPDES permit requirements with no further permit violations reported.

Treatment: comminution with by-pass bar screen, 2,000-gallon equalization tank, 4,024-gallon aeration tank, clarifier with airlift sludge pumping, calcium hypochlorite disinfection with an 1,000-gallon contact tank, 2,000-gallon aerated sludge holding tank, two 2-hp 86-scfm blowers, one 1-hp 4-scfm blower and an 155-gpm effluent pump. De-chlorination was not addressed in the application and is not known to present.

The original design was for a small flow system serving a residential home. The treatment system was for a septic tank sand filter system with chlorination and a pumped discharge to roadside ditch northwest of the home. De-chlorination was not addressed in the application. The design was approved as WQM 2092404 on September 10, 1993.

Facility design was increased by WQM permit 2096408 through adding treatment capacity and retained the original effluent pumped discharge location. The permit was issued on 29 October 1996 for: six 1,000-gallon septic tanks. 1,000-gallon dosing tank, two sand filter beds, chlorination with a 1,000-gallon contact tank and effluent pumping. Dechlorination was not addressed in the application.

In 2006 WQM permit 2092404 Amendment 1 issued on April 11, 2006 to replace the septic tank-sand filter system with an activated sludge treatment facility was submitted. Design was for comminutor with bypass bar screen, 2,000-gallon equalization tank with two 0.5-hp pumps, 4,024-gallon aeration basin, 736-gallon clarifier with air-lift sludge pump, tablet chlorinator, 1,000-gallon chlorine contact tank, effluent pumping tank, 2,000-gallon sludge holding tank, and two 2-hp and one 1-hp blowers. Annual average flow is 0.0038-MGD, Hydraulic capacity is 0.0038-MGD, and the organic load is 8.16-PPD. This amendment retained effluent pumping and the discharge location. Upon permit issuance WQM permit 2096408 was cancellated.

As previously requested, and retained small flow monitoring based on actual flow is proposed.

For 2001 through summer 2017 the waste flow was at least 701-gpd and did not exceed 2,177-gpd. The current discharge is marginally higher and less than 1,000-gpd.

Compliance History

DMR Data for Outfall 001 (from May 1, 2022 to April 30, 2023)

Parameter	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22
Flow (MGD)												
Average Monthly	00	00	00	00	00	00	00	00	00	00	00	00
Flow (MGD)												
Daily Maximum	00	00	00	00	00	00	00	00	00	00	00	00
pH (S.U.)												
Daily Minimum	7.2	7.1	7.2	7.2	7.0	7.2	7.2	7.1	7.0	7.0	7.1	7.1
pH (S.U.)												
Daily Maximum	7.2	7.1	7.2	7.2	7.0	7.2	7.2	7.1	7.0	7.0	7.1	7.1
DO (mg/L)												
Daily Minimum	7.69	7.48	8.61	7.89	9.15	7.85	6.92	8.47	7.68	4.97	7.95	6.59
TRC (mg/L)												
Average Monthly	0.08	0.10	0.20	0.22	0.12	0.02	0.02	0.02	0.02	0.02	0.02	0.02
TRC (mg/L)												
Instantaneous Max	0.60	0.48	0.56	0.22	0.12	0.61	0.54	0.64	0.42	0.65	0.63	0.55
CBOD5 (mg/L)												
Average Monthly	< 4.0	5.68	4.60	6.44	2.76	3.72	6.87	9.51	10.52	6.58	3.33	5.29
CBOD5 (mg/L)												
Instantaneous Max	< 4.0	5.68	4.60	6.44	2.76	3.72	6.87	9.51	10.52	6.58	3.33	5.29
TSS (mg/L)												
Average Monthly	5.0	7.50	7.0	10.0	9.0	10.0	10.0	5.0	21.0	24.0	7.0	14.0
TSS (mg/L)												
Instantaneous Max	5.0	7.50	7.0	10.0	9.0	10.0	10.0	5.0	21.0	24.0	7.0	14.0
F Coliform (#/100 ml)												
Geometric Mean	< 1	< 1	< 0.1	224.7	159.7	< 1	17	< 10	43	< 10	< 10	< 10
Fecal Coliform												
(No./100 ml) Inst Max	< 1	< 1	< 0.1	224.7	159.7	< 1	17	< 10	43	< 10	< 10	< 10
Total Nitrogen (mg/L)												
Average Quarterly		22.49			19.91			30.81			24.01	
Ammonia (mg/L)												
Average Quarterly		8.817			1.34			3.40			1.28	
Total Phosphorus												
(mg/L) Ave Quarterly		1.94			3.20			1.64			1.3	

Compliance History

No violations reported

NPDES Permit Fact Sheet Andromeda House

Annual Average Design Hydraulic Design	Month	Year	Flow MGD 0.0038 0.0038	Mass PPD				
Organic Design				8.16				
Annual Average		2020	0.000913					
-		2021	0.000787					
		-	0.000640					
Highest Monthly Average	July	2022	0.000924					
pH					7.0		7.4	48
TRC						0.10	0.78	24
F Coliform					< 10	19.15	159.7	24
CBOD5					2.03	6.50	11.82	24
TSS					6.0	12.12	25.0	24
Am					< 0.5	2.48	9.8	16
N					2.24	22.17	51.67	16
Р					0.21	1.29	3.20	16

No flows over 0.001-MGD reported and monthly monitoring retention recommended

	Develop	ment of Effluent Limitations	
Outfall No.	001	Design Flow (MGD)	.0038
Latitude	41° 49' 53.93"	Longitude	-79° 46' 28.10"
Wastewater D	Description: Sewage Effluent	_	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
DO	4.0	Daily Minimum		BPJ
E Coli	Report	Annual		BPJ

Comments: E Coli monitoring proposed.

Water Quality-Based Limitations

Ammonia, dissolved oxygen, nitrogen, phosphorus, and total residual chlorine are assumed pollutants based on prior reviews.

The normal drainage is to a local dry drainage swale draining south east to un-named tributary 54541 of Britton Run and then to the East Branch Oil Creek.

As specified the discharge is pumped north and west to a roadside ditch. The ditch conveys the waste flow northwest for approximately 530 feet then west in a drainage swale for another approximate 490 feet crossing the local road to an intermittent segment of Pine Hollow Run tributary 54656. At the roadside ditch an acceptable rip-rapped outfall is provided according to WQM application 2096408.

Disinfection and post chlorination monitoring is approximately 30 feet southeast of the pump station. This is the NPDES permit discharge point.

The un-named Pine Hollow Run tributary 54656 is an assessed intermittent stream. NHD places the outfall at RMI 1.01 while the NHD site RMI is 1.00. This is 2.75 miles above the stream mouth. Waters above this point have not been assessed. No water-quality based chlorine limitations are necessary at this point.

According to the USGS map perennial stream conditions should exist downstream at RMI 1.71 or 1.04 miles below the NHD outfall. At this point basin drainage is 0.257 square miles or 164.5 acres and the stream elevation is 1507.29-feet above sea level. The stream is not listed for nutrient control or special protection by either the Department or the Pa Fish and Boat Commission. The discharge is expected to approximate background condition at this point and DOSAG water-quality evaluation recommends secondary treatment with a 4.0-mg/L minimum daily DO limit.

Downstream 5.68 miles via Bloomfield Run is Oil Creek. Basin drainage at this point is 31.0-square miles with an 1140.00-foot elevation. The Pa Boat and Fish Commission has listed this Oil Creek segment as a trout approved fishery with trout stocking. At this point the estimated total waste flows are less than 1% of the basin flow and should not affect any water uses.

Best Professional Judgment (BPJ) Limitations

Comments: DO only.

Anti-Backsliding

Not appropriate

В	С	D	Е	F	G	Н		J	K L	M
Mun C	charger Site sicipality ounty ES Permit	Perseus Hou Andromeda I Bloomfield To Crawford A0210668	House STP				Revised		y, June 20, 2023 ay, June 21, 2023	
	0.5				TD0 E)//					
lancet annues	oriate values in E	MiDO and Edil	-7		TRC EVA	LUATION				
	0.022	= Q stream (o		Г	0.5	= CV Daily				
0	.0038	= Q discharg	e (MGD)			= CV Hourly				
	30	= no. sample:			1					
	0.3	The state of the s	emand of Strea emand of Disch	5.79435	15	= CFC_Partial = AFC_Criteria		ime (min)		
		= BAT/BPJ V	alue		720	= CFC_Criteria	Compliance T			
	0	= % Factor o	f Safety (FOS) AFC Calculation			=Decay Coeffic			050 0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
	ource TRC	1.3.2.iii	AFC Calculation	WLA afc = 1	.200	Refer 1.3.			CFC Calculations WLA cfc = 1.163	
PENTOXSD T		5.1a		LTAMULT afc = 0	.373	5.1		LTA	MULT cfc = 0.581	
PENTOXSD	TRG	5.1b		LTA_afc= 0	.447	5.1	ld		LTA_cfc = 0.676	
Source						Efflue	nt Limit Calcu	ations		
PENTOXSD		5.1f		200	AML MULT =			DATED.		
PENTOXSD:	IRG	5.1g			LIMIT (mg/l) = LIMIT (mg/l) =			BAT/BPJ		
				989	sample Medigar	INDEXISOR)				
ı										
WLA afc				Yc*Qs*.019/Qd*e(-	k*AFC_tc))					
LTAMULT afc				i)]*(1-FOS/100)						
LTA_afc		wla_afc*LTAN		6*LN(cvh^2+1)^0.5)						
		(044) (110		V +0 +04410 IF (1						
WLA_cfc				Yc*Qs*.011/Qd*e(-l)]*(1-FOS/100)	("CFC_tc))					
LTAMULT_cfc		EXP((0.5*LN(cvd^2/no_samp	les+1))-2.326*LN(cv	d^2/no_samp	les+1)^0.5)				
LTA_cfc		wla_cfc*LTAN	IULT_cfc							
AML MULT		EXP(2.326*LN	l((cvd^2/no_sar	mples+1)*0.5)-0.5*L	N(cvd^2/no_s	amples+1))				
AVG MON LIM				LTA_cfc)*AML_MUL						
INST MAX LIMI	II	1.5~((av_mon	_IIMIT/AML_MU	LT)/LTAMULT_afc)						
*EXP(-K*C	K*CFC_tc/1440)) :FC_tc/1440)))+X Chlorine Requi	d+(CFC_Yc*Qs	*Xs/1.547*Qd)) =	*(1-FOS/100) perennial	Chlorine	Dem and	F	Chlorine Residual		
Stream Stream	Reach/Node Flow	Conditions	1	1 intermittent						
Stream	Code Function	Conditions		54656 OUTFALL						
Samples reach	outfall		RMI	30 2.75						
reacri	Reach End		RMI	1.71						
reach			feet	5491.2						
drainage TRC	limitation	average	sq miles mg/L	0.2 0.500						
1110	III III CALIOII	maximum	mg/L	1.635						
elevation		modelled	feet	1574.74						
elevation slope		modelled modelled	feet foot/foot	1457.29 0.021						
low flow			cfs/sq mi	0.109						
discharge Runoff	Period		mgd hours	0.0038 24.000						
	control is adequ	ate.	nours	24.000						
stream	flow		cfs	0.02177						
stream stream	flow flow	total	MGD MGD	0.014068 0.017868						
stream	chlorine	dem and	mg/L	0.3						
discharge stream	discharge Total Stream.	demand Waste	mg/L ratio	4.7						
SHOUNT	, otal offedill		, and	JT. 4						
DAT	TDC	maan	DAT	0.5						
BAT	TRC TRC	mean maximum	BAT	0.5 1.6						
ВАТ	С	D	E	F*	G	Н			K L	М

Input Data WQM 7.0

	SWP Basin	Strea		Stre	eam Name	е	RMI		ation ft)	Drainage Area (sq mi)	Slop (ft/ft	With	VS drawal gd)	Apply FC
	16E	546	56 Trib 54	1656 to Pi	ne Hollow	Run	2.7	50 1	574.74	0.1	6 0.00	000	0.00	
						Stream Dat	а							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np pH	ł	<u>Strear</u> Temp	<u>т</u> рН	
Coria.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.109	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	1	0.00	0.0	0 2	0.00 7	7.00	0.00	0.00	1
					-	Discharge	Data						7	
			Name	Per	mit Numb	Disc	Permitt Disc Flow (mgd	Flov	Res	erve Te	isc emp PC)	Disc pH		
		Andro	meda H S	TP PA	0210668	0.003	8 0.00	38 0.0	038	0.000	25.00	7.00		
						Parameter	Data							
				Paramete	r Name			Trib S Conc	Stream Conc	Fate Coef				
				aramete	rivanic	(m	ig/L) (i	mg/L)	(mg/L)	(1/days)				
			CBOD5			8	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.10	0.00	0.70				

Page 1 of 3

Input Data WQM 7.0

					anning 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 0 0 CK 1V	KINGSON KINGSON						
	SWP Basin	Strea Cod		Stre	eam Nam	e	RMI	Eleva		Orainage Area (sq mi)	Slope (ft/ft)	PW Withdr (mg	rawal	Appl FC
	16E	546	356 Trib 54	4656 to Pi	ne Hollow	Run	1.71	0 14	157.29	0.26	0.00000		0.00	~
						Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>]</u> Temp	<u>ributary</u> pH	Tem	Stream np	<u>p</u> H	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	:)		
27-10 21-10 230-10	0.109	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000)	0.00	0.00	20	.00 7.0	0	0.00	0.00	
						Discharge	Data							
			Name	Per	mit Numb	Disc	Permitte Disc Flow (mgd)	Disc Flow	Rese Fact		р р	sc H		
		211				0.000	0.000	0.00	00 0.	.000 25	5.00	7.00		
						Parameter	Data							
]	Paramete	r Name	С	onc C	Conc	tream Conc	Fate Coef				
						(m	ıg/L) (m	ng/L) (i	mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxvaen			3.00	8.24	0.00	0.00				
				Constant of										

Input Data WQM 7.0

	SWP Basin			Stre	eam Nam	е	RMI	El	evation (ft)	Drainag Area (sq mi)		ope (/ft)	PWS Nithdrawal (mgd)	Apply FC
	16E	546	356 Trib 54	1656 to Pi	ne Hollow	/ Run	0.00	00	1350.30	1	.16 0.0	00000	0.00	✓
					į	Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	Tributary	<u>/</u> oH	S Temp	<u>stream</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
27-10 21-10 230-10	0.109	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000)	0.00	0.	00 2	0.00	7.00	0.	00 0.00)
					2	Discharge	Data							
			Name	Per	mit Numb	Disc	Permitte Disc Flow (mgd)	Di Fl	sc Res		Disc Temp (°C)	Disc pH		
		1-				0.000	0.000	0 0.	0000	0.000	25.00	7	.00	
						Parameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
			2	5.00.000.000	0.000000000	(m	g/L) (n	ng/L)	(mg/L)	(1/days))			
	-		CBOD5				25.00	2.00	0.00	1.5	0			
			Dissolved	Oxygen			3.00	8.24	0.00	0.0	0			
			NH3-N				25.00	0.00	0.00	0.7	0			

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	•
D.O. Saturation	95.00%	Use Balanced Technology	~
D.O. Goal	5		

Wednesday, June 21, 2023 Version 1.1 Page 1 of 1

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code	<u>code</u>			<u>Stream</u>					
		16E 54656				Trib 54656 to Pine Hollow Run							
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-10	0 Flow												
2.750	0.02	0.00	0.02	.0059	0.02139	.286	1.89	6.6	0.04	1.471	21.26	7.00	
1.710	0.03	0.00	0.03	.0059	0.01185	.3	2.47	8.25	0.05	2.287	20.87	7.00	
Q1-10	0 Flow												
2.750	0.01	0.00	0.01	.0059	0.02139	NA	NA	NA	0.04	1.754	21.73	7.00	
1.710	0.02	0.00	0.02	.0059	0.01185	NA	NA	NA	0.04	2.787	21.24	7.00	
Q30-	10 Flow	,											
2.750	0.02	0.00	0.02	.0059	0.02139	NA	NA	NA	0.05	1.287	20.99	7.00	
1.710	0.04	0.00	0.04	.0059	0.01185	NA	NA	NA	0.05	1.977	20.67	7.00	

WQM 7.0 Wasteload Allocations

	SWP Basin 16E		m Code 656			<u>ream Name</u> to Pine Hollo	w Run	
NH3-N	Acute Alloc	ations	<u> </u>					
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
2.7	50 Andromeda	н ѕт	NA	50	14.52	50	О	0
1.7	10		NA	NA	15.13	NA	NA	NA

Dissolved Oxygen Allocations

2.750 Andromeda H ST

1.710

		CBOD5		<u>NH3-N</u>		Dissolved Oxygen		Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
2.3	75 Andromeda H STP	25	25	25	25	4	4	0	0
1.3	71	NA	NA	NA	NA	NA	NA	NA	NA

25

NA

1.77

1.81

25

NA

NA

0

NA

NA

NA

Wednesday, June 21, 2023

Permit No. PA0210668

WQM 7.0 D.O.Simulation

SWP Basin St			Stream Name	_	
16E		Run			
<u>RMI</u> 2.750 Reach Width (ft)	Total Discharge 0.00 Reach De	4	<u>) Ana</u>	Analysis pH 7.000 Reach Velocity (fps)	
1.886	0.28			Reach WDRatio 6.597	0.043
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
7.81	0.84	1		6.39	0.771
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
7.172	27.63	31		Owens	NA
Reach Travel Time (days) 1.471	TravTime	Subreach CBOD5	Results NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.147	6.85	5.70	7.85	
	0.294	6.01	5.09	7.98	
	0.441	5.27	4.54	8.09	
	0.588	4.62	4.06	8.18	
	0.736	4.05	3.62	8.24	
	0.883	3.55	3.23	8.24	
	1.030	3.12	2.89	8.24	
	1.177	2.73	2.58	8.24	
	1.324	2.40	2.30	8.24	
	1.471	2.10	2.05	8.24	
<u>RMI</u>	Total Discharge	Flow (mgd) Ana	lysis Temperature (°C	2) Analysis pH
1.710	0.00	4		20.869	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
2.472	0.30	50.0		8.251	0.046
Reach CBOD5 (mg/L)	Reach Kc (<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
2.07	0.01			1.36	0.748
Reach DO (mg/L)	<u>Reach Kr (</u> 26.05			Kr Equation Owens	Reach DO Goal (mg/L) 5
8.243 Reach Travel Time (days)	20.00			Owens	3
2.287	TravTime	Subreach	NH3-N	D.O.	
2.201	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.229	2.06	1.15	8.24	
	0.457	2.06	0.97	8.24	
	0.686	2.05	0.81	8.24	
	0.915	2.04	0.69	8.24	
	1.144	2.04	0.58	8.24	
	1.372	2.03	0.49	8.24	
	1.601	2.02	0.41	8.24	
	1.830	2.01	0.35	8.24	
	2.058	2.01	0.29	8.24	
	2.287	2.00	0.25	8.24	

Version 1.1

Page 1 of 1

WQM 7.0 Effluent Limits

	SWP Basin Stream 16E 546		٦	Stream Name Frib 54656 to Pine Ho	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.750	Andromeda H STP	PA0210668	0.004	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

sed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Monitoring Re	quirements				
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
r ai ainetei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/month	Estimate
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/month	Grab
Dissolved Oxygen	XXX	XXX	4.0	XXX	XXX	XXX	1/month	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/month	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50.0	1/month	8-Hr Composite
TSS	XXX	XXX	XXX	30.0	XXX	60.0	1/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	XXX	1/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	XXX	1/month	Grab
E Coli	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	8-Hr Composite
Ammonia	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	8-Hr Composite

Compliance Sampling Location: Outfall 001 after disinfection