

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

## NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0215856

 APS ID
 1101702

 Authorization ID
 1463263

## **Applicant and Facility Information**

| Applicant Name          | Blairsville Municipal Authority Indiana<br>County | Facility Name    | Well Number 2     |
|-------------------------|---------------------------------------------------|------------------|-------------------|
| Applicant Address       | 203 E Market Street                               | Facility Address | 251 Hillside Road |
|                         | Blairsville, PA 15717-1120                        |                  | Derry, PA 15627   |
| Applicant Contact       | Jody Poorbaugh                                    | Facility Contact | Jody Poorbaugh    |
| Applicant Phone         | (724) 459-5020                                    | Facility Phone   | (724) 459-5020    |
| Client ID               | 53197                                             | Site ID          | 262083            |
| SIC Code                | 4941                                              | Municipality     | Derry Township    |
| SIC Description         | Trans. & Utilities - Water Supply                 | County           | Westmoreland      |
| Date Application Receiv | ved November 29, 2023                             | EPA Waived?      | No                |
| Date Application Accept | March 8, 2024                                     | If No, Reason    | DEP Discretion    |
| Purpose of Application  | NPDES Permit Renewal Applicatio                   | n.               |                   |

#### Summary of Review

The Department received an NPDES permit application from the Blairsville Municipal Authority for Well Number 2 located in Derry Township of Westmoreland County on November 29, 2023. The facility is a potable public WTP with an SIC Code of 4941. Well Number 2 is a ground water well used by the Blairsville Municipal Authority to supplement water during low flow conditions to the Blairsville Reservoir which is designated as Cold-Water Fishes (CWF).

Blairsville Municipal Authority installed three (3) ground water wells to help augment flow during low flow conditions. Wells Number 1 and 2 were drilled in 1992 to provide flexibility to the WTP during low flow conditions. Well Number 3 was drilled in 1999 in Bear Cave Hollow and is seldom used. Wells Number 1 and 3 are piped directly to the WTP and Well Number 2 is piped to the WTP with a tee connection to provide the ability to discharge untreated ground water directly to the Blairsville Reservoir.

Well Number 2 is equipped with a 120 gallon/minute rated pump, which is generally activated only when the reservoir level is below the principal spillway elevation. Well Number 2 water that is discharged to the Blairsville Reservoir is untreated.

The Blairsville Water Treatment Plant's (WTP) operations are described below:

Surface water is gravity fed to a pump station and pumped to a Trident microfloc filtering system. Upon entering the building, chlorine, Del Pac, potassium permanganate, caustic soda, carbon, and fluoride are added. The water flows through a rapid mix tube and to an adsorption clarifier. The water overflows a weir and onto a mixed media filter consisting of charcoal and various size gravel. After filtration, caustic soda and chlorine are added before the clearwell.

| Approve | Deny | Signatures                                              | Date           |
|---------|------|---------------------------------------------------------|----------------|
| х       |      | Curtis Holes, P.E. / Environmental Engineer             | March 20, 2024 |
| х       |      | Michael E. Fifth, P.E. / Environmental Engineer Manager | March 26, 2024 |

#### **Summary of Review**

From the clearwell, water flows to the distribution system's one (1) million-gallon storage tank and a 500,000-gal storage tank. All backwash and sink drain water are gravity fed to two (2) large lagoons to allow settling. The supernatant from the lagoons is recycled to the head of the treatment plant automatically when levels in the overflow reach a certain height.

The NPDES permit for this facility is for the discharge of untreated groundwater to augment the flow in the Blairsville Reservoir. The current permit has effluent limits for iron, aluminum, manganese, pH, and flow.

Residual waste disposal must meet solid waste regulations.

The client has no open violations.

The last DEP inspection of the facility was conducted by Kristin Gearhart on July 2, 2021 and no violation was noted.

It is recommended that a draft permit be published for public comment in response to this application.

#### Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Discharge, Receivin   | g Water | s and Water Supply Informa  | ation                  |                            |                          |
|-----------------------|---------|-----------------------------|------------------------|----------------------------|--------------------------|
| Outfall Na 004        |         |                             | Desim                  |                            | 0.470                    |
| Outfall No. 001       |         |                             | -                      | Flow (MGD)                 | 0.173                    |
| Latitude 40° 2        | 22' 14" |                             | Longitud               |                            | -79º 14' 58"             |
| Quad Name Blairsville |         |                             | Quad C                 | ode                        | 1511                     |
| Wastewater Descri     | iption: | Untreated groundwater to au | ugment water lev       | els during low             | r flow periods.          |
|                       |         |                             |                        |                            |                          |
| Receiving Waters      | Blairs  | ville Reservoir             | Stream Co              | de                         | 43622                    |
| NHD Com ID            | 12372   | 25894                       | RMI                    |                            | 1.15                     |
| Drainage Area         | 2.38    |                             | Yield (cfs/n           | ni²)                       | 0.0605                   |
| Q7-10 Flow (cfs)      | 0.144   |                             | Q7-10 Basis            |                            | USGS StreamStats         |
| Elevation (ft)        | 1254    |                             | Slope (ft/ft)          |                            |                          |
| Watershed No.         | 18-D    |                             | Chapter 93 Class.      |                            | CWF                      |
| Existing Use          | Potab   | ble Water Source            | Existing Use Qualifier |                            | None                     |
| Exceptions to Use     | None    |                             | Exceptions             | to Criteria                |                          |
| Assessment Status     | 6       | Impaired                    |                        |                            |                          |
| Cause(s) of Impair    | ment    | Organic Enrichment/Low D.   | О.                     |                            |                          |
| Source(s) of Impair   | rment   | Upstream Impoundment        |                        |                            |                          |
| TMDL Status           |         | Final                       | Name                   | Kiskiminetas<br>Watersheds | -Conemaugh River<br>TMDL |
|                       |         |                             | <u> </u>               |                            |                          |
|                       |         |                             | Saltsburg WTP          |                            |                          |
| PWS Waters            | Conema  | ugh River                   | Flow at Intake         | e (cfs)                    | 82.2                     |
| PWS RMI               | 0.5     |                             | Distance from          | n Outfall (mi)             | 25                       |
|                       |         |                             |                        |                            |                          |

## Changes Since Last Permit Issuance: None

## Other Comments: None

## Figure 1: Basin Delineation for Outfall 001



## **Compliance History**

## DMR Data for Outfall 001 (from December 1, 2022 to October 31, 2023)

| Parameter         | Limit  | OCT-23   | SEP-23   | AUG-23  | JUL-23   | JUN-23   | <b>MAY-23</b> | APR-23   | MAR-23   | FEB-23   | JAN-23   | DEC-22   |
|-------------------|--------|----------|----------|---------|----------|----------|---------------|----------|----------|----------|----------|----------|
| Flow (MGD)        |        |          |          |         |          |          |               |          |          |          |          |          |
| Average Monthly   | Report | 0.058    | 0.048    | 0.072   | 0.065    | 0.070    | 0.081         | 0.080    | 0.085    | 0.082    | 0.080    | 0.063    |
| Flow (MGD)        |        |          |          |         |          |          |               |          |          |          |          |          |
| Daily Maximum     | Report | 0.061    | 0.073    | 0.073   | 0.067    | 0.073    | 0.088         | 0.084    | 0.085    | 0.087    | 0.087    | 0.070    |
| pH (S.U.)         |        |          |          |         |          |          |               |          |          |          |          |          |
| Daily Minimum     | 6.0    | 7.6      | 7.9      | 7.5     | 7.5      | 7.25     | 7.7           | 7.6      | 7.9      | 7.3      | 7.0      | 7.8      |
| pH (S.U.)         |        |          |          |         |          |          |               |          |          |          |          |          |
| Daily Maximum     | 9.0    | 7.7      | 8.1      | 7.8     | 7.8      | 7.7      | 7.9           | 8.0      | 7.92     | 8.1      | 7.8      | 7.89     |
| Total Aluminum    |        |          |          |         |          |          |               |          |          |          |          |          |
| (mg/L)            |        |          |          |         |          |          |               |          |          |          |          |          |
| Average Monthly   | 0.75   | < 0.100  | < 0.100  | < 0.100 | < 0.100  | < 0.100  | < 0.100       | < 0.100  | < 0.100  | < 0.100  | < 0.100  | < 0.100  |
| Total Aluminum    |        |          |          |         |          |          |               |          |          |          |          |          |
| (mg/L)            |        |          |          |         |          |          |               |          |          |          |          |          |
| Daily Maximum     | 0.75   | < 0.100  | < 0.100  | < 0.100 | < 0.100  | < 0.100  | < 0.100       | < 0.100  | < 0.100  | < 0.100  | < 0.100  | < 0.100  |
| Total Iron (mg/L) |        |          |          |         |          |          |               |          |          |          |          |          |
| Average Monthly   | 1.5    | < 0.200  | < 0.200  | < 0.200 | < 0.200  | < 0.200  | < 0.200       | < 0.200  | < 0.200  | < 0.200  | < 0.200  | < 0.200  |
| Total Iron (mg/L) |        |          |          |         |          |          |               |          |          |          |          |          |
| Daily Maximum     | 3.0    | < 0.200  | < 0.451  | < 0.200 | < 0.200  | < 0.200  | < 0.200       | < 0.200  | < 0.200  | < 0.200  | < 0.200  | < 0.200  |
| Total Manganese   |        |          |          |         |          |          |               |          |          |          |          |          |
| (mg/L)            |        |          |          |         |          |          |               |          |          |          |          |          |
| Average Monthly   | 1.0    | < 0.0200 | < 0.0200 | 0.0200  | < 0.0200 | < 0.0200 | < 0.0200      | < 0.0200 | < 0.0200 | < 0.0200 | < 0.0200 | < 0.0200 |
| Total Manganese   |        |          |          |         |          |          |               |          |          |          |          |          |
| (mg/L)            |        |          |          |         |          |          |               |          |          |          |          |          |
| Daily Maximum     | 2.0    | < 0.0200 | < 0.0200 | < 0.074 | < 0.0200 | < 0.0200 | < 0.0200      | < 0.0200 | < 0.0200 | < 0.0200 | < 0.0200 | < 0.0200 |

#### **Development of Effluent Limitations**

| Outfall No.  | 001         |                                  | Design Flow (MGD)       | 0.173         |
|--------------|-------------|----------------------------------|-------------------------|---------------|
| Latitude     | 40º 22' 14" |                                  | Longitude               | -79º 14' 58"  |
| Wastewater D | escription: | Untreated groundwater to augment | water levels during low | flow periods. |

#### **Technology-Based Limitations**

The Well Number 2 facility is not subject to Federal Effluent Limitation Guidelines (ELGs) as the activity of discharging groundwater to a surface waterbody is not captured under 40 CFR parts 405 through 471.

#### Regulatory Effluent Standards and Monitoring Requirements

The pH effluent range for all industrial waste process and non-process discharges pursuant of 25 Pa. Code § 95.2 is indicated in Table 1 below.

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) as indicated in Table 1 below.

Pursuant to 25 Pa. Code § 95.2(4) effluent standards for industrial wastes may not contain more than 7 mg/L of dissolved iron as indicated in Table 1 below.

Pursuant to 25 Pa. Code § 92a.48(b) the imposition of technology-based Total Residual Chlorine (TRC) limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELG's or a facility specific BPJ evaluation as indicated in Table 1 below. Chlorine is not used, only untreated groundwater is discharge therefore, the TRC limits do not apply.

The Department has recently commenced a new monitoring program targeting per and polyfluoroalkyl substances (PFAS), which is a multipronged strategy to better characterize and control PFAS in permitted discharges to surface waters by implementing monitoring and other requirements in National Pollutant Discharge Elimination System (NPDES) permits.

The PFAS Policy incorporates monitoring for PFAS parameters, PFOA, PFOS, HFPO-DA and PFBS, as a part of the screening analysis for all NPDES Individual Permit Facilities. ATI's renewed permit will include the following footnote: The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results of 4 consecutive monitoring periods indicate non-detect results at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees must enter a No Discharge Indicator (NODI) Code of "GG" on DMRs.

| Parameter       | Monthly Avg.     | Daily Max | ΙΜΑΧ     |  |  |
|-----------------|------------------|-----------|----------|--|--|
| PFOA            |                  |           | Report   |  |  |
| PFOS            |                  |           | Report   |  |  |
| HFPO-DA         |                  |           | Report   |  |  |
| PFBS            |                  |           | Report   |  |  |
| Flow (MGD)      | Monitor          | Monitor   |          |  |  |
| Iron, Dissolved |                  |           | 7.0 mg/L |  |  |
| pH (S.U.)       | 6-9 at all times |           |          |  |  |

#### Table 1. Regulatory Effluent Standards

#### Total Dissolved Solids (TDS)

Integral to the implementation of 25 Pa. Code § 95.10 is the principle that existing, authorized mass loadings of TDS are exempt from any treatment requirements under these provisions. Existing mass loadings of TDS up to and including the maximum daily discharge loading for any existing discharge, provided that the loading was authorized prior to August 21, 2010 are exempt. Discharge loadings of TDS authorized by the Department are typically exempt from the treatment requirements of Chapter 95.10 until the net TDS loading is increased, an existing discharge proposes a hydraulic expansion or a change in the waste stream. If there are existing mass or production-based TDS effluent limits, then these are used as the basis for the existing mass loading. The facility is not new or expanding waste loading of TDS, therefore, the facility is exempt from 25 Pa. Code § 95.10 treatment requirements.

## Best Professional Judgment (BPJ) Limitations

Since this permit is for untreated groundwater augmenting the water level of the Blairsville Reservoir when the water level is below the principal spillway elevation and not for the activities of the WTP, the WTP technology-based control requirements do not apply.

#### Water Quality-Based Limitations

#### Total Maximum Daily Load for Streams Impaired by Acid Mine Drainage in the Kiskiminetas-Conemaugh River Watershed

On January 29, 2010, EPA approved the Kiskiminetas-Conemaugh Total Maximum Daily Load (TMDL) to address metals, pH, sediment impairments associated with abandoned mine drainage or other discharges in the Kiskiminetas-Conemaugh River watershed in southwestern Pennsylvania. The TMDL was established in accordance with Section 303(d)(1)(c) of the Clean Water Act to address impairments of water quality as identified on Pennsylvania's Section 303(d) lists. This TMDL covers all the streams covered by the 1996 Consent Decree in the Kiskiminetas River watershed. These segments were listed for their failure to attain the aquatic life use.

Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's (EPA) Water Quality Planning and Management Regulations (codified at Title 40 of the Code of Federal Regulations Part 130) require states to develop Total Maximum Daily Loads (TMDLs) for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding its water quality standard for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and nonpoint sources to restore and maintain the quality of the state's water resources (USEPA 1991a).

Modeled sub-watershed loadings were iteratively reduced to estimate the load reductions required to meet instream concentration targets for metals. The target concentrations were based on established water quality criteria of 0.750 mg/L total aluminum, 1.5 mg/L total iron, 0.3 mg/L dissolved iron, and 1.0 mg/L manganese. Streams placed on Pennsylvania's Section 303(d) list with a designated use of HQ or EV are subject to additional protection pursuant to the state's anti-degradation policy.

Blairsville Municipal Water System Well Number 2 was assigned wasteload allocations ("WLAs") from the Kiskiminetas-Conemaugh TMDL for iron, aluminum, and manganese at its outfall. The TMDL allocated loads and concentrations for Outfall 001 are shown in Table 2.

| Pollutant | Allocated Load<br>(lbs/yr.) | Allocated Concentration (mg/L) |
|-----------|-----------------------------|--------------------------------|
| Aluminum  | 116                         | 0.22                           |
| Iron      | 106                         | 0.20                           |
| Manganese | 32                          | 0.06                           |

## Table 2. TMDL WLAs for Outfall 001.

Pennsylvania Code Chapter 93 identifies two (2) designations for Trout Run. The Blairsville Reservoir is the transition point of these two (2) designations. Upstream of the source of the Blairsville Reservoir is designated as exceptional value (EV). From the source of the Blairsville Reservoir downstream Trout Run, the designation changes to Cold Water Fishes (CWF). The facility discharges directly to the Blairsville Reservoir designated as CWF, so the additional protection under Pennsylvania's antidegradation policy for HQ and EV streams does not apply. The TMDL applied the allocated concentrations for additional protection of HQ and EV streams to the facility. The Department's eFACTS system showed the Outfall 001 location incorrectly discharging to the EV portion of Trout Run. Blairsville Municipal Authority installed conveyance piping to the WTP with a tee connection to the Blairsville Reservoir designated as CWF. The tee connection provides the Authority the flexibility to direct untreated groundwater to the WTP or to the reservoir or to both the WTP and the reservoir at the same time.

The target concentrations from the TMDL should have been applied to the facility, which are 0.750 mg/L total aluminum, 1.5 mg/L total iron, 0.3 mg/L dissolved iron, and 1.0 mg/L manganese. The TMDL target concentrations will be applied.

#### **Toxics Management Analysis**

The Department's Toxics Management Spreadsheet (TMS) was utilized to facilitate calculations necessary for completing a reasonable potential analysis and determine Water Quality-Based Effluent Limitations (WQBELs) for discharges containing toxic pollutant concentrations. TMS combines the functionality of two (2) of the Department's analysis tools, Toxics Screening Analysis Spreadsheet and PENTOXSD water quality model.

DEP's procedures for evaluating reasonable potential are as follows:

- 1. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken form the permit application.
- 2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants, as reported in the permit application or on DMRs, are modeled by the TMS to determine the parameters of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion].
  - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by TMS. Establish an IMAX limit at 2.5 times the average monthly limit.
  - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
  - For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and contained in the DMRs; data from those sources are used as inputs into the TMS. A summary of TMS Inputs is contained in Table 3 below.

#### Table 3. TMS Inputs

| Parameter                             | Value                       |  |  |  |
|---------------------------------------|-----------------------------|--|--|--|
| Discharge Inputs                      |                             |  |  |  |
| Facility                              | Well Number 2               |  |  |  |
| Evaluation Type                       | Industrial                  |  |  |  |
| NPDES Permit No.                      | PA0215856                   |  |  |  |
| Wastewater Description                | Untreated Groundwater       |  |  |  |
| Outfall ID                            | 001                         |  |  |  |
| Design Flow (MGD)                     | 0.173                       |  |  |  |
| Hardness ( <sup>mg/</sup> L)          | 167                         |  |  |  |
| pH (S.U.)                             | 9.0                         |  |  |  |
| Partial Mix Factors                   | Unknown – Calculated by TMS |  |  |  |
| Complete Mix Times                    |                             |  |  |  |
| Q <sub>7-10</sub> (min)               |                             |  |  |  |
| Q <sub>h</sub> (min)                  |                             |  |  |  |
| Stream Inputs                         |                             |  |  |  |
| Receiving Surface Water               | Blairsville Reservoir       |  |  |  |
| Number of Reaches to Model            | 1                           |  |  |  |
| Stream Code                           | 043622                      |  |  |  |
| RMI                                   | 1.15                        |  |  |  |
| Elevation (ft)                        | 1254/1047*                  |  |  |  |
| Drainage Area (mi <sup>2</sup> )      | 2.38                        |  |  |  |
| Slope (ft/ft)                         |                             |  |  |  |
| PWS Withdrawal (MGD)                  |                             |  |  |  |
| Apply Fish Criteria                   | Yes                         |  |  |  |
| Low Flow Yield (cfs/mi <sup>2</sup> ) |                             |  |  |  |
| Flows                                 |                             |  |  |  |
| Stream (cfs)                          | 0.567                       |  |  |  |
| Tributary (cfs)                       | N/A                         |  |  |  |
| Width (ft)                            |                             |  |  |  |
| Stream Hardness (mg/L)                | 100                         |  |  |  |
| Stream pH (S.U.)                      | 7.0                         |  |  |  |

\* Denotes discharge location/downstream location values.

The TMS Model does not recommend any WQBEL Outfall 001. Analysis Report from the TMS run is included in Attachment B.

## WQM 7.0 Model

The computer model WQM 7.0 is run to determine wasteload allocations and effluent limitations for CBOD<sub>5</sub>, NH<sub>3</sub>-N and Dissolved Oxygen for single and multiple point source discharge scenarios. In general, WQM 7.0 is run if the maximum  $BOD_5/CBOD_5$  concentrations exceeds 30/25 mg/L respectively in the permit application or past DMRs. The permit application reports  $BOD_5$  concentrations of <3 mg/L, therefore, WQM 7.0 Model is not required to be run.

#### Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued, interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established based on Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

#### Effluent Limitations and Monitoring Requirements for Outfall 001

Effluent limits applicable at Outfall 001 are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements as summarized in Table 4.

|                   | Mass (p            | ounds)                         | Сог  | ncentration (    | Basis |                            |
|-------------------|--------------------|--------------------------------|------|------------------|-------|----------------------------|
| Parameter         | Average<br>Monthly |                                |      | Daily<br>Maximum |       |                            |
| PFOA              | -                  | -                              | -    | Report           |       | 25 Pa. Code § 952.a.61(b)  |
| PFOS              | -                  | -                              | -    | Report           |       | 25 Pa. Code § 952.a.61(b)  |
| HFPO-DA           | -                  | -                              | -    | Report           |       | 25 Pa. Code § 952.a.61(b)  |
| PFBS              | -                  | -                              | -    | Report           |       | 25 Pa. Code § 952.a.61(b)  |
| Flow (MGD)        | Report             | Report                         | —    |                  |       | 25 Pa. Code § 92a.61(d)(1) |
| Iron (total)      | —                  | —                              | 1.5  | 3.0              | —     | TMDL                       |
| Aluminum (total)  | —                  | —                              | 0.75 | 0.75             | —     | TMDL                       |
| Manganese (total) | —                  | —                              | 1.0  | 2.0              | —     | TMDL                       |
| pH (S.U.)         |                    | Within the range of 6.0 to 9.0 |      |                  |       | 25 Pa. Code § 95.2         |

#### Table 4. Effluent limits and monitoring requirements for Outfall 001

Monitoring requirements are based on the previous permits monitoring requirements and displayed in Table 5 below.

|                   | ble 5. Monitoring Requirements for |                          |
|-------------------|------------------------------------|--------------------------|
| Parameter         | Sample Type                        | Minimum Sample Frequency |
| PFOA              | Grab                               | 1/year                   |
| PFOS              | Grab                               | 1/year                   |
| HFPO-DA           | Grab                               | 1/year                   |
| PFBS              | Grab                               | 1/year                   |
| Flow (MGD)        | Meter                              | 2/Month                  |
| Iron (total)      | Grab                               | 2/Month                  |
| Aluminum (total)  | Grab                               | 2/Month                  |
| Manganese (total) | Grab                               | 2/Month                  |
| pH (S.U.)         | Grab                               | 2/Month                  |

# Table 5. Monitoring Requirements for Outfall 001

#### NPDES Permit No. PA0215856 Well Number 2

## **Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

### Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

|                 |                    | Effluent Limitations     |                  |                       |                  |                     |                          |                |
|-----------------|--------------------|--------------------------|------------------|-----------------------|------------------|---------------------|--------------------------|----------------|
| Parameter       | Mass Units         | (lbs/day) <sup>(1)</sup> |                  | Concentrations (mg/L) |                  |                     |                          | Required       |
| Farameter       | Average<br>Monthly | Average<br>Weekly        | Daily<br>Minimum | Average<br>Monthly    | Daily<br>Maximum | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type |
| Flow (MGD)      | Report             | XXX                      | xxx              | XXX                   | Report           | xxx                 | 2/month                  | Measured       |
| pH (S.U.)       | xxx                | XXX                      | 6.0              | XXX                   | 9.0              | ххх                 | 2/month                  | Grab           |
| Total Aluminum  | xxx                | XXX                      | xxx              | 0.75                  | 0.75             | ххх                 | 2/month                  | Grab           |
| Total Iron      | xxx                | XXX                      | XXX              | 1.5                   | 3.0              | ххх                 | 2/month                  | Grab           |
| Total Manganese | xxx                | XXX                      | XXX              | 1.0                   | 2.0              | ххх                 | 2/month                  | Grab           |
| PFOA            | xxx                | XXX                      | XXX              | XXX                   | Report           | ххх                 | 1/year                   | Grab           |
| PFOS            | xxx                | XXX                      | XXX              | XXX                   | Report           | ххх                 | 1/year                   | Grab           |
| HFPO-DA         | XXX                | XXX                      | xxx              | XXX                   | Report           | xxx                 | 1/year                   | Grab           |
| PFBS            | xxx                | XXX                      | XXX              | XXX                   | Report           | XXX                 | 1/year                   | Grab           |

Compliance Sampling Location: Outfall 001

Other Comments: None

| Tools and References Used to Develop Permit                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WOM for Windows Model (and Attachment )                                                                                                                                                                            |
| WQM for Windows Model (see Attachment)<br>Toxics Management Spreadsheet (see Attachment B)                                                                                                                         |
| TRC Model Spreadsheet (see Attachment )                                                                                                                                                                            |
| Temperature Model Spreadsheet (see Attachment )                                                                                                                                                                    |
| Water Quality Toxics Management Strategy, 361-0100-003, 4/06.                                                                                                                                                      |
| Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.                                                                                                             |
| Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.                                                                                                                                                |
| Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.                                                                                                                  |
| Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.                                                                                                                       |
| Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.                                                                                                      |
| Pennsylvania CSO Policy, 386-2000-002, 9/08.                                                                                                                                                                       |
| Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.                                                                                                                                        |
| Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.                                                                                           |
| Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.                                                                                                                                              |
| Implementation Guidance Design Conditions, 386-2000-007, 9/97.                                                                                                                                                     |
| Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.                                                    |
| Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.                                                                             |
| Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.                                                                   |
| Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.                                                              |
| Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.                                                                                                                                    |
| Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.                                             |
| Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.                                                                                                                           |
| Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.                                                                                                                                              |
| Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.                                                                                                       |
| Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.       |
| Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.                                                                               |
| Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999. |
| Design Stream Flows, 386-2000-003, 9/98.                                                                                                                                                                           |
| Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.                                     |
| Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.                                                                                                                         |
| Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.                                                                                                                   |
| SOP:                                                                                                                                                                                                               |
| Other:                                                                                                                                                                                                             |

# **Attachments**

ATTACHMENT A: STREAMSTATS DATA

ATTACHMENT B: TMS MODEL OUTPUT SUMMARY

ATTACHMENT C: SITE PLAN

ATTACHMENT A

STREAMSTATS DATA

### NPDES Permit Fact Sheet Blairsville Municipal Authority WTP

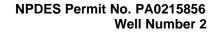
| Basin Characteristics |                                            |        |              |
|-----------------------|--------------------------------------------|--------|--------------|
| Parameter Code        | Parameter Description                      | Value  | Unit         |
| DRNAREA               | Area that drains to a point on a stream    | 2.38   | square miles |
| ELEV                  | Mean Basin Elevation                       | 1998.9 | feet         |
| PRECIP                | Mean Annual Precipitation                  | 45     | inches       |
| CARBON                | Percentage of area of carbonate rock       | 0      | percent      |
| FOREST                | Percentage of area covered by forest       | 100    | percent      |
| URBAN                 | Percentage of basin with urban development | 0      | percent      |

Low-Flow Statistics Parameters [Low Flow Region 3]

| Parameter Code | Parameter Name            | Value  | Units        | Min Limit | Max Limit |
|----------------|---------------------------|--------|--------------|-----------|-----------|
| DRNAREA        | Drainage Area             | 2.38   | square miles | 2.33      | 1720      |
| ELEV           | Mean Basin Elevation      | 1998.9 | feet         | 898       | 2700      |
| PRECIP         | Mean Annual Precipitation | 45     | inches       | 38.7      | 47.9      |

Low-Flow Statistics Flow Report (Low Flow Region 3)

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)


| Statistic               | Value | Unit   | SE | SEp |
|-------------------------|-------|--------|----|-----|
| 7 Day 2 Year Low Flow   | 0.327 | ft^3/s | 43 | 43  |
| 30 Day 2 Year Low Flow  | 0.476 | ft^3/s | 38 | 38  |
| 7 Day 10 Year Low Flow  | 0.144 | ft^3/s | 54 | 54  |
| 30 Day 10 Year Low Flow | 0.196 | ft^3/s | 49 | 49  |
| 90 Day 10 Year Low Flow | 0.289 | ft^3/s | 41 | 41  |

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

ATTACHMENT B

TMS Model Output



Toxics Management Spreadsheet Version 1.4, May 2023



# **Discharge Information**

| Instructions Dis | charge Stream                   |                                                                |
|------------------|---------------------------------|----------------------------------------------------------------|
| Facility: Bleain | rsville Well 2                  | NPDES Permit No.: PA0215856 Outfall No.: 001                   |
| Evaluation Type: | Major Sewage / Industrial Waste | Wastewater Description: Process Wastewater , NCCW, Misc wastew |
|                  | Discha                          | rge Characteristics                                            |

|             | Discharge Characteristics                                                         |   |   |               |              |    |              |               |  |  |  |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------|---|---|---------------|--------------|----|--------------|---------------|--|--|--|--|--|--|--|
| Design Flow | Hardness (mg/l)t                                                                  |   | P | artial Mix Fa | actors (PMF: | 5) | Complete Mix | x Times (min) |  |  |  |  |  |  |  |
| (MGD)*      | (MGD)* Hardness (mg/l)* pH (SU)* AFC CFC THH CRL Q <sub>7.10</sub> Q <sub>h</sub> |   |   |               |              |    |              |               |  |  |  |  |  |  |  |
| 0.173       | 167                                                                               | 9 |   |               |              |    |              |               |  |  |  |  |  |  |  |

|       |                                 |       |    |                     | 0 If lef     | t blank        | 0.5 lf le   | ft blank     | 6             | ) if left blan | k   | 1 If lef         | t blank        |
|-------|---------------------------------|-------|----|---------------------|--------------|----------------|-------------|--------------|---------------|----------------|-----|------------------|----------------|
|       | Discharge Pollutant             | Units | Ma | x Discharge<br>Conc | Trib<br>Conc | Stream<br>Conc | Daily<br>CV | Hourly<br>CV | Strea<br>m CV | Fate<br>Coeff  | FOS | Criteri<br>a Mod | Chem<br>Transl |
|       | Total Dissolved Solids (PWS)    | mg/L  |    | 214                 |              |                |             |              |               |                |     |                  |                |
| 5     | Chloride (PWS)                  | mg/L  |    | 0.996               |              |                |             |              |               |                |     |                  |                |
| Group | Bromide                         | mg/L  | ۸  | 0.036               |              |                |             |              |               |                |     |                  |                |
| 5     | Sulfate (PWS)                   | mg/L  |    | 17.2                |              |                |             |              |               |                |     |                  |                |
|       | Fluoride (PWS)                  | mg/L  |    | 0.236               |              |                |             |              |               |                |     |                  |                |
|       | Total Aluminum                  | µg/L  | <  | 8.7                 |              |                |             |              |               |                |     |                  |                |
|       | Total Antimony                  | µg/L  | <  | 0.348               |              |                |             |              |               |                |     |                  |                |
|       | Total Arsenic                   | µg/L  | <  | 2.5                 |              |                |             |              |               |                |     |                  |                |
|       | Total Barium                    | µg/L  |    | 77.6                |              |                |             |              |               |                |     |                  |                |
|       | Total Beryllium                 | µg/L  | <  | 0.676               |              |                |             |              |               |                |     |                  |                |
|       | Total Boron                     | µg/L  | <  | 0.0565              |              |                |             |              |               |                |     |                  |                |
|       | Total Cadmium                   | µg/L  | <  | 0.123               |              |                |             |              |               |                |     |                  |                |
|       | Total Chromium (III)            | µg/L  | <  | 1.99                |              |                |             |              |               |                |     |                  |                |
|       | Hexavalent Chromium             | µg/L  | <  | 0.25                |              |                |             |              |               |                |     |                  |                |
|       | Total Cobalt                    | µg/L  | <  | 0.119               |              |                |             |              |               |                |     |                  |                |
|       | Total Copper                    | mg/L  | <  | 0.0021              |              |                |             |              |               |                |     |                  |                |
| 8     | Free Cyanide                    | µg/L  |    |                     |              |                |             |              |               |                |     |                  |                |
| Group | Total Cyanide                   | µg/L  | <  | 0.006               |              |                |             |              |               |                |     |                  |                |
| 5     | Dissolved Iron                  | µg/L  | <  | 20                  |              |                |             |              |               |                |     |                  |                |
| -     | Total Iron                      | µg/L  |    | 24.1                |              |                |             |              |               |                |     |                  |                |
|       | Total Lead                      | µg/L  | <  | 0.172               |              |                |             |              |               |                |     |                  |                |
|       | Total Manganese                 | µg/L  |    | 8.01                |              |                |             |              |               |                |     |                  |                |
|       | Total Mercury                   | µg/L  | <  | 0.0932              |              |                |             |              |               |                |     |                  |                |
|       | Total Nickel                    | µg/L  | <  | 1.44                |              |                |             |              |               |                |     |                  |                |
|       | Total Phenols (Phenolics) (PWS) | µg/L  | <  | 5                   |              |                |             |              |               |                |     |                  |                |
|       | Total Selenium                  | µg/L  | <  | 2.5                 |              |                |             |              |               |                |     |                  |                |
|       | Total Silver                    | µg/L  | <  | 0.274               |              |                |             |              |               |                |     |                  |                |
|       | Total Thallium                  | µg/L  | <  | 0.068               |              |                |             |              |               |                |     |                  |                |
|       | Total Zinc                      | mg/L  | <  | 0.00354             |              |                |             |              |               |                |     |                  |                |
|       | Total Molybdenum                | µg/L  |    | 0.597               |              |                |             |              |               |                |     |                  |                |
|       | Acrolein                        | µg/L  | <  |                     |              |                |             |              |               |                |     |                  |                |
|       | Acrylamide                      | µg/L  | <  |                     |              |                |             |              |               |                |     |                  |                |
|       | Acrylonitrile                   | µg/L  | <  |                     |              |                |             |              |               |                |     |                  |                |
|       | Benzene                         | µg/L  | <  |                     |              |                |             |              |               |                |     |                  |                |
|       | Bromoform                       | µg/L  |    |                     |              |                |             |              |               |                |     |                  |                |

**Discharge Information** 

3/7/2024

| Introductor         Introductor <thintroductor< th=""> <thintroductor< th=""></thintroductor<></thintroductor<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | Carbon Tetrachloride    |      | <        |       |              |   |      |      |      |   |   |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------|------|----------|-------|--------------|---|------|------|------|---|---|----------|
| Chicositemomentane         up1.         up1. <thup1.< th="">         up1.         up1.<th></th><th></th><th>µg/L</th><th><u> </u></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thup1.<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                         | µg/L | <u> </u> |       |              |   |      |      |      |   |   |          |
| Scholarophic         Up         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <thi< th="">         I         I         <t< th=""><th></th><th></th><th></th><th>-</th><th><br/>+</th><th>┿</th><th></th><th></th><th></th><th></th><th></th><th>-</th><th>⊢</th></t<></thi<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                         |      | -        | <br>+ | ┿            |   |      |      |      |   | - | ⊢        |
| School (%)         School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                         |      | _        | <br>+ | ++           |   | <br> | <br> | <br> |   | _ | $\vdash$ |
| Vehologin         ypli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                         |      |          | <br>+ | ╞            |   | <br> | <br> | <br> |   | = | H        |
| Unbelling         UpUL         C         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D <thd< th="">         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         <thd< th="">         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         <thd< th="">         D         D         <thd<< th=""><th></th><th></th><th></th><th>&lt;</th><th><br/>+</th><th>++</th><th>-</th><th></th><th></th><th></th><th></th><th>_</th><th>Ħ</th></thd<<></thd<></thd<></thd<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                         |      | <        | <br>+ | ++           | - |      |      |      |   | _ | Ħ        |
| Inclusion         Inpl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                         |      |          | Ì     | 11           |   |      |      |      |   |   |          |
| P         Control of the matrix of the m |   |                         |      |          |       |              |   |      |      |      |   |   |          |
| B         ID-District Description         UpUL         C         ID           12-District Description         UpUL         ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 1,1-Dichloroethane      |      | <        |       |              |   |      |      |      |   |   |          |
| 1.4-Dicktopulyme         Up/L         C         L           Ethylbenzene         Up/L         L         L         L           Ethylbenzene         Up/L         L         L         L         L           Methyl Chioride         Up/L         L         L         L         L         L           Methyl Chioride         Up/L         L         L         L         L         L         L           Tetachiorosethylene         Up/L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L </th <th>e</th> <th>1,2-Dichloroethane</th> <th>µg/L</th> <th>&lt;</th> <th></th> <th><math>\downarrow</math></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e | 1,2-Dichloroethane      | µg/L | <        |       | $\downarrow$ |   |      |      |      |   | _ |          |
| 1.4-Dicktopulyme         Up/L         C         L           Ethylbenzene         Up/L         L         L         L           Ethylbenzene         Up/L         L         L         L         L           Methyl Chioride         Up/L         L         L         L         L         L           Methyl Chioride         Up/L         L         L         L         L         L         L           Tetachiorosethylene         Up/L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L </th <th>9</th> <th>1,1-Dichloroethylene</th> <th>µg/L</th> <th>&lt;</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 | 1,1-Dichloroethylene    | µg/L | <        |       |              |   |      |      |      |   | _ |          |
| 1.4-Dicktopulyme         Up/L         C         L           Ethylbenzene         Up/L         L         L         L           Ethylbenzene         Up/L         L         L         L         L           Methyl Chioride         Up/L         L         L         L         L         L           Methyl Chioride         Up/L         L         L         L         L         L         L           Tetachiorosethylene         Up/L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L </th <th>ē</th> <th>1,2-Dichloropropane</th> <th>µg/L</th> <th>&lt;</th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>F</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ē | 1,2-Dichloropropane     | µg/L | <        |       |              | - |      |      |      |   | - | F        |
| 14-Dioxne         ypL <th< th=""></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G | 1,3-Dichloropropylene   | µg/L | <        |       |              |   |      |      |      |   |   | F        |
| Ethylenzene         ypl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                         | µg/L | <        |       |              |   |      |      |      |   |   |          |
| Methy Bronide         µgL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | Ethylbenzene            |      | <        |       |              |   |      |      |      |   |   |          |
| Methylene         upl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | - ·                     |      | <        |       |              |   |      |      |      |   |   |          |
| Methylene Chloride         Up1.         C         Up1.         C         Up1.         C         Up1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                         |      | _        | <br>+ | ++           | - |      |      |      |   | - |          |
| 11.2.7-tetackloreshne         µgL                                                                                                                      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                         |      |          | <br>+ | ++           |   |      |      |      | H | - | H        |
| Terachloroethylene         upl.         c         upl.         c         upl.         c         upl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                         |      | <u> </u> | <br>+ | ┿            | - |      | <br> | <br> |   | - | H        |
| Totalen         UppL <th< th="">           &lt;</th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                         |      |          | <br>- | ++           |   |      |      |      | Ħ | - | H        |
| 1.1.Trinchorethane         µgL <th></th> <th></th> <th></th> <th><u> </u></th> <th>+</th> <th>Ħ</th> <th></th> <th></th> <th></th> <th></th> <th>F</th> <th>-</th> <th>F</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                         |      | <u> </u> | +     | Ħ            |   |      |      |      | F | - | F        |
| 1.1.1-Trichloroethane         ypL                                                                                                                      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                         |      | <u> </u> |       | IJ           |   |      |      |      |   |   | Í        |
| 1.1.2-Trichloroethane         µg/L <th<< th=""><th></th><th></th><th></th><th></th><th></th><th>Ļļ</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                         |      |          |       | Ļļ           |   |      |      |      |   |   |          |
| Trichloroethylene         µg/L <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                         |      |          |       | 1            |   |      |      |      |   |   |          |
| Viny Chloride         µgL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |                         |      | <        |       |              | _ |      |      |      |   |   |          |
| 2-Chlorophenol         μgL               2-A-Dinklorophenol         μgL <th></th> <th></th> <th></th> <th>&lt;</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                         |      | <        |       |              |   |      |      |      |   |   |          |
| 2.4-Dinktorophenol       µgL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | Vinyl Chloride          | µg/L |          |       |              |   |      |      |      |   | _ |          |
| 2-4-Dinktorsphenol         ygL <th></th> <th>2-Chlorophenol</th> <th>µg/L</th> <th>&lt;</th> <th></th> <th>T</th> <th></th> <th></th> <th></th> <th></th> <th>Π</th> <th></th> <th>F</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | 2-Chlorophenol          | µg/L | <        |       | T            |   |      |      |      | Π |   | F        |
| 4.8-Dinitro-o-Cresol         µgL </th <th></th> <th>2,4-Dichlorophenol</th> <th>µg/L</th> <th>&lt;</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | 2,4-Dichlorophenol      | µg/L | <        |       |              |   |      |      |      |   |   |          |
| 2.4-Dinitrophenol         µg/L <th></th> <th>2,4-Dimethylphenol</th> <th>µg/L</th> <th>&lt;</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 2,4-Dimethylphenol      | µg/L | <        |       |              |   |      |      |      |   |   |          |
| 2.4-Dinitrophenol         µg/L <th></th> <th>4.6-Dinitro-o-Cresol</th> <th>µa/L</th> <th>&lt;</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 4.6-Dinitro-o-Cresol    | µa/L | <        |       |              |   |      |      |      |   |   |          |
| 2.Nitrophenol         µg/L <th< th=""> <th< th=""></th<></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 |                         |      | <        | +     | ++           | - |      |      |      | Ħ | - | Ħ        |
| p-Chloro-m-Cresol         µg/L <th>₽</th> <th>-</th> <th></th> <th>&lt;</th> <th>+</th> <th>++</th> <th>-</th> <th></th> <th></th> <th></th> <th>Ħ</th> <th>-</th> <th>H</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ₽ | -                       |      | <        | +     | ++           | - |      |      |      | Ħ | - | H        |
| p-Chloro-m-Cresol         µg/L <th>£</th> <th></th> <th></th> <th>e</th> <th>+</th> <th>++</th> <th></th> <th></th> <th></th> <th></th> <th>H</th> <th>-</th> <th>H</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | £ |                         |      | e        | +     | ++           |   |      |      |      | H | - | H        |
| Pentachlorophenol         µg/L <th>0</th> <th></th> <th></th> <th></th> <th>÷</th> <th>Ħ</th> <th>-</th> <th></th> <th></th> <th></th> <th>Ħ</th> <th>-</th> <th>Ħ</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 |                         |      |          | ÷     | Ħ            | - |      |      |      | Ħ | - | Ħ        |
| Phenol         µg/L         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | •                       |      |          |       |              |   |      |      |      |   |   |          |
| 2.4.8-Trichlorophenol       µg/L <th< th=""> <th< th=""></th<></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                         |      | <u> </u> | +     |              | - |      |      |      |   | - | ⊢        |
| Acenaphthene $\mu g/L$ Acenaphthylene $\mu g/L$ </th <th></th> <th></th> <th></th> <th></th> <th><br/>+</th> <th>┿┽</th> <th></th> <th></th> <th></th> <th></th> <th>H</th> <th>-</th> <th>H</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                         |      |          | <br>+ | ┿┽           |   |      |      |      | H | - | H        |
| Acenaphthylene       µg/L                                                                                                                                  <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |                         |      |          | <br>+ | ┿            |   |      |      |      | H | - | H        |
| Anthracene $\mu g/L$ Benzidine $\mu g/L$ </th <th></th> <th></th> <th></th> <th><u> </u></th> <th><br/>+</th> <th>++</th> <th>-</th> <th></th> <th></th> <th></th> <th>Ħ</th> <th>-</th> <th>H</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                         |      | <u> </u> | <br>+ | ++           | - |      |      |      | Ħ | - | H        |
| Benzidine $\mu g'L$ Benzo(a)Anthracene $\mu g/L$ </th <th></th> <th></th> <th></th> <th></th> <th>÷</th> <th>÷</th> <th></th> <th></th> <th><br/></th> <th></th> <th></th> <th>-</th> <th>Ħ</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                         |      |          | ÷     | ÷            |   |      | <br> |      |   | - | Ħ        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                         |      |          |       |              |   |      | <br> |      |   |   |          |
| Benzo(a)Pyrene         µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                         |      | <u> </u> | <br>_ | ++           |   |      |      |      |   |   | Ц        |
| 3.4-Benzofluoranthene $\mu g/L$ </th <th></th> <th></th> <th></th> <th><u> </u></th> <th>_</th> <th><math>\downarrow</math></th> <th></th> <th></th> <th><br/></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                         |      | <u> </u> | _     | $\downarrow$ |   |      | <br> |      |   |   |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                         |      |          |       |              |   |      |      |      |   |   |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 3,4-Benzofluoranthene   | µg/L | <        |       |              |   |      |      |      |   |   |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | Benzo(ghi)Perylene      | µg/L |          |       |              |   |      |      |      |   |   |          |
| Bis(2-Chloroethoxy)Methane         µg/L <th< th=""></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |                         | µg/L | <        |       |              |   |      |      |      |   |   |          |
| Bis(2-Chloroethyl)Ether       µg/L       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                         |      | <        |       |              |   |      |      |      |   |   |          |
| Bis(2-Chloroisopropyl)Ether       µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | Bis(2-Chloroethyl)Ether | µg/L | <        |       |              | _ |      |      |      |   |   |          |
| Bis(2-Ethylhexyl)Phthalate         µg/L         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                         |      | <        | -     | ++           | - |      |      |      |   | - |          |
| 4-Bromophenyl Phenyl Ether       µg/L                                                                                                                                 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                         |      | <        | -     | ++           |   |      |      |      | F | = | Ħ        |
| Butyl Benzyl Phthalate         µg/L         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                         |      | <u> </u> | +     | ++           |   |      |      |      | Ħ |   | Ħ        |
| 2-Chloronaphthalene       µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                         |      | <        | ÷     | ÷            |   |      |      |      | H |   | H        |
| 4-Chlorophenyl Phenyl Ether       µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                         |      | <b>—</b> | <br>Ť | Ħ            |   |      |      |      |   |   | Ē        |
| Chrysene         µg/L         Image: Chrysene         Imag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                         |      | <b>—</b> |       |              |   |      |      |      |   |   |          |
| Dibenzo(a,h)Anthrancene         µg/L         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                         |      | -        | <br>+ | ++           | - |      |      |      |   | = | ╞╡       |
| 1.2-Dichlorobenzene     µg/L          1.3-Dichlorobenzene     µg/L           1.4-Dichlorobenzene     µg/L           3.3-Dichlorobenzidine     µg/L           Diethyl Phthalate     µg/L           Din-Butyl Phthalate     µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                         |      | -        | <br>- | ++           |   |      |      |      |   | - | -        |
| 1.3-Dichlorobenzene         µg/L         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                         |      | <b>—</b> | _     | ++           |   |      |      |      |   | - | -        |
| 1.4-Dichlorobenzene         µg/L         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | -                       |      |          | <br>- | ++           |   |      |      |      |   | = |          |
| 9         3.3-Dichlorobenzidine         µg/L         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                         |      | <b>—</b> | <br>- | 1            |   |      |      |      |   |   |          |
| Di-n-Butyl Phthalate µg/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 |                         |      | <b>—</b> |       |              |   |      |      |      |   |   |          |
| Di-n-Butyl Phthalate µg/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 | 3,3-Dichlorobenzidine   |      |          |       |              |   |      |      |      |   |   |          |
| Di-n-Butyl Phthalate µg/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 | Diethyl Phthalate       |      | <u> </u> |       |              |   |      |      |      |   |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 | Dimetry Fridate         |      |          |       |              |   |      |      |      |   |   |          |
| 2.4-Dinitrotoluene ua/L <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |                         |      | <        |       |              |   |      |      |      |   |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 2,4-Dinitrotoluene      | µg/L | <        |       |              |   |      |      |      |   |   |          |

**Discharge Information** 

| -        |                           |        |   | <br>          |    | _ | <br> | <br> | <br> | <br>           |    |
|----------|---------------------------|--------|---|---------------|----|---|------|------|------|----------------|----|
| - F      | 2,6-Dinitrotoluene        | µg/L   | < |               | +  | t |      |      |      |                |    |
|          | Di-n-Octyl Phthalate      | µg/L   | < | Ť             | Ì  | Ĺ |      |      |      |                |    |
|          | 1,2-Diphenylhydrazine     | µg/L   | < |               |    |   |      |      |      |                |    |
| 1        | Fluoranthene              | µg/L   | < |               |    | Ļ |      |      |      |                |    |
| 1        | Fluorene                  | µg/L   |   |               | _  | - |      |      |      |                |    |
| 1        | Hexachlorobenzene         | µg/L   | < |               |    | ┢ |      |      |      |                |    |
| 1        | Hexachlorobutadiene       | µg/L   | < |               | 1  | f |      |      |      | Fi             |    |
| 1        | Hexachlorocyclopentadiene | µg/L   | < |               |    | Ì |      |      |      |                |    |
|          | Hexachloroethane          | µg/L   | < |               |    | L |      |      |      |                |    |
| Ī        | ndeno(1,2,3-cd)Pyrene     | µg/L   | < |               | +  | t |      |      |      |                |    |
|          | sophorone                 | µg/L   | < | =             | Ŧ  | t |      |      |      | Ħ              |    |
| -        | Naphthalene               | µg/L   | < | Ħ             | Ŧ  | Ŧ |      |      |      | Ħ              | ++ |
| -        | Nitrobenzene              | µg/L   | < |               | +  | t |      |      |      | $\vdash$       |    |
| - h      | n-Nitrosodimethylamine    | µg/L   | < |               |    | t |      |      |      |                |    |
|          | n-Nitrosodi-n-Propylamine | µg/L   | < |               | +  | t |      |      |      |                |    |
|          | n-Nitrosodiphenylamine    | µg/L   | < | <br>+         | +  | t |      |      |      | Ħ              | ++ |
|          | Phenanthrene              | µg/L   | < | +             | +  | ÷ |      |      |      | H              | ++ |
| - H      | Pyrene                    | µg/L   | < | ÷             | ╈  | ÷ |      |      |      | H              | ++ |
|          | 1,2,4-Trichlorobenzene    | µg/L   | < | Ħ             | ÷  | Ħ |      |      |      | Ħ              | ++ |
|          | Aldrin                    |        | < |               |    | E |      |      |      |                |    |
| -        | alpha-BHC                 | µg/L   | < | +             | +  | + |      |      |      |                | ++ |
|          | арпа-ВНС<br>beta-BHC      | µg/L   | < | -             | +- | + |      |      |      |                | ++ |
| -        |                           | µg/L   | < |               |    | + |      |      |      |                | ++ |
|          | gamma-BHC                 | µg/L   |   | <br>Ħ         | +  | ÷ |      |      |      | Ħ              | ++ |
| - F      | delta BHC                 | µg/L   | < | <br>Ť         | ÷  | Ĥ |      |      |      | Ħ              |    |
| - F      | Chlordane                 | µg/L   | < | <br>+         | +  | Ļ |      |      |      |                |    |
|          | 4,4-DDT                   | µg/L   | < |               | +  |   |      |      |      | $\vdash$       | ++ |
|          | 4,4-DDE                   | µg/L   | < | <br>╞┼╸       | +  | ╞ |      |      |      | ⊨              | ++ |
| - H      | 4,4-DDD                   | µg/L   | < | $\Rightarrow$ | +  | + |      |      |      | ⊨              | ++ |
|          | Dieldrin                  | µg/L   | < | Ì             | +  | Ì |      | <br> |      | Þ              |    |
| -        | alpha-Endosulfan          | µg/L   | < | Ì             | 1  | Ĺ |      |      |      |                |    |
| H        | beta-Endosulfan           | µg/L   | < |               |    |   |      |      |      |                |    |
| 9 d      | Endosulfan Sulfate        | µg/L   | < |               |    |   |      |      |      |                |    |
| <u> </u> | Endrin                    | µg/L   | < |               |    | - |      |      |      |                |    |
| ອັບ      | Endrin Aldehyde           | µg/L   | < |               |    | ┢ |      |      |      |                |    |
| 1        | Heptachlor                | µg/L   | < | -i-           | Ť  | Ĺ |      |      |      |                |    |
| I        | Heptachlor Epoxide        | µg/L   | ۷ |               |    |   |      |      |      |                |    |
| 1        | PCB-1016                  | µg/L   | ۷ |               |    | Ļ |      |      |      |                |    |
| 1        | PCB-1221                  | µg/L   | ۷ |               |    | - |      |      |      | $ \rightarrow$ |    |
| 1        | PCB-1232                  | µg/L   | < |               |    | ł |      |      |      |                |    |
| 1        | PCB-1242                  | µg/L   | < |               | 1  | f |      |      |      | Fi             |    |
| 1        | PCB-1248                  | µg/L   | < |               |    | Γ |      |      |      |                |    |
| 1        | PCB-1254                  | µg/L   | < |               |    | L |      |      |      |                |    |
| 1        | PCB-1260                  | µg/L   | < |               | +  | t |      |      |      |                |    |
| 1        | PCBs, Total               | µg/L   | < | -             | +  | F |      |      |      | H              |    |
| -        | Toxaphene                 | µg/L   | < |               | +  | t |      |      |      | Ħ              |    |
|          | 2,3,7,8-TCDD              | ng/L   | < |               |    |   |      |      |      |                |    |
| _        | Gross Alpha               | pCi/L  |   |               | T  | Ē |      |      |      |                |    |
| ~ F      | Total Beta                | pCi/L  | < |               | -  | t |      |      |      |                | ++ |
| <b>₽</b> | Radium 226/228            | pCi/L  | < | H             | -  | F |      |      |      | H              |    |
|          | Total Strontium           | µg/L   | < | Ħ             | 1  | t |      |      |      | Ħ              |    |
| 0        | Total Uranium             | µg/L   | < |               | İ  | Ì |      |      |      |                | 11 |
| -        | Osmotic Pressure          | mOs/kg |   |               |    | E |      |      |      |                |    |
| f        |                           |        |   |               |    | t |      |      |      |                | _  |
| ŀ        |                           |        |   | H             | +  | t |      |      |      |                |    |
| ŀ        |                           |        |   |               | -  | t |      |      |      |                |    |
|          |                           |        |   |               | İ  | Ť |      |      |      |                |    |
| ŀ        |                           |        |   | Ì             |    | E |      |      |      | -              |    |
| ŀ        |                           |        |   | H             | -  | H |      |      |      | -              |    |
| ŀ        |                           |        |   |               | +  | ł |      |      |      | -              |    |
|          |                           |        |   |               |    |   |      |      |      |                |    |
| ŀ        |                           |        |   |               |    |   |      |      |      |                |    |
|          |                           |        |   |               | +  |   |      |      |      |                |    |
|          |                           |        |   |               |    |   |      |      |      |                |    |
|          |                           |        |   |               |    |   |      |      |      |                |    |

#### **Discharge Information**

Page 3

1



# Stream / Surface Water Information

Toxics Management Spreadsheet Version 1.4, May 2023

#### Bleairsville Well 2, NPDES Permit No. PA0215856, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Blairsville Reservoir

Elevation PWS Withdrawal Apply Fish Stream Code\* RMI\* DA (mi2) Slope (ft/ft) Location (ft)\* (MGD) Criteria\* Point of Discharge 043622 1.15 1254 2.38 Yes End of Reach 1 044739 0 1047 15.5 Yes

Statewide Criteria

O Great Lakes Criteria

ORSANCO Criteria

Q 7-10

| Location           | RMI   | LFY                     | Flow   | r (cfs)   | W/D   | Width | Depth | Velocit | Time   | Tributa  | ary | Strea     | m   | Analys   | sis |
|--------------------|-------|-------------------------|--------|-----------|-------|-------|-------|---------|--------|----------|-----|-----------|-----|----------|-----|
| Location           | 15000 | (cfs/mi <sup>2</sup> )* | Stream | Tributary | Ratio | (ft)  | (ft)  | y (fps) | (days) | Hardness | pН  | Hardness* | pH* | Hardness | pН  |
| Point of Discharge | 1.15  | 0.1                     | 0.567  |           |       |       |       |         |        |          |     | 100       | 7   |          |     |
| End of Reach 1     | 0     | 0.1                     |        |           |       |       |       |         |        |          |     |           |     |          |     |

No. Reaches to Model:

Qn

| Location           | RMI   | LFY                    | Flow   | (cfs)     | W/D   | Width | Depth | Velocit | Time           | Tributa  | ary | Stream   | m  | Analys   | is |
|--------------------|-------|------------------------|--------|-----------|-------|-------|-------|---------|----------------|----------|-----|----------|----|----------|----|
| Location           | RIVII | (cfs/mi <sup>2</sup> ) | Stream | Tributary | Ratio | (ft)  | (ft)  | y (fps) | Time<br>(days) | Hardness | pН  | Hardness | pН | Hardness | pН |
| Point of Discharge | 1.15  |                        |        |           |       |       |       |         |                |          |     |          |    |          |    |
| End of Reach 1     | 0     |                        |        |           |       |       |       |         |                |          |     |          |    |          |    |

#### PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

## **Model Results**

Toxics Management Spreadsheet Version 1.4, May 2023

Bleairsville Well 2, NPDES Permit No. PA0215856, Outfall 001

| Instructions Results            | RETURN       | TO INPU      | тs |              | SAVE AS      | PDF           | PRINT            | r ) @ A    | NI 🔿 Inputs 🔿 Results 🔿 Limits   |
|---------------------------------|--------------|--------------|----|--------------|--------------|---------------|------------------|------------|----------------------------------|
| Hydrodynamics                   |              |              |    |              |              |               |                  |            |                                  |
| Wasteload Allocations           |              |              |    |              |              |               |                  |            |                                  |
| AFC cc                          | T (min): 0.1 | 716          | PI | MF:          | 1            | Ana           | lysis Hardne     | ss (mg/l): | 121.48 Analysis pH: 7.17         |
| Pollutants                      | Conc         | Stream<br>CV |    | Conc<br>J/L) | Fate<br>Coef | WQC<br>(µg/L) | WQ Obj<br>(µg/L) | WLA (µg/L) | Comments                         |
| Total Dissolved Solids (PWS)    | 0            | 0            |    |              | 0            | N/A           | N/A              | N/A        |                                  |
| Chloride (PWS)                  | 0            | 0            |    |              | 0            | N/A           | N/A              | N/A        |                                  |
| Sulfate (PWS)                   | 0            | 0            |    |              | 0            | N/A           | N/A              | N/A        |                                  |
| Fluoride (PWS)                  | 0            | 0            |    |              | 0            | N/A           | N/A              | N/A        |                                  |
| Total Aluminum                  | 0            | 0            |    |              | 0            | 750           | 750              | 2,339      |                                  |
| Total Antimony                  | 0            | 0            |    |              | 0            | 1,100         | 1,100            | 3,430      |                                  |
| Total Arsenic                   | 0            | 0            |    |              | 0            | 340           | 340              | 1,060      | Chem Translator of 1 applied     |
| Total Barium                    | 0            | 0            |    |              | 0            | 21,000        | 21,000           | 65,490     |                                  |
| Total Boron                     | 0            | 0            |    |              | 0            | 8,100         | 8,100            | 25,261     |                                  |
| Total Cadmium                   | 0            | 0            |    |              | 0            | 2.433         | 2.6              | 8.11       | Chem Translator of 0.936 applied |
| Total Chromium (III)            | 0            | 0            |    |              | 0            | 668.215       | 2,115            | 6,595      | Chem Translator of 0.316 applied |
| Hexavalent Chromium             | 0            | 0            |    |              | 0            | 16            | 16.3             | 50.8       | Chem Translator of 0.982 applied |
| Total Cobalt                    | 0            | 0            |    |              | 0            | 95            | 95.0             | 296        |                                  |
| Total Copper                    | 0            | 0            |    |              | 0            | 16.144        | 16.8             | 52.4       | Chem Translator of 0.96 applied  |
| Dissolved Iron                  | 0            | 0            |    |              | 0            | N/A           | N/A              | N/A        |                                  |
| Total Iron                      | 0            | 0            |    |              | 0            | N/A           | N/A              | N/A        |                                  |
| Total Lead                      | 0            | 0            |    |              | 0            | 79.771        | 105              | 326        | Chem Translator of 0.763 applied |
| Total Manganese                 | 0            | 0            |    |              | 0            | N/A           | N/A              | N/A        |                                  |
| Total Mercury                   | 0            | 0            |    |              | 0            | 1.400         | 1.65             | 5.14       | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0            | 0            |    |              | 0            | 552.037       | 553              | 1,725      | Chem Translator of 0.998 applied |
| Total Phenols (Phenolics) (PWS) | 0            | 0            |    |              | 0            | N/A           | N/A              | N/A        |                                  |
| Total Selenium                  | 0            | 0            |    |              | 0            | N/A           | N/A              | N/A        | Chem Translator of 0.922 applied |
| Total Silver                    | 0            | 0            |    |              | 0            | 4.496         | 5.29             | 16.5       | Chem Translator of 0.85 applied  |
| Total Thallium                  | 0            | 0            |    |              | 0            | 65            | 65.0             | 203        |                                  |
| Total Zinc                      | 0            | 0            |    |              | 0            | 138.187       | 141              | 441        | Chem Translator of 0.978 applied |
|                                 |              |              |    |              | -            |               |                  |            |                                  |

3/7/2024

|  |       |         | _  |   |  |      |  |
|--|-------|---------|----|---|--|------|--|
|  |       | i i     | 11 |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       | ÷       | ++ | - |  |      |  |
|  | <br>  | ++      | ++ | + |  | <br> |  |
|  |       |         |    |   |  | <br> |  |
|  |       |         |    |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       |         | Ħ  |   |  | <br> |  |
|  |       |         |    |   |  | <br> |  |
|  |       |         | +  |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  | <br>  |         |    |   |  | <br> |  |
|  | <br>  |         |    |   |  | <br> |  |
|  |       |         |    |   |  |      |  |
|  |       |         |    | 1 |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       | H       | Ħ  |   |  |      |  |
|  |       |         | Ť  |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       | i-f     | +7 | - |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  | <br>  |         |    |   |  | <br> |  |
|  |       |         |    |   |  |      |  |
|  |       | ┝╌┝╴    | +  |   |  |      |  |
|  |       | ++      | Ħ  |   |  |      |  |
|  |       |         | ++ |   |  | <br> |  |
|  | <br>  |         | +  |   |  | <br> |  |
|  |       | <u></u> |    |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       |         |    |   |  | <br> |  |
|  | <br>  |         |    | _ |  | <br> |  |
|  |       |         |    |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       |         | ++ |   |  | <br> |  |
|  | <br>  |         |    |   |  | <br> |  |
|  |       |         | 11 |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       | Ħ       |    |   |  | <br> |  |
|  | <br>  |         |    |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       |         | ++ |   |  |      |  |
|  |       |         | +  |   |  |      |  |
|  |       |         |    | _ |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       |         | Ħ  |   |  |      |  |
|  | <br>  | ++      | ++ | - |  | <br> |  |
|  |       |         | +  |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  |       |         |    |   |  |      |  |
|  | <br>  |         |    |   |  | <br> |  |
|  |       |         |    |   |  | <br> |  |
|  |       |         |    |   |  |      |  |
|  | 1     |         |    |   |  |      |  |
|  | <br>_ |         |    |   |  | <br> |  |

Model Results

Page 6

|                              |                | -      |                                       |      |        |               |            |                                  |
|------------------------------|----------------|--------|---------------------------------------|------|--------|---------------|------------|----------------------------------|
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
|                              |                |        |                                       |      |        |               |            |                                  |
| CFC CC                       | T (min): 0.1   | 716    | PMF:                                  | 1    | Ana    | alysis Hardne | ss (mg/l): | 121.48 Analysis pH: 7.17         |
|                              |                |        |                                       |      |        |               |            |                                  |
| Delluteete                   | Stream         | Stream | Trib Conc                             | Fate | WQC    | WQ Obj        |            | Comments                         |
| Pollutants                   | Conc<br>(ug/L) | CV     | (µg/L)                                | Coef | (µg/L) | (µg/L)        | WLA (µg/L) | Comments                         |
| Total Dissolved Solids (PWS) | 0              | 0      |                                       | 0    | N/A    | N/A           | N/A        |                                  |
|                              |                |        |                                       |      | N/A    |               |            |                                  |
| Chloride (PWS)               | 0              | 0      |                                       | 0    |        | N/A           | N/A        |                                  |
| Sulfate (PWS)                | 0              | 0      | + + + + + + + + + + + + + + + + + + + | 0    | N/A    | N/A           | N/A        |                                  |
| Fluoride (PWS)               | 0              | 0      |                                       | 0    | N/A    | N/A           | N/A        |                                  |
| Total Aluminum               | 0              | 0      |                                       | 0    | N/A    | N/A           | N/A        |                                  |
| Total Antimony               | 0              | 0      |                                       | 0    | 220    | 220           | 686        |                                  |
| Total Arsenic                | 0              | 0      |                                       | 0    | 150    | 150           | 468        | Charry Translates of 1 applied   |
|                              |                | _      |                                       |      |        | 1             |            | Chem Translator of 1 applied     |
| Total Barium                 | 0              | 0      |                                       | 0    | 4,100  | 4,100         | 12,786     |                                  |
| Total Boron                  | 0              | 0      |                                       | 0    | 1,600  | 1,600         | 4,990      |                                  |
| Total Cadmium                | 0              | 0      |                                       | 0    | 0.282  | 0.31          | 0.97       | Chem Translator of 0.901 applied |
| Total Chromium (III)         | 0              | 0      |                                       | 0    | 86.921 | 101           | 315        | Chem Translator of 0.86 applied  |
| Hexavalent Chromium          | 0              | 0      |                                       | 0    | 10     | 10.4          | 32.4       |                                  |
| Hexavalent Chromium          | U              | Ű      |                                       | U    | 10     | 10.4          | 32.4       | Chem Translator of 0.962 applied |

#### NPDES Permit No. PA0215856 Well Number 2

| Total Cobalt                    | 0 | 0 |        | 0 | 19      | 19.0  | 59.3  |                                  |
|---------------------------------|---|---|--------|---|---------|-------|-------|----------------------------------|
| Total Copper                    | 0 | ō |        | 0 | 10.576  | 11.0  | 34.4  | Chem Translator of 0.96 applied  |
| Dissolved Iron                  | 0 | 0 |        | 0 | N/A     | N/A   | N/A   |                                  |
| Total Iron                      | 0 | 0 |        | 0 | 1,500   | 1,500 | 4,678 | WQC = 30 day average; PMF = 1    |
| Total Lead                      | 0 | 0 |        | 0 | 3.109   | 4.08  | 12.7  | Chem Translator of 0.763 applied |
| Total Manganese                 | 0 | 0 | ╟┼┼┼┼┦ | 0 | N/A     | N/A   | N/A   |                                  |
| Total Mercury                   | 0 | 0 |        | 0 | 0.770   | 0.91  | 2.83  | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0 | 0 |        | 0 | 61.314  | 61.5  | 192   | Chem Translator of 0.997 applied |
| Total Phenols (Phenolics) (PWS) | 0 | 0 |        | 0 | N/A     | N/A   | N/A   |                                  |
| Total Selenium                  | 0 | 0 |        | 0 | 4.600   | 4.99  | 15.6  | Chem Translator of 0.922 applied |
| Total Silver                    | 0 | 0 |        | 0 | N/A     | N/A   | N/A   | Chem Translator of 1 applied     |
| Total Thallium                  | 0 | 0 |        | 0 | 13      | 13.0  | 40.5  |                                  |
| Total Zinc                      | 0 | 0 |        | 0 | 139.318 | 141   | 441   | Chem Translator of 0.986 applied |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |
|                                 |   |   |        |   |         |       |       |                                  |

|  |  |                                              | <br> |
|--|--|----------------------------------------------|------|
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  | <u>├</u>                                     |      |
|  |  | <u>├</u>                                     |      |
|  |  |                                              | <br> |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  | <u>├                                    </u> |      |
|  |  | <b>├</b> ──                                  |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  |                                              |      |
|  |  | <u>├                                    </u> |      |
|  |  | <b>├</b> ──                                  |      |
|  |  |                                              |      |

|                                 |                | -            |                     |              |               |                  |             |                      |
|---------------------------------|----------------|--------------|---------------------|--------------|---------------|------------------|-------------|----------------------|
|                                 |                |              |                     |              |               |                  |             |                      |
| <i>⊡ тнн</i> сс                 | T (min): 0.1   | 716          | PMF:                | 1            | Ana           | lysis Hardne     | ess (mg/l): | N/A Analysis pH: N/A |
| Pollutants                      | Conc<br>(ug/L) | Stream<br>CV | Trib Conc<br>(µg/L) | Fate<br>Coef | WQC<br>(µg/L) | WQ Obj<br>(µg/L) | WLA (µg/L)  | Comments             |
| Total Dissolved Solids (PWS)    | 0              | 0            |                     | 0            | 500,000       | 500,000          | N/A         |                      |
| Chloride (PWS)                  | 0              | 0            |                     | 0            | 250,000       | 250,000          | N/A         |                      |
| Sulfate (PWS)                   | 0              | 0            |                     | 0            | 250,000       | 250,000          | N/A         |                      |
| Fluoride (PWS)                  | 0              | 0            |                     | 0            | 2,000         | 2,000            | N/A         |                      |
| Total Aluminum                  | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Antimony                  | 0              | 0            |                     | 0            | 5.6           | 5.6              | 17.5        |                      |
| Total Arsenic                   | 0              | 0            |                     | 0            | 10            | 10.0             | 31.2        |                      |
| Total Barium                    | 0              | 0            |                     | 0            | 2,400         | 2,400            | 7,485       |                      |
| Total Boron                     | 0              | 0            |                     | 0            | 3,100         | 3,100            | 9,668       |                      |
| Total Cadmium                   | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Chromium (III)            | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Hexavalent Chromium             | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Cobalt                    | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Copper                    | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Dissolved Iron                  | 0              | 0            |                     | 0            | 300           | 300              | 936         |                      |
| Total Iron                      | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Lead                      | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Manganese                 | 0              | 0            |                     | 0            | 1,000         | 1,000            | 3,119       |                      |
| Total Mercury                   | 0              | 0            |                     | 0            | 0.050         | 0.05             | 0.16        |                      |
| Total Nickel                    | 0              | 0            |                     | 0            | 610           | 610              | 1,902       |                      |
| Total Phenols (Phenolics) (PWS) | 0              | 0            |                     | 0            | 5             | 5.0              | N/A         |                      |
| Total Selenium                  | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Silver                    | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Thallium                  | 0              | 0            |                     | 0            | 0.24          | 0.24             | 0.75        |                      |
| Total Zinc                      | 0              | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
|                                 |                |              |                     |              |               |                  |             |                      |
|                                 |                |              |                     |              |               |                  |             |                      |
|                                 |                |              |                     |              |               |                  |             |                      |
|                                 |                |              |                     |              |               |                  |             |                      |
|                                 |                |              |                     |              |               |                  |             |                      |
|                                 |                |              |                     |              |               |                  |             |                      |
|                                 |                |              |                     |              |               |                  |             |                      |
|                                 |                |              |                     |              |               |                  |             |                      |
|                                 |                |              |                     |              |               |                  |             |                      |
|                                 |                |              |                     |              |               |                  |             |                      |
|                                 |                |              |                     |              |               |                  |             |                      |
|                                 |                |              |                     |              |               |                  |             |                      |
|                                 |                |              |                     |              |               |                  |             |                      |

|     | 1 |   | <br>1 | 1 |                                       |
|-----|---|---|-------|---|---------------------------------------|
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     | - |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   | _ |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   | <br>  |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   | <br>  |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   | <br>  |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   | <br>  |   |                                       |
|     |   |   | <br>  |   |                                       |
|     |   |   | <br>  |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   | <br>  |   |                                       |
|     |   |   | <br>  |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
|     |   |   |       |   |                                       |
| L I |   |   |       |   | · · · · · · · · · · · · · · · · · · · |

|                                                                                                                                                                                                                                                                                                        | !                                                                                                                       |                                                                                                        |           |                                                                                                             |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------|
| CRL CC                                                                                                                                                                                                                                                                                                 | T (min): 0.4                                                                                                            | 437                                                                                                    | PMF:      | 1                                                                                                           | Ana                                                                                 | alysis Hardne                                                                                                                                                                                                                                                                                                                                                                         | ss (mg/l):                                                                       | N/A Analysis pH: N/A |
| CCC CC                                                                                                                                                                                                                                                                                                 | Conc                                                                                                                    | 437<br>Stream<br>CV                                                                                    | Trib Conc | 1<br>Fate<br>Coef                                                                                           | WQC                                                                                 | WQ Obj                                                                                                                                                                                                                                                                                                                                                                                | ess (mg/l):<br>WLA (µg/L)                                                        |                      |
| Pollutants                                                                                                                                                                                                                                                                                             | Stream                                                                                                                  | Stream                                                                                                 |           | Fate                                                                                                        |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  |                      |
| Pollutants<br>Total Dissolved Solids (PWS)                                                                                                                                                                                                                                                             | Conc<br>(un/L)                                                                                                          | Stream<br>CV                                                                                           | Trib Conc | Fate<br>Coef                                                                                                | WQC<br>(µg/L)                                                                       | WQ Obj<br>(µg/L)                                                                                                                                                                                                                                                                                                                                                                      | WLA (µg/L)                                                                       |                      |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)                                                                                                                                                                                                                                           | Sueam<br>Conc<br>(up/L)<br>0                                                                                            | Stream<br>CV<br>0                                                                                      | Trib Conc | Fate<br>Coef<br>0                                                                                           | WQC<br>(µg/L)<br>N/A<br>N/A                                                         | WQ Obj<br>(µg/L)<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                        | WLA (µg/L)<br>N/A<br>N/A                                                         |                      |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)                                                                                                                                                                                                                          | Conc<br>(und )<br>0<br>0                                                                                                | Stream<br>CV<br>0<br>0                                                                                 | Trib Conc | Fate<br>Coef<br>0<br>0                                                                                      | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A                                                  | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                 | WLA (µg/L)<br>N/A<br>N/A<br>N/A                                                  |                      |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)                                                                                                                                                                                                        | Conc<br>(und))<br>0<br>0<br>0<br>0                                                                                      | Stream<br>CV<br>0<br>0<br>0                                                                            | Trib Conc | Fate<br>Coef<br>0<br>0<br>0                                                                                 | WQC<br>(μg/L)<br>N/A<br>N/A<br>N/A<br>N/A                                           | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                          | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A                                           |                      |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)<br>Total Aluminum                                                                                                                                                                                      | Conc<br>(und)<br>0<br>0<br>0<br>0<br>0<br>0                                                                             | Stream<br>CV<br>0<br>0<br>0<br>0                                                                       | Trib Conc | Fate<br>Coef<br>0<br>0<br>0<br>0                                                                            | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A                                           | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                   | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                    |                      |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)<br>Total Aluminum<br>Total Antimony                                                                                                                                                                    | Conc<br>(unit)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                  | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0                                                             | Trib Conc | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0                                                                  | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                             | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                            | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                             |                      |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)<br>Total Aluminum<br>Total Antimony<br>Total Arsenic                                                                                                                                                   | Stream<br>Conc<br>(uall)<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | Trib Conc | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                             | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                            | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                             |                      |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)<br>Total Aluminum<br>Total Antimony<br>Total Arsenic<br>Total Barium                                                                                                                                   | Stream<br>Conc<br>(ug/)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | Trib Conc | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                     | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                      |                      |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)<br>Total Aluminum<br>Total Antimony<br>Total Ansenic<br>Total Barium<br>Total Boron                                                                                                                    | Stream<br>Conc<br>(uall)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | Trib Conc | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                              | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               |                      |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)<br>Total Aluminum<br>Total Antimony<br>Total Antimony<br>Total Arsenic<br>Total Barium<br>Total Boron<br>Total Cadmium                                                                                 | Stream<br>Conc<br>(ug/)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | Trib Conc | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                       | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        |                      |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)<br>Total Aluminum<br>Total Antimony<br>Total Antimony<br>Total Arsenic<br>Total Barium<br>Total Boron<br>Total Boron<br>Total Cadmium<br>Total Chromium (III)                                          | Stream<br>Conc<br>(unl)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |                      |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)<br>Total Aluminum<br>Total Antimony<br>Total Antimony<br>Total Arsenic<br>Total Barium<br>Total Boron<br>Total Boron<br>Total Cadmium<br>Total Chromium (III)<br>Hexavalent Chromium                   | Stream<br>Conc<br>(uall)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |                      |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)<br>Total Aluminum<br>Total Antimony<br>Total Antimony<br>Total Arsenic<br>Total Barium<br>Total Boron<br>Total Boron<br>Total Cadmium<br>Total Chromium (III)<br>Hexavalent Chromium                   | Stream<br>Conc<br>(unit)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | Trib Conc | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |                      |
| Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Antimony Total Barium Total Boron Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper                                                 | Stream<br>Conc<br>(unit)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | Trib Conc | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |                      |
| Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Antimony Total Barium Total Boron Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron                                  | Stream<br>Conc<br>(unit)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |                      |
| Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Ansenic Total Barium Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron                       | Stream<br>Conc<br>(uall)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |                      |
| Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Ansenic Total Barium Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Lead | Stream<br>Conc<br>(uall)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj           (µg/L)           N/A           N/A | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |                      |
| Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Ansenic Total Barium Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron                       | Stream<br>Conc<br>(uall)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |                      |

## NPDES Permit Fact Sheet Blairsville Municipal Authority WTP

#### NPDES Permit No. PA0215856 Well Number 2

| Total Nickel                    | 0 | 0 |    |   |     | 0 | N/A | N/A | N/A |   |
|---------------------------------|---|---|----|---|-----|---|-----|-----|-----|---|
| Total Phenols (Phenolics) (PWS) | 0 | 0 |    | + | ++  | 0 | N/A | N/A | N/A |   |
| Total Selenium                  | 0 | 0 |    |   |     | 0 | N/A | N/A | N/A |   |
| Total Silver                    | 0 | 0 |    |   |     | 0 | N/A | N/A | N/A |   |
| Total Thallium                  | 0 | 0 |    |   |     | 0 | N/A | N/A | N/A |   |
| Total Zinc                      | 0 | 0 |    |   |     | 0 | N/A | N/A | N/A |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     | - |     |     |     |   |
|                                 |   |   |    |   |     | - |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     | _ |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     | - |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     | - |     |     |     |   |
|                                 |   |   |    | - |     |   |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     | _ |     |     |     |   |
|                                 |   |   |    |   |     | - |     |     |     |   |
|                                 |   |   |    |   |     | 1 |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     | - |     |     |     |   |
|                                 |   |   |    |   |     | - |     |     |     |   |
|                                 |   |   | İ  |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     | - |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     | - |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     | - |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     | - |     |     |     |   |
|                                 |   |   |    |   | ++  | - |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   |    |   |     |   |     |     |     |   |
|                                 |   |   | 10 |   | 1 1 | 1 | 1   |     |     | l |

|   |  | <br> |  |
|---|--|------|--|
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  | <br> |  |
|   |  | <br> |  |
|   |  | <br> |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  | <br> |  |
|   |  | <br> |  |
|   |  | <br> |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  | <br> |  |
|   |  | <br> |  |
|   |  | <br> |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
|   |  |      |  |
| L |  | <br> |  |

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

|            | Mass             | Limits           |     | Concentra | tion Limits |       |                    |                |          |
|------------|------------------|------------------|-----|-----------|-------------|-------|--------------------|----------------|----------|
| Pollutants | AML<br>(lbs/day) | MDL<br>(lbs/day) | AML | MDL       | IMAX        | Units | Governing<br>WQBEL | WQBEL<br>Basis | Comments |
|            |                  |                  |     |           |             |       |                    |                |          |
|            |                  |                  |     |           |             |       |                    |                |          |
|            |                  |                  |     |           |             |       |                    |                |          |
|            |                  |                  |     |           |             |       |                    |                |          |
|            |                  |                  |     |           |             |       |                    |                |          |
|            |                  |                  |     |           |             |       |                    |                |          |
|            |                  |                  |     |           |             |       |                    |                |          |
|            |                  |                  |     |           |             |       |                    |                |          |
|            |                  |                  |     |           |             |       |                    |                |          |
|            |                  |                  |     |           |             |       |                    |                |          |
|            |                  |                  |     |           |             |       |                    |                |          |
|            |                  |                  |     |           |             |       |                    |                |          |

#### Other Pollutants without Limits or Monitoring

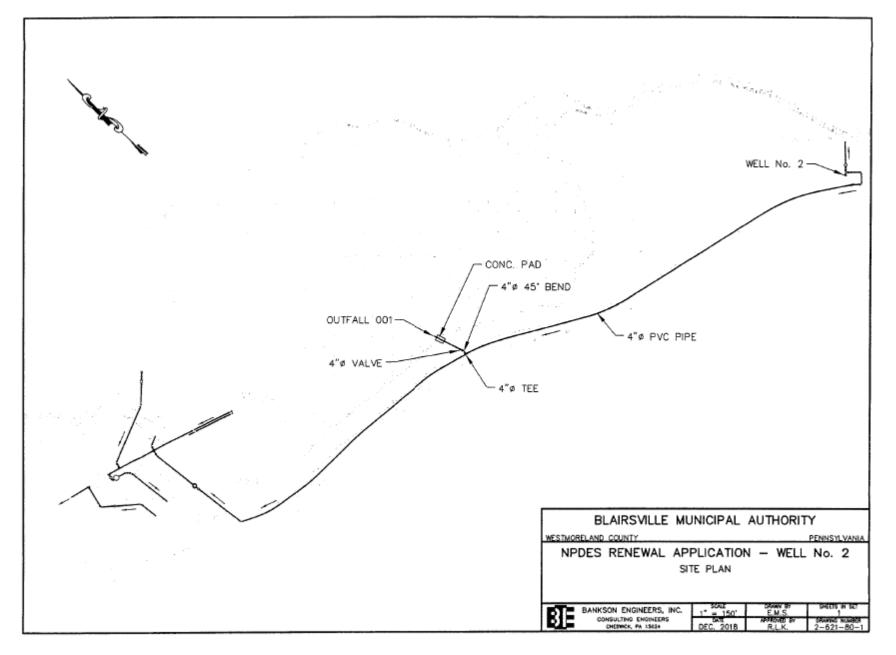
The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

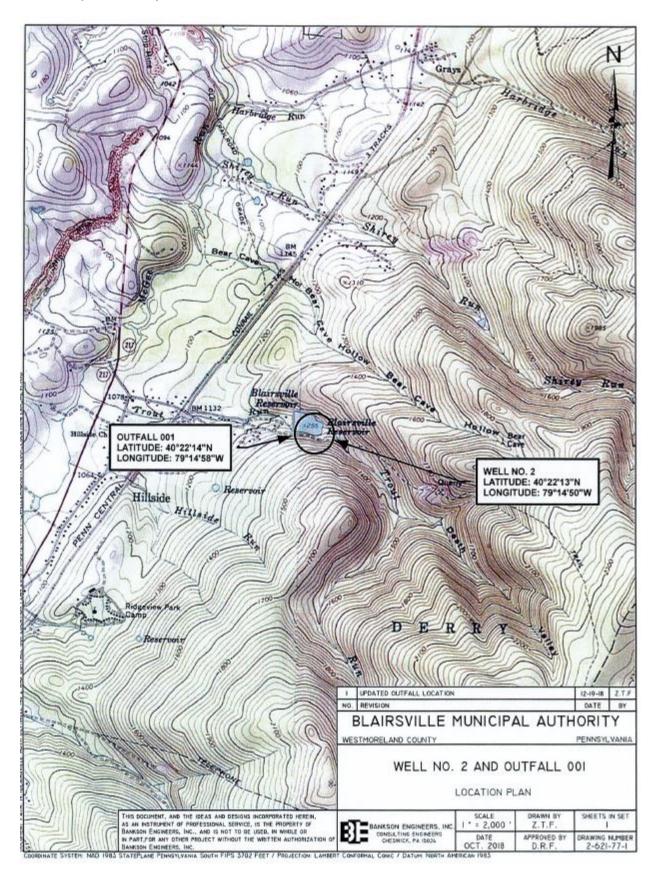
| Pollutants                   | Governing<br>WQBEL | Units | Comments                   |
|------------------------------|--------------------|-------|----------------------------|
| Total Dissolved Solids (PWS) | N/A                | N/A   | PWS Not Applicable         |
| Chloride (PWS)               | N/A                | N/A   | PWS Not Applicable         |
| Bromide                      | N/A                | N/A   | No WQS                     |
| Sulfate (PWS)                | N/A                | N/A   | PWS Not Applicable         |
| Fluoride (PWS)               | N/A                | N/A   | PWS Not Applicable         |
| Total Aluminum               | N/A                | N/A   | Discharge Conc < TQL       |
| Total Antimony               | N/A                | N/A   | Discharge Conc < TQL       |
| Total Arsenic                | N/A                | N/A   | Discharge Conc < TQL       |
| Total Barium                 | 7,485              | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Beryllium              | N/A                | N/A   | No WQS                     |
| Total Boron                  | 4,990              | µg/L  | Discharge Conc < TQL       |
| Total Cadmium                | 0.97               | µg/L  | Discharge Conc < TQL       |
| Total Chromium (III)         | 315                | µg/L  | Discharge Conc < TQL       |
| Hexavalent Chromium          | 32.4               | µg/L  | Discharge Conc < TQL       |
| Total Cobalt                 | 59.3               | µg/L  | Discharge Conc < TQL       |
| Total Copper                 | 0.034              | mg/L  | Discharge Conc < TQL       |
| Total Cyanide                | N/A                | N/A   | No WQS                     |
| Dissolved Iron               | 936                | µg/L  | Discharge Conc < TQL       |
| Total Iron                   | 4,678              | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Lead                   | 12.7               | µg/L  | Discharge Conc < TQL       |
| Total Manganese              | 3,119              | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Mercury                | 0.16               | µg/L  | Discharge Conc < TQL       |
| Total Nickel                 | 192                | µg/L  | Discharge Conc < TQL       |

3/7/2024

## NPDES Permit Fact Sheet Blairsville Municipal Authority WTP

| Total Phenols (Phenolics) (PWS) Total Selenium Total Silver Total Thallium Total Zinc | 15.6<br>10.6 | μg/L<br>μg/L | Discharge Conc < TQL<br>Discharge Conc < TQL |
|---------------------------------------------------------------------------------------|--------------|--------------|----------------------------------------------|
| Total Silver<br>Total Thallium                                                        |              |              |                                              |
| Total Thallium                                                                        | 10.00        | µg/L         | Discharge Conc < TQL                         |
|                                                                                       | 0.75         | µg/L         | Discharge Conc < TQL                         |
|                                                                                       | 0.28         | mg/L         | Discharge Conc < TQL                         |
| Total Molybdenum                                                                      | 0.28<br>N/A  | N/A          | No WQS                                       |
| l otal Molybdenum                                                                     | N/A          | N/A          | NOWQS                                        |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
| <u> </u>                                                                              |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
| ļ                                                                                     |              |              |                                              |
| ļ                                                                                     |              |              |                                              |
| ļ                                                                                     |              |              |                                              |
| ļ                                                                                     |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |
|                                                                                       |              |              |                                              |


3/7/2024


ATTACHMENT C

Site Plan

Site Plan





