

Southwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0216038

 APS ID
 995451

 Authorization ID
 1277121

Applicant and Facility Information					
Applicant Name	Murray American River Towing, Inc.	Facility Name	Alicia Dock		
Applicant Address	46226 National Road	Facility Address	379 Alicia Road		
	St. Clairsville, OH 43950	<u>-</u>	East Millsboro, PA 15433-1252		
Applicant Contact	Jon Nagel	Facility Contact	Joe Osterberger		
Applicant Phone	740-338-3100	Facility Phone	724-684-2330		
Client ID	311117	Site ID	239958		
SIC Code	4499	Municipality	Luzerne Township		
SIC Description	Trans. & Utilities - Water Transportation Services, Nec	County	Fayette		
Date Application Rec	eived January 20, 2006	EPA Waived?	Yes		
Date Application Accepted February 8, 2006		If No, Reason			

Summary of Review

The permittee submitted an NPDES permit renewal application for the Alicia Dock Coal Transfer facility in Luzerne Township, Fayette County.

This permit renewal incorporates an ownership change, from Consol Docks, Inc. to Murray American River Towing, Inc. The transfer of ownership occurred on December 4, 2013. The Permit Transfer application was received by the Department on June 18, 2019. The transfer is for NPDES permit PA0216038 and for WQM permit 2696203.

Murray Energy Corporation ("Murray Energy") acquired Consolidation Coal Company ("Consolidation Coal") from CONSOL Energy, Inc. ("CONSOL") on December 4, 2013.

The river transportation operations at the Alicia Dock facility will be conducted by Murray American River Towing, Inc.

The current permit is issued to:

Consol Docks, Inc.

1200 Maronda Way Suite 100

Monessen, PA 15062

Contact Person:

Joe Osterberger - Manager-Compliance

724-684-2330

joesephosterberger@coalsource.com

For a facility located at:

Alicia Dock State Road 4022 Brownsville, PA 15417

Approve	Deny /// Signatures	Date
Х	Mark S. Okrutny / Environmental Engineering Specialist	August 20, 2019
х	Michael E. Fifth, P.E. / Environmental Engineer Manager	8/20/19

Summary of Review

The permit is being transferred to:

Contact Person: Jon Nagel - Manager of Environmental Compliance

Murray American River Towing, Inc. 46226 National Road

740-338-3100

St. Clairsville, OH 43950

inagel@coalsource.com

Alicia Dock is a clean coal transfer facility on the east bank of the Monongahela River. Clean coal is brought into the facility by rail. The coal is then transported by conveyor to transfer building No. 1 and then transfer building No. 2 for barge load out.

The site includes several small buildings, a conveyor handling system, a floating docking area for barges, an electrical substation, parking areas and a rail line. The facility is bordered by a road and railroad tracks, wooded areas and the Monongahela River.

The facility has three sedimentation basins: SB-1, SB-2 and SB-3. These basins receive process wastewater (washdown water) from the coal handling operation and stormwater runoff from the plant area. The sedimentation basins discharge to the Monongahela River via outfalls 001, 002 and 003 respectively.

SB-1 (001) collects stormwater runoff and process water collected in the sumps and washdown at transfer buildings No. 1 and No. 2. SB-2 (002) collects stormwater runoff and process water collected in the sumps used for the washdown at the rail car dumper building. SB-3 (003) receives additional process water from sumps at the equipment maintenance building from the washdown of building floors and mobile equipment. Each sedimentation basin discharges through a pipe spillway to the Monongahela River.

The most recent on-site inspection was conducted by Bradley Kline of the Department on October 19, 2017. No violations were noted. Searching WMS via client ID, no open violations were found for either Consol Energy or Murray American River Towing, Inc.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Outfall No. <u>001</u>	Design Flow (MGD)0062575
Latitude 40° 00' 37"	Longitude -79° 55' 46"
Quad Name <u>California & Carmichaels, I</u>	PA Quad Code1806
Wastewater Description: <u>IW Process Eff</u>	fluent with ELG, Stormwater
Receiving Waters Monongahela River (V	WWF) Stream Code 37185
NHD Com ID 99411988	RMI 58.67
Drainage Area 4980 mi ²	Yield (cfs/mi²) 0.0769
Q ₇₋₁₀ Flow (cfs) 530	U.S. Army Corp of Q ₇₋₁₀ Basis Engineers
Elevation (ft) 744 normal pool ele	
Watershed No. 19-C	Chapter 93 Class. WWF
Existing Use WWF	Existing Use Qualifier
Exceptions to Use Navigation	Exceptions to Criteria
Assessment Status Impaired	
	d Biphenyls (PCBs) and Chlordane
Source(s) of Impairment Source Unknown	
TMDL Status Final	Name Monongahela River TMDL
Nearest Downstream Public Water Supply	Intake Pennsylvania American Water Company, Brownsville, PA
PWS Waters Monongahela River	Flow at Intake (cfs) 600
PWS RMI <u>57.0</u>	Distance from Outfall (mi) 1.67 miles
Discharge, Receiving Waters and Water S	Supply Information
-	
Outfall No. 002	Design Flow (MGD)075
Outfall No. 002 Latitude 40° 00' 29"	Design Flow (MGD) .075 Longitude -79° 55' 49"
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I	Design Flow (MGD) .075 Longitude -79° 55' 49" PA Quad Code 1806
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I	Design Flow (MGD) .075 Longitude -79° 55' 49"
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I Wastewater Description: IW Process Eff	Design Flow (MGD) .075 Longitude -79° 55' 49" PA Quad Code 1806 fluent with ELG, Stormwater
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I Wastewater Description: IW Process Eff Receiving Waters Monongahela River (V	Design Flow (MGD)
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I Wastewater Description: IW Process Eff Receiving Waters Monongahela River (V NHD Com ID 99411988	Design Flow (MGD)
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I Wastewater Description: IW Process Eff Receiving Waters Monongahela River (V NHD Com ID 99411988	Design Flow (MGD) .075 Longitude -79° 55' 49" PA Quad Code 1806 fluent with ELG, Stormwater WWF) Stream Code 37185 RMI 58.90 Yield (cfs/mi²) 0.0769
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I Wastewater Description: IW Process Eff Receiving Waters Monongahela River (V NHD Com ID 99411988 Drainage Area 4980 mi²	Design Flow (MGD) .075 Longitude -79° 55' 49" PA Quad Code 1806 fluent with ELG, Stormwater WWF) Stream Code 37185 RMI 58.90
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I Wastewater Description: IW Process Eff Receiving Waters Monongahela River (VI) NHD Com ID 99411988 Drainage Area 4980 mi² Qr-10 Flow (cfs) 530	Design Flow (MGD)
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I Wastewater Description: IW Process Efform Wastewater Description: IW Process Efform Wastewater Description: Output Description: O	Design Flow (MGD)
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I Wastewater Description: IW Process Eff Receiving Waters Monongahela River (Value of the process of the proce	Design Flow (MGD)
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I Wastewater Description: IW Process Eff Receiving Waters Monongahela River (Value of the process of the proce	Design Flow (MGD)
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I Wastewater Description: IW Process Eff Receiving Waters Monongahela River (Value of the process of the proce	Design Flow (MGD)
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I Wastewater Description: IW Process Eff Receiving Waters Monongahela River (Value of the process of the proce	Design Flow (MGD)
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I Wastewater Description: IW Process Eff Receiving Waters Monongahela River (Value of the process of the proce	Design Flow (MGD)
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I Wastewater Description: IW Process Eff Receiving Waters Monongahela River (VI) NHD Com ID 99411988 Drainage Area 4980 mi² Q7-10 Flow (cfs) 530 Elevation (ft) 744 normal pool elevation (ft) Watershed No. 19-C Existing Use WWF Exceptions to Use Navigation Assessment Status Impaired Cause(s) of Impairment Polychlorinated	Design Flow (MGD)
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I Wastewater Description: IW Process Eff Receiving Waters Monongahela River (Variable) Receiving Waters Monongahela River (Variable) Receiving Waters Monongahela River (Variable) Polychlorinated Polychlorinated Source(s) of Impairment Source Unknown Final	Design Flow (MGD) Longitude PA Quad Code PA Quad Code fluent with ELG, Stormwater NWF) Stream Code RMI S8.90 Yield (cfs/mi²) U.S. Army Corp of Engineers Ation Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria Design Flow (MGD) 1.075 1.079 1.079 1.001 1
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I Wastewater Description: IW Process Eff Receiving Waters Monongahela River (Value of the process of the proce	Design Flow (MGD)
Outfall No. 002 Latitude 40° 00' 29" Quad Name California & Carmichaels, I Wastewater Description: IW Process Eff Receiving Waters Monongahela River (VI) Receiving Waters Monongahela River (VI) Polyation (ID 99411988 Drainage Area 4980 mi² Qr-10 Flow (cfs) 530 Elevation (ft) 744 normal pool elevation (IVI) Watershed No. 19-C Existing Use WWF Exceptions to Use Navigation Assessment Status Impaired Cause(s) of Impairment Polychlorinated Source(s) of Impairment Source Unknown TMDL Status Final	Design Flow (MGD)

Discharge, Receiving Waters and Water Supply Information						
Outfall No. 003		Design Flow (MGD)	.0245			
Latitude 40° 00' 52"		Longitude	-79º 55' 31"			
Quad Name Californi	a & Carmichaels, PA	Quad Code	1806			
Wastewater Description:	IW Process Effluent with	ELG, Stormwater				
Receiving Waters Mor	nongahela River (WWF)	Stream Code	37185			
NHD Com ID 994	11988	RMI	58.30			
Drainage Area 498	0 mi ²	Yield (cfs/mi²)	0.0769			
0 = (()		0 0 1	U.S. Army Corp of			
Q ₇₋₁₀ Flow (cfs) <u>530</u>		Q ₇₋₁₀ Basis	Engineers			
Elevation (ft) 744	I normal pool elevation	Slope (ft/ft)	0.001 assumed			
Watershed No. 19-0		Chapter 93 Class.	WWF			
Existing Use WW	/F	Existing Use Qualifier				
Exceptions to Use Nav	rigation	Exceptions to Criteria				
Assessment Status	Impaired					
Cause(s) of Impairment	Polychlorinated Biphenyl	s (PCBs) and chlordane				
Source(s) of Impairment	Source Unknown					
TMDL Status	Final	Name Monongahe	la River TMDL			
Nearest Downstream Pul	olic Water Supply Intake	Pennsylvania American Wate	r Company, Brownsville, PA			
PWS Waters Monor	ngahela River	Flow at Intake (cfs)	600			
PWS RMI 57.1		Distance from Outfall (mi)	1.67 miles			

	Development of Effluent Limitations						
Outfall No. Latitude	001 40° 00' 37"		Design Flow (MGD) Longitude	.0062575 -79° 55' 46"			
Wastewater De	escription:	Washdown water and Stormwater					
Outfall No.	002 40° 00' 29"		Design Flow (MGD) Longitude	.075 -79° 55' 49"			
Wastewater De	escription:	Washdown water and Stormwater					
Outfall No. Latitude	003 40° 00' 52"		Design Flow (MGD) Longitude	.0245 -79° 55' 31"			
Wastewater De	escription:	Washdown water and Stormwater					

All three outfalls are comprised of stormwater combined with washdown water that comes in contact with coal or coal dust. All three outfalls will have the same limits. Sedimentation Basin 1 (SB-1) is located near the center of the property. SB-1 collects stormwater runoff from the Transfer Buildings area and includes runoff from beneath the transport belt and surrounding area drains. The process water consists of coal washdown water collected in the sumps at coal Transfer Buildings No. 1 and No. 2. The areas that are washed down include building floors, the conveyor structure and walkways. Wastewater is pumped from the collection sumps to SB-1. SB-1 discharges through a pipe spillway (001) to the Monongahela River.

Sedimentation Basin 2 (SB-2) collects stormwater from the southwestern end of the property on the far side of the main entrance. Process wastewater consists of coal washdown water collected in the sumps at the rail car dumper building. The areas that are washed down include building floors, conveyor spillage pans and walkways. There is a dust suppression spray at the rail car dumper building. SB-2 discharges through a pipe spillway (002) to the Monongahela River.

Sedimentation Basin 3 (SB-3) is located near the alternate site entrance and collects all stormwater northeast of the transfer station and along the railroad tracks. This is the largest of the three sedimentation basins. Additionally, any sediment that is dredged from the other sedimentation ponds is piled near the pond bank so that their runoff can be captured. SB-3 receives additional process water from sumps at the equipment maintenance building from the washdown of building floors and mobile equipment. SB-3 discharges through a pipe spillway (003) to the Monongahela River.

Technology-Based Effluent Limitations

Coal pile runoff technology limits

The proposed technology based effluent limitations at Outfalls Nos. 001, 002 and 003 are in accordance with the regulations in 40 CFR 434.25(a). New Source Performance Standards (NSPS) for coal preparation plants and coal preparation plant associated areas. These limits are the same as previous limits and the permittee is in compliance with the permit limits with only a few exceptions (see Table 1).

The results of the samples for Sedimentation Basin 3 are within MSGP limits for all of the parameters listed in permit Modules 4 (Pollutant Group 1) and 5 (Pollutant Group 2) with the exception of nitrogen. The MSGP limit for Nitrate + Nitrite Nitrogen is 0.68 mg/l. The 3 samples from Sedimentation Basin 3 had levels of 3.86 mg/l, 1.10 mg/l and 2.29 mg/l. These levels are attributed to natural sources and not representative of the facility's industrial operations. Since this portion of the Monongahela River is not impaired by nutrients, these elevated Nitrogen levels are not of a concern at this time.

Alicia Dock Compliance

A review of the previous six years of eDMRs yielded six exceedances of permit limits. Permitting has informed Operations of these past violations. There are no open violations in eFACTs.

Table 1 - Permit Limit Exceedances since January 1, 2013

	j ., = - · ·					
Dates	Outfall	Conc.	Avg Monthly	Conc.	Daily Max.	Parameter
		mg/l	Limit mg/l	mg/l	Limit mg/l	
12-1-17 to 12-31-17	002	41	35	76.0	70.0	TSS
6-1-15 to 6-30-15	003			78.0	70.0	TSS
2-1-13 to 2-28-13	001	40	35			TSS
3-1-13 to 3-31-14	001	3.05	2.0	4.42	4.0	Total Mn

Water Quality-Based Limitations

Toxics Screening Analysis – Procedures for Evaluating Reasonable Potential and Developing WQBELs

DEP's procedures for evaluating reasonable potential are as follows:

- 1. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken from the permit application.
- 2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion are pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. List all toxic pollutants of concern in a Toxics Screening Analysis section of the fact sheet (see Attachment B).</p>

NPDES Permit Fact Sheet Murray American River Towing

NPDES Permit No. PA0216038 Alicia Dock

- For any outfall with an applicable design flow, perform PENTOXSD modeling for all pollutants of concern. Use the
 maximum reported value from the application form or from DMRs as the input concentration for the PENTOXSD
 model run.
- 4. Compare the actual WQBEL from PENTOXSD with the maximum concentration reported on DMRs or the permit application. Use WQN data or another source to establish the existing or background concentration for naturally occurring pollutants, but generally assume zero background concentration for non-naturally occurring pollutants.
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by PENTOXSD. Establish an IMAX limit at 2.5 times the average monthly limit.
 - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
 - For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% - 50% of the WQBEL.

The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are collected on a spreadsheet titled "Toxics Screening Analysis." (Attachment B). No parameters were selected as pollutants of concern for PENTOXSD modeling, therefore no WQBELs are required based on the water quality analysis.

The analytical data for pollutants-of-concern used in the Toxics Screening Spreadsheet is from the 2006 permit application. Analytical data was only available for Sedimentation Basin #3 (SB-3). There were three sampling events from SB-3. The highest data for each pollutant-of-concern was used in the Toxics Screening Spreadsheet. When using this data in the Toxics Screening Spreadsheet, the current average daily flow from the last thirteen months from SB-3 was used.

Total Maximum Daily Load (TMDL)

Discharges from the site go to the Monongahela River for which the Department has developed a TMDL. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding the water quality criteria for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources in order to restore and maintain the quality of the state's water resources (USEPA 1991a).

The section of the river at the Alicia Docks facility is impaired due to the presence of PCBs and chlordane. No data is available on PCB or chlordane concentrations in this segment of the Monongahela River. Because there are no known sources of either PCB or chlordane, both are treated as nonpoint source contaminants that may be introduced to surface water through contaminated ground water or surface runoff. As a result, the entire TMDLs for both PCB and chlordane in the Monongahela River are assigned to the Load Allocations (LAs); that portion of the load contributed by nonpoint sources. In addition, Murray American does not conduct any activities that are known to generate PCB or chlordane wastewaters. Therefore, no limitations for PCBs or chlordane will be imposed at any of the three outfalls at the Alicia Dock facility based on the Monongahela River TMDL.

Total Dissolved Solids (TDS)

The provisions of Chapter 95.10 were adopted on August 20, 2010 and became effective August 21, 2010. Chapter 95.10 of the Department's regulations establishes the effluent standards applicable to new and expanding discharges of TDS. Under the provisions of this regulation, dischargers that are subject to the requirements of 95.10 must be identified; discharges that are exempt from any treatment requirements under this chapter must be identified; the existing mass loadings of TDS that are exempt from the treatment requirements must be identified and quantified; and discharges of new and expanding mass loadings of TDS must be evaluated.

Integral to the implementation of Chapter 95.10 is the principle that existing, authorized mass loadings of TDS are exempt from any treatment requirements under these provisions. Existing mass loadings of TDS up to and including the maximum daily discharge loading for any existing discharge, provided that the loading was authorized prior to August 21, 2010 are exempt. Generally, no permit actions are required until an NPDES permit is issued, renewed, or amended. Discharge loadings of TDS authorized by the Department are typically exempt from the treatment requirements of Chapter 95.10

NPDES Permit Fact Sheet Murray American River Towing

until the net TDS loading is increased, an existing discharge proposes a hydraulic expansion or there is a change in the waste stream. If there are existing mass or production based TDS effluent limits, then these are used as the basis for the existing mass loadings.

In accordance with DEP's "Policy and Procedure for NPDES Permitting of Discharges of Total Dissolved Solids", existing mass loadings are "the maximum daily discharge loads of TDS or specific conductivity that were authorized by DEP prior to August 21, 2010." Only an increase in net TDS loading is considered to be a new or expanding discharge loading. Discharge loadings of TDS may be authorized by DEP without actual effluent limitations or monitoring requirements having been placed in an NPDES permit. In most cases, discharge TDS data (or in the case of mining operations, specific conductivity and sulfate data) are submitted with the sample results required for permit applications. Upon review of those data, DEP may determine that these loadings do not pose a threat to receiving water quality and thus limitations are not needed. In these cases, the TDS discharge has been authorized, but not limited. Therefore, if TDS (or conductivity) data have been reviewed by DEP as part of an application for an authorized discharge, the discharge loading of TDS has been authorized upon issuance of the permit (or other vehicle), regardless of whether there is an actual limitation or monitoring requirement.

For stormwater that does come into contact with industrial materials, the provisions of Chapter 95.10 are applicable only to the extent that the stormwater has the potential to exceed 2,000 ^{mg}/_L TDS. The provisions of Chapter 95.10 generally apply only to the final discharge of process wastewater, not intermediate or internal points, except that process wastewater may not be diluted with stormwater or ambient water in order to meet the treatment requirements of Chapter 95.10.

The TDS concentration at outfall 003 is 416 mg/l. The TDS concentration at outfalls 001 and 002 is unknown. The discharge from outfall 003 (as per the previous year's eDMR data) is greater than from outfalls 001 or 002. It is unlikely that the combined discharge from the three sedimentation ponds will be greater than 2,000 mg/l. Therefore, no TDS limits will be imposed.

Anti-Backsliding

Previous limits at outfalls 001, 002 and 003 can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 2. The facility is not seeking to revise any of its previously permitted effluent limits.

Table 2: Effluent Limitations and Monitoring Requirements in the Current Permit for Outfalls 001, 002 and 003

	, , , , , , , ,					equirements
Parameter		Effluent	Limitations			
r ai ailletei	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Required Sample Type
		Monitor and				
Flow (MGD)	XXX	Report	XXX	XXX	XXX	XXX
TSS (mg/l)	XXX	35.0	XXX	70.0	2/month	Grab
Total Iron (mg/l)	XXX	3.0	XXX	6.0	2/month	Grab
Manganese (mg/l)	XXX	2.0	XXX	4.0	2/month	Grab
pH (S.U.)	6.0	XXX	XXX	9.0	2/month	Grab

Table 3: Proposed Effluent Limitations and Monitoring Requirements for Outfall 001

						equirements
Parameter		Effluent	Limitations			
r ai ailletei	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Required Sample Type
		Monitor and	Monitor and			
Flow (MGD)	XXX	Report	Report	XXX	XXX	XXX
TSS (mg/l)	XXX	35.0	XXX	70.0	2/month	Grab
Total Iron (mg/l)	XXX	3.0	XXX	6.0	2/month	Grab
Manganese (mg/l)	XXX	2.0	XXX	4.0	2/month	Grab
pH (S.U.)	6.0	XXX	XXX	9.0	2/month	Grab

Table 4: Proposed Effluent Limitations and Monitoring Requirements for Outfall 002

					Monitoring R	Requirements
Parameter		Effluent	Limitations			
Farameter	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Required Sample Type
		Monitor and	Monitor and			
Flow (MGD)	XXX	Report	Report	XXX	XXX	XXX
TSS (mg/l)	XXX	35.0	XXX	70.0	2/month	Grab
Total Iron (mg/l)	XXX	3.0	XXX	6.0	2/month	Grab
Manganese (mg/l)	XXX	2.0	XXX	4.0	2/month	Grab
pH (S.U.)	6.0	XXX	XXX	9.0	2/month	Grab

Table 5: Proposed Effluent Limitations and Monitoring Requirements for Outfall 003

						equirements
Parameter		Effluent	Limitations			
r ai ailletei	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Required Sample Type
		Monitor and	Monitor and			
Flow (MGD)	XXX	Report	Report	XXX	XXX	XXX
TSS (mg/l)	XXX	35.0	XXX	70.0	2/month	Grab
Total Iron (mg/l)	XXX	3.0	XXX	6.0	2/month	Grab
Manganese (mg/l)	XXX	2.0	XXX	4.0	2/month	Grab
pH (S.U.)	6.0	XXX	XXX	9.0	2/month	Grab

Final Effluent Limitations

Final limits are determined by comparing Technology and Water Quality-Based Effluent Limitations. Unless water quality criteria may be exceeded, the Technology-Based Effluent Limits are the basis for the permit's final effluent limits. In this case, the technology limits for Outfalls 001, 002 and 003, as shown in Tables 3, 4 and 5 respectively, will be provided in the draft permit as final limits since there are no numerical WQBELs. The limits for this permit renewal are the same as those in the previous permit, which this facility has complied with during the previous permit with only a few exceedances. Therefore, it is expected that the applicant will be able to meet the conditions of the draft permit.

It is recommended that a draft permit be published for public comment in response to this application.

	Tools and References Used to Develop Permit
	WOM for Windows Model (see Attachment
	WQM for Windows Model (see Attachment C) PENTOXSD for Windows Model (see Attachment C)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment B)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
\square	Other: StreamStats (see Attachment A)

Attachments

Attachment A: StreamStats Drainage Area

Attachment B: Toxics Screening Spreadsheet

Attachment C: PENTOXSD for Windows Model

Attachment D: Site Map

Attachment A: StreamStats Drainage Area

StreamStats Report

Region ID: Workspace ID: Clicked Point (Latitude, Longitude): PA PA2019D813175151098000 40.01198, -79.93016 2019-08-13 13:52:17 -0400

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	4970	square miles
ELEV	Mean Basin Elevation	1876	feet

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Arca	4970	square miles	2.26	1400
ELEV	Mean Basin Elevation	1876	feet	1050	2580
.ow-Flow Statistics Disclain	nerst (4570 squaremins) Low Row Ragion 4				
One or more of the parar	neters is outside the suggested range. Estima	ites were extrapolate	d with unknown errors		
ow-Flow Statistics Flow Re	DCF():ppo Pers et (##10 square miles) Low-Picer Region 4		The state of the s		
Statistic			Value	U	Init
7 Day 2 Year Low Flow	**************************************		663	1	t*3/8
36 Day 2 Year Low Flow	.,		883	f	t*3/s
7 Day 10 Year Low Flow			382	f	t*3/s
30 Day 10 Year Low Flo	w		450	f	t*3/s
90 Day 10 Year Low Fig			673	f	t*3/8

Attachment B: Toxics Screening Spreadsheet

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.6

 Facility:
 Murray American River Towing, Inc.
 NPDES Permit No.:
 PA0216038
 Outfall:
 003

 Analysis Hardness (mg/L):
 100
 Discharge Flow (MGD):
 0.00933
 Analysis pH (SU):
 7

 Stream Flow, Q₇₋₁₀ (cfs):
 530
 Outfall:
 003

	Parameter	Maximum Concentration in Application or DMRs (µg/L)	Most Stringent Criterion (µg/L.)	Candidate for PENTOXSD Modeling?	Most Stringent WQBEL (µg/L)	Screening Recommendation
Total Dissolved S	Solids	467000	500000	No		
Chloride			250000			
Bromide Sulfate			N/A			
Sulfale		167000	250000	No		
Fluoride			2000		** .	
Total Aluminum		900	750	Yes	1160000	No Limits/Monitoring
Total Antimony		10	5.6	Yes	92702.71	No Limits/Monitoring
Total Arsenic		50	10	Yes	165540.5	No Limits/Monitoring
Total Barlum			2400		2 4 4 1 111	
Total Beryllium		1 100 4 5 4 5	N/A	No	. :	
Total Boron			1600			
Total Cadmium		0.2	0.271	No		
Total Chromium	****		N/A	No		
Hexavalent Chro	njum	10	10.4	No		
Total Cobalt			19			
N Total Copper		10	9.3	Yes	21864.58	No Limits/Monitoring
Total Cyanide Total Iron			N/A	No		
Total Iron		940	1500	No		
Dissolved fron		3 ""	300		1.1.1	
Total Lead		50	3.2	Yes	52868.25	No Limits/Monitoring
Total Manganese		110	1000	No		
Total Mercury		0.1	0.05	Yes	827.703	No Limits/Monitoring
Total Molybdenur	n '		N/A		:	
Total Nickel		40	52.2	No		
Total Phenois (P)	neno(ics)	1	5	No		
Total Selenium		50	5.0	Yes	82590.73	No Limits/Monitoring
Total Silver		10	3.8	Yes	5856,664	No Limits/Monitoring
Total Thallium		100	0.24	Yes	3972.973	No Limits/Monitoring
Total Zinc		6	119.8	No		

Attachment C: PENTOXSD for Windows Model

PENTOXSD

Modeling	input	Data
----------	-------	------

Stream Code	RMI	Elevatio (ft)	Α	nage rea mi)	Slope	PWS (mg				pply FC				
37185	58.30	744	.00 4	970.00	0.00000		0.00			✓				
							Stream Da	ata				_		
	LFY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	pН	Stream Hard	рН	Analys Hard	s <u>is</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.1	0	530	0	613	. 15	0	0	100	7	0	0	0	0
Qh		0	0	0	0	0	0	0	100	7	0	0	- 0	0
						D	ischarge D	Data						
. N	lame	Perm Numb	er Di	BC	ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(m	gd) ((mgd)	(mgd)						(mg/L)		may .
Murray	American	PA0216	038	0.0	020597	0	0	0	0	0	0	100	7	
						P	arameter D	ata						
F	Parameter N	iame		Disc Conc	Trib Conc	Dis Daily C\	y Hourt			Fate Coef	FOS	Crit Mod	Max Disc Conc	÷
				(µg/L)	(µg/L	·		(µg/					(µg/L)	
ALUMINU				5E+12	_	0.			0	0	0	1	0	
ANTIMON				5E+12		0.	_		0	.0	0	1	0	
ARSENIC				5E+12 5E+12		0.			. 0	0	0	•	0	
COPPER				5E+12	-	0.			. 0	0	0	1	0	
LEAD MERCUR	~			5E+12		0.			0	0	0	1	.0	
SELENIU				5E+12		0.	-		0	0	. 0	1	0	
SILVER				5E+12		0.			0	0	0	1	0	
THALLIU	М			5E+12	0	0.	5 0.5	5 0	0	0	0	1	0	

Strea		Elevation (fit)	A	nage rea mi)	Slope	PWS (m)			Ī	oply FC				
371	85 57.10	743			0.00000		3.00		(/				
							Stream D	ata						
	LFY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributar</u> Hard	·pΗ	<u>Strear</u> Hard	pН	Analys Hard	<u>iis</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.1	0	530	0	608	15	0	0	100	. 7	0	0	0	0
Qh		0	0	0	0	0	0	0	100	7	0	0	0	0
						D	ischarge C	ata						
	Name	Perm Numb		SC SC	ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	. Disc Hard	Disc pH	
			(m	gd) (mgd)	(mgd)						(mg/L)		
_			()	0	0	0	0	0	0	0	100	7	
						P	arameter D	ata						
	Parameter N	vame		Disc Conc	Trib Conc	Dis Daily C\	y Hourl	y Cond		Fate Coef	FOS	Crit Mod	Conc	
				(hđ/L)	(µg/L)			(µg/l					(µg/L)	
ALUM				0	0	0.			0	0	0	1	0	
ANTIM				0	0	O. O.	_		0	0	0	1	0	
COPP				0	0	0.			0	0	0	1	0	
LEAD	ER			0	0	0.	-		0	. 0	0	1	0	
MERC	URY			0	0	0.	-	_	0	0	0	1	0	
SELEN				0	0	0.	5 0.5	0	0	0	0 -	1	0	
SILVE				0	0	0.	5 0.5	0	0	0	0	1	0	
THALL	JUM			0	0	0.	5 0.5	0	0	0	0	1	0	

Hydrodynamics

<u>s</u>	WP Basir	<u>1</u>	Stream	n Code:			Stream	m Name	1		
	19A		37	185		M	ONONGA	AHELA F	RIVER		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)
					Q7	-10 Hy	irodyna	amics			
58.300	530	0	530	0.03201	0.0002	15	613	40.867	0.0576	1.2722	705.613
57.100	530	4.641	525.36	NA	0	0	0	0	0	0	NA
					Q	h Hydr	odynan	nics			
58.300	1786.5	0	1786.5	0.03201	0.0002	25.603	613	23.943	0.1138	0.6442	316.456
57.100	1786.5	4.641	1781.9	NA	0	0	0	0	0	0	NA

Wasteload Allocations

RMF	Name	Permit Nu	mber						
58.30	Murray American	PA0216							
56.50	wuray American	PAULIO	000						
					AFC				400
Q7	-10: CCT (min) 15		0.145	Analysi	-		s Hardness	100
	Parameter		Stream Conc	Strean CV	n Trib Conc	Fate Coef	WQC	WQ Obj	WLA
			(µg/L)		(µg/L)		(µg/L)	(µg/Ĺ)	(µg/L)
	ALUMINUM		0	0	0	0	750	750	1810000
	ANTIMONY		0	0	0	0	1100	1100	2650000
	ARSENIC		0	0	0	o	340	340	820916.9
			Dissolved	WQC.	Chemical t	ranslator	of 1 applied.		
	COPPER		0	0	0	. 0	13.439	13.999	33800.23
		E	Dissolved	WQC.	Chemical t	ranslator	of 0.96 applied		
	LEAD		0	0	0	0	64.581	81.645	197128.9
		E	Dissolved	WQC.	Chemical t	ranslator	of 0.791 applie	d.	
	MERCURY		0	0	0	0	1.4	1.647	3976.76
		E	issolved	WQC.	Chemical t	ranslator	of 0.85 applied		
	SELENIUM		0	0	0	0	NA	NA	NA
	SILVER		0	0	0	0	3.217	3.784	9137.337
	- '		dissolved	WQC.	Chemical t	ranslator	of 0.85 applied		
	THALLIUM		0	0	0	0	65	65	156940
					CFC				
Q7-10:	CCT (min)	705.613	PME	1	Analysi	s pH '	7 Analys	is Hardness	100
	Parameter		Stream Conc.	Stream CV	Conc.	Fate Coef		WQ Obj	WLA
			(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	ALUMINUM		0	0	0	0	NA	NA	NA
	ANTIMONY		0	0	0	0	220	220	3640000
	ARSENIC		. 0	0	0	0	150	150	2480000
		0	issolved	WQC.	Chemical to	ranslator	of 1 applied.		
	COPPER -		0	0	. 0	0	8.956	9.329	154431.2
			issolved	WQC.	Chemical to	ranslator (of 0.96 applied		
	LEAD		0	0	0	0	2.517	3.182	52668.25
			issolved	WQC.	Chemical to	ranslator	of 0.791 applie	d.	
	MERCURY		0	0	0	0	0.77	0.906	14996.03
		D	issolved	WQC.	Chemical to	ranslator	of 0.85 applied		
	SELENIUM		0	0	0	0	4.6	4.989	82590.73
		D	issolved	WQC.	Chemical to	ranslator	of 0.922 applie	d.	
	SILVER		0	0	0	0	NA	NA	NA

Wasteload Allocations

RMI	Name	Permit Numbe	r					
58.30	Murray American	PA0216038						
	THALLIUM	0	. 0	0	0	13	13	215202.7
07.10	0071	705.040 -		THH				
Q7-10:	CCT (min)				sis pH N		sis Hardness	NA
	Parameter	Strea Cor (µg/	c CV	n Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	ALUMINUM	0	0	0	0	NA	NA	NA
	ANTIMONY	0	.0	0	0	5.6	5.6	92702.71
	ARSENIÇ	0	0	0	0	10	10	165540.5
	COPPER	0	0	0	0	NA	NA	NA
	LEAD	. 0	0	. 0	0	NA	NA	NA
	MERCURY	0	0	0	0	0.05	0.05	827,703
	SELENIUM	0	0	0	0	NA	NA	NA
	SILVER	0	0	0	0	AИ	NA	NA
	THALLIUM	0	0	0	0	0.24	0.24	3972.973
				CRL				
Qh:	CCT (min)	316.456 P	MF 1					
	Parameter	Stres Con		n Trib Conc	Fate Coef	WQC	WQ Obj	WŁA
		(µg/		(µg/L)	0001	(µg/L)	(µg/L)	(µg/L)
	ALUMINUM	0	0	0	0	NA	NA	NA
	ANTIMONY	. 0	0	0	0	NA	NA	NA
	ARSENIC	0	. 0	0	0	NA	NA	NA
	COPPER	0	0	0	0	NA	NA	NA
	LEAD	0	0	0	0	NA	NA	NA
	MERCURY	. 0	0	0	0	NA	NA	NA

Wasteload Allocations

	RMI	Name	Permit Number						
-	58.30	Murray American	PA0216038						
		SELENIUM	0	0	0	0	NA	NA	NA
		SILVER	0	0	0	0	· NA	NA	NA
		THALLIUM	0	0	0	0	NA	NA	NA

PENTOXSD Analysis Results

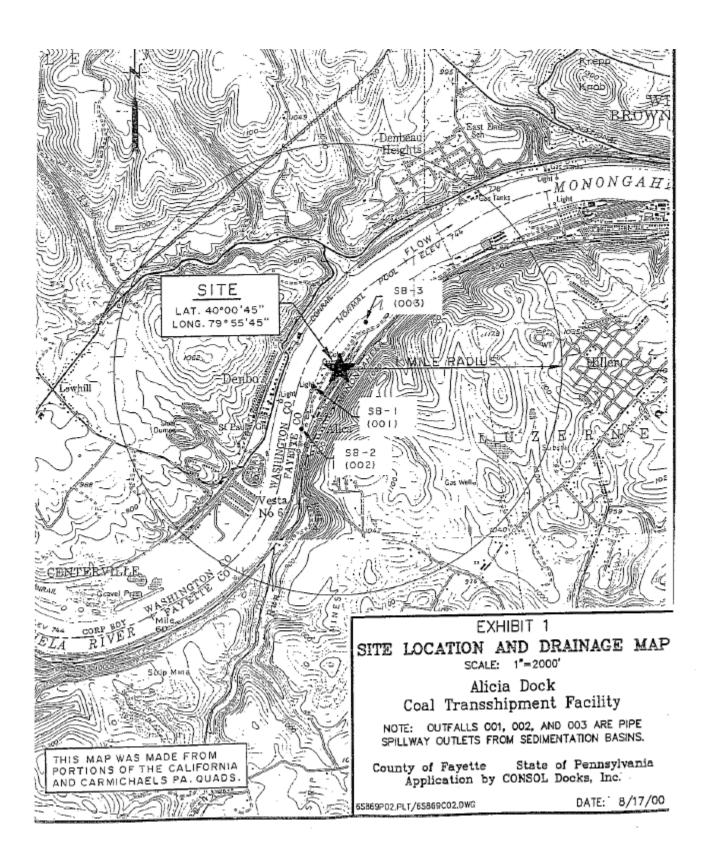
Wasteload Allocations

RMI	Name	Permit Number
58.30	Murray American	PA0216038

Stream Code:

SWP Basin

PENTOXSD Analysis Results


Recommended Effluent Limitations

Stream Name:

19A	37185		MONOM	IGAHEL	A RIVER		
RMI	Name	-		Flow gd)			
58.30	Murray American	PA02	16038 0.0	207			
	Parameter	Effluent Limit	Governing	D. L	ax. aily imit	WQBEL	tringent WQBEL
		(µg/L)	Criterion	(µ	g/L)	(µg/L)	Criterion
ALUMINUM		1160000	AFC	1	810000	1160000	AFC
ANTIMONY		92702.71	THH	14	4631.1	92702.71	THH
ARSENIC		165540.5	THH	25	8269.9	165540.5	THH
COPPER		21664.58	AFC	33	800.23	21664.58	AFC
LEAD		52668.25	CFC	82	170.94	52668.25	CFC
MERCURY		827.703	THH	12	91.349	827.703	THH
SELENIUM		82590.73	CFC	12	8854.8	82590.73	CFC
SILVER		5856.664	AFC	91	37.338	5856.664	AFC
THALLIUM		3972.973	THH	61	98.477	3972.973	THH

Attachment D: Site Map

