

Southwest Regional Office CLEAN WATER PROGRAM

Application Type

Renewal

Non
Facility Type

Major / Minor

Minor/MISF1

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0216151

APS ID 1057111

Authorization ID

1385646

Applicant Name	Micha	iel Apple	Facility Name	Coal Country Campground STP
Applicant Address	1183 I	Executive Drive	Facility Address	834 Roseland Rd
	Glasg	ow, PA 16644-0130		Coalport, PA 16627
Applicant Contact	Micha	el Apple	Facility Contact	Same as Applicant
Applicant Phone	814-6	87-3985	Facility Phone	Same as Applicant
Client ID	27054	9	Site ID	717705
Ch 94 Load Status	Not O	verloaded	Municipality	Reade Township
Connection Status	No Lir	nitations	County	Cambria
Date Application Rece	eived	February 18, 2022	EPA Waived?	Yes
Date Application Acce	epted	February 22, 2022	If No, Reason	

Summary of Review

The permittee has applied for a renewal to NPDES Permit No. PA0216151. NPDES Permit No. PA0216151 was previously issued by the PA Department of Environmental Protection (PADEP) on September 1, 2017 and it expired on August 31, 2022. The renewal application was received by DEP in a timely manner.

The discharge from this STP is within Chesapeake Bay Watershed, so monitoring for TN and TP is included in this permit cycle as the facility is a Phase 5 facility with a discharge between >0.002 MGD and <0.2 MGD.

The electronic data monitoring report (eDMR) review shows no persistent violations for the last three years, which is compatible with the Operations compliance report and inspection reports (last report on April 12, 2019).

The application stated that there were no changes to the facility conditions regarding discharge, receiving stream, or treatment technology, also not foreseen for the next five years, thus Act 537 was not needed.

The Act – 14 PL 834 Municipal Notifications were provided by the January 19, and February 2, 2022 letters and no comments were received.

Sludge use and disposal description and location(s): None, Septic Tank, regularly transported out of property to a sanitary landfill.

Approve	Deny	Signatures	Date
х		Hain Bloballi	August 5, 2022
		Hazim Aldalli / Environmental Engineering Specialist	
х		MAHBUBA IASMIN	
		Mahbuba lasmin, Ph.D. P.E./ Environmental Engineering Manager	October 25, 2022

Summary of Review

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Inform	mation	
Outfall No. 001	Design Flow (MGD) 0.00425	
Latitude 40° 42′ 43.56″	Longitude78° 29' 29.61"	
Quad Name Blandburg	Quad Code 40078F4	
Wastewater Description: Sewage Effluent		
Receiving Waters	ek Stream Code 26458	
NHD Com ID 61835877	RMI1.98	
Drainage Area 0.75	Yield (cfs/mi²) 0.0285	
Q ₇₋₁₀ Flow (cfs) 0.0214	Q ₇₋₁₀ Basis USGS StreamStats	
Elevation (ft) 1701	Slope (ft/ft) 0.0032	
Watershed No. 8-C	Chapter 93 Class. CWF, MF	
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Attaining Use(s)		
Cause(s) of Impairment		
Source(s) of Impairment		
TMDL Status Final	Name Clearfield Creek	
Background/Ambient Data	Data Source	
pH (SU)		
Temperature (°F)		
Hardness (mg/L)		
Other:		
	Observabilla Dannas Otation on the West December 2	h
Nearest Downstream Public Water Supply Intake	Shawville Power Station on the West Branch Susque River	nanna
PWS Waters Susquehanna River	Flow at Intake (cfs) 65.3	
PWS RMI 164.2	Distance from Outfall (mi) >40.0	

Changes Since Last Permit Issuance: DEP updated its WQM 7.0 criteria for Ammonia-Nitrogen (NH₃-N) in 2019. Limits and conditions of this permit need to be redeveloped to an adequate level to protect water quality.

Other Comments: DEP issued its Chesapeake Bay discharger Facilities supplemental document "PA DEP's Phase 3 Watershed Implementation Plan Wastewater Supplement Document, Revised, July 29, 2022."

Treatment Facility Summary

Treatment Facility Name: Coal Country Campground STP

WQM Permit No.	Issuance Date
1193402	5/12/1995
1193402 A-1	9/10/2009

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Septic system with sand filter	Chlorination (Tablets)	0.00425
Hydraulic Capacity	Organic Capacity	Local Otatus	Diagolida Tugaturant	Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.0043		Not Overloaded	N/A	Septic Tank

Changes Since Last Permit Issuance: Applicant stated that no changes were made or will be anticipated in the next five years.

Other Comments: None.

Operations Compliance Check Summary Report

<u>Facility:</u> Coal Country Campground <u>NPDES Permit No.:</u> PA0216151

Compliance Review Period: 3/2017 – 3/2022

Inspection Summary:

INSP ID	INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC
2885240	04/12/2019	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted
2620349	07/27/2017	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted

Violation Summary:

No Violations

Open Violations by Client ID:

No open violations for client id 270549

Enforcement Summary:

No open enforcements

DMR Violation Summary:

			SAMPLE_	PERMIT		STAT_BASE_CO
BEGIN	END	PARAMETER	VALUE	_VALUE	UNIT	DE
6/1/18	6/30/18	Fecal Coliform	2419.6	1000	No./100 ml	Instantaneous Maximum
5/1/21	5/31/21	Fecal Coliform	2419.6	1000	No./100 ml	Instantaneous Maximum
7/1/21	7/31/21	Ammonia-Nitrogen	27.52	24	mg/L	Average Monthly

Compliance Status:

Permittee in compliance. Completed by: John Murphy Completed date: 3/24/2022

	Develop	ment of Effluent Limitations	
Outfall No.	001	Design Flow (MGD)	0.00425
Latitude	40° 42' 43.00"	Longitude	-78° 29' 30.00"
Wastewater D	Description: Sewage Effluent		_

Technology-Based Limitations (TBELs)

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CPOD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
NH3-N (mg/L)	25	Average Monthly	-	BPJ
D.O. (mg/L)	4.0	Average Monthly	-	BPJ
Total N (mg/L)	Report	Average Monthly	-	92a.61
Total P (mg/L)	Report	Average Monthly	-	92a.61
E. Coli (No./100 ml)	Report	IMAX	-	92a.61

Comments: The stream flow (Q7-10) to wastewater flow (design flow) ratio is more than 3:1 (0.006575/0.0214 = 3.25), and the receiving water (Tributary 26458 to Clearfield Creek) is not a dry stream; Advanced Treatment Requirement is not applicable.

Water Quality-Based Limitations (WQBELs)

The following limitations were determined through water quality modeling (output files are attached, see Appendices B&C):

Parameter	Limit (mg/l)	SBC	Model
TRC	0.4	Average Monthly	DEP TRC Cal.
CBOD₅ (May1-Oct 31)	25	Average Monthly	WQM7.0
CBOD ₅ (Nov 1- Apr 30)	25	Average Monthly	WQM7.0
NH3-N (May1-Oct 31)	10	Average Monthly	WQM7.0
NH3-N (Nov 1- Apr 30)	23	Average Monthly	WQM7.0
Dissolved Oxygen	4.0	Minimum	WQM7.0

Comments: DEP policy allows new parameters introduced into renewed permits, in which the application manager desires for the permittee to collect data to verify reasonable potential for the subsequent permit application review to select any reasonable monitoring frequency that is greater than or equal to once per year.

Best Professional Judgment (BPJ) Limitations

A minimum Dissolved Oxygen (DO) limit of 4.0 mg/L should be established based on Best Professional Judgment (BPJ) to ensure adequate operation and maintenance, which matches with the WQBEL generated by DEP WQM 7.0 (see Appendices B & C).

A WQM 7.0 was used to determine the newly imposed seasonal limits for Ammonia Nitrogen (NH₃-N) and also to redevelop CBOD₅ and DO limits.

The new water quality criteria for Ammonia-Nitrogen was incorporated within the DEP WQM 7.0; the model generated more stringent seasonal limitations of 10.0 mg/l for the warm period, and 23.0 mg/l for the cold period that will be imposed for this renewal.

Checking on the eDMR, the facility can meet the newly imposed seasonal Ammonia-Nitrogen limits. As the plant has achieved effluent limits of NH₃-N lower than the new proposed limits, no compliance schedule is necessary. NH₃-N biweekly monitoring will be required.

The nearest downstream potable water intake is Shawville Power Station on the West Branch Susquehanna River which is more than 40 miles away from the outfall discharge location. Therefore, Nitrite and Nitrate was not assessed for the drinking water purposes and no significant effects are expected to the water intake as a result of this discharge.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

The previously imposed limits for pH Effluent Limitation (6.0 Minimum, and 9.0 Maximum S.U.), Fecal Coliform AML Geo Mean seasonal limits (200 & 2000 CFU/100 ml), and TSS AML Weekly Average and Ins. Max (30, 45, and 60 mg/l) will be unchanged due to Anti-Backsliding as stated in 40 CFR Section 122.44(l).

TN and TP Monitoring

Per DEP SOP (No. BCW-PMT-033: Establishing Effluent Limitations for Individual Sewage Permits):

Nutrient monitoring is required, at a minimum, to establish the nutrient load from the wastewater treatment facility
and the impacts that load may have on the quality of the receiving stream(s). Sewage discharges with design
flows > 2,000 gpd require monitoring, at a minimum, for Total Nitrogen and Total Phosphorus in new and reissued
permits.

The receiving stream is not impaired with nutrients; advanced treatment requirements for TN, and TP will not be imposed. The newly proposed stringent Ammonia limitations will help in lowering TN.

This subject sewage treatment plant (STP) is located in the Chesapeake Bay Watershed and considered a non-significant discharger per PA DEP's Phase 3 Watershed Implementation Plan (Phase 3 WIP). The Chesapeake Bay TMDL specifies individual waste load allocations (WLAs) for significant sewage treatment facilities. A sewage facility is considered significant if it has a design flow of at least 0.4 MGD. For rollout of its permitting strategy, DEP classified these facilities into three phases. For Phase 5 sewage facilities with individual permits, average annual design flow is > 0.002 MGD and < 0.2 MGD. Due to the subject STP's design flow being < 0.4 MGD, no WLAs will be assigned.</p>

DEP will issue individual permits with monitoring and reporting requirements for Total Nitrogen and Total Phosphorus throughout the permit term at a frequency no less than annually as stated in PA DEP's Phase 3 Watershed Implementation Plan Wastewater Supplement Document, Revised, July 29, 2022.

NPDES Permit Fact Sheet Coal Country Campground STP

Disinfection

Total Residual Chlorine (TRC) limits are updated based on the DEP preset values entered in the Department Calculation Sheet (see Appendix D) for chlorine stream and discharge demands. Water quality based effluent limits of 0.4 mg/l average monthly and IMAX of 1.5 mg/l will be imposed as determined from DEP TRC spreadsheet analysis shown in Appendix D. Per eDMR, the plant has achieved effluent limits of TRC lower than these limits, no compliance schedule is necessary to be given.

E. Coli

Pursuant to 25 Pa. code § 92a.61(b), annual monitoring for *E. Coli* will be imposed at Outfall 001 to determine if *E. Coli* will be a pollutant of concern, which is consistent with DEP SOP No. BCW-PMT-033 revised March 24, 2021.

Clearfield Creek TMDL

The Clearfield Creek Watershed is affected by pollution from abandoned mine drainage (AMD). The AMD has caused high levels of metals and low pH in the mainstem of Clearfield Creek upstream of Clearfield, PA.

Segment ID 26458 is not impaired and the facility is not contributing to the Metals TMDL in Clearfield Creek. The receiving stream has attaining use of aquatic life.

Proposed Effluent Limitations and Monitoring Requirements

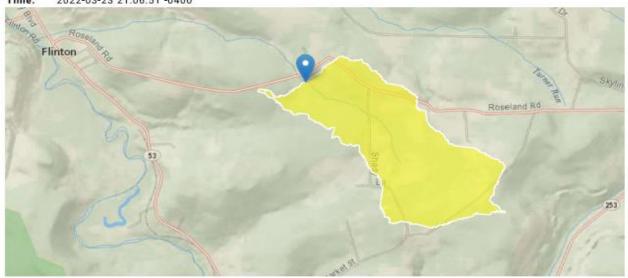
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	2/month	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	1/day	Grab
Dissolved Oxygen	XXX	XXX	4.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.4	XXX	1.5	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	25.0	XXX	50.0	2/month	Grab
Total Suspended Solids	XXX	XXX	XXX	30.0	XXX	60.0	2/month	Grab
Fecal Coliform (No/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Fecal Coliform (No/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	23.0	XXX	46.0	2/month	Grab
Ammonia-Nitrogen May 1 - Oct 31	XXX	XXX	XXX	10.0	XXX	20.0	2/month	Grab
E Coli (No./100ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab
Total Phosphorus	XXX	xxx	XXX	XXX	Report Daily Max	XXX	1/year	Grab

Compliance Sampling Location: Outfall 001

Other Comments: None.


Appendix A - StreamStats Report -

StreamStats Report

Region ID: PA
Workspace | D: PA20220324010632483000

Clicked Point (Latitude, Longitude): 40.71223, -78.49184

2022-03-23 21:06:51 -0400

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.75	square miles
ELEV	Mean Basin Elevation	1701	feet
PRECIP	Mean Annual Precipitation	39	inches

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.75	square miles	2.33	1720
ELEV	Mean Basin Elevation	1701	feet	898	2700
PRECIP	Mean Annual Precipitation	39	inches	38.7	47.9

Low-Flow Statistics Flow Report [Low Flow Region 3]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0638	ft*3/s
30 Day 2 Year Low Flow	0.0921	ft*3/s
7 Day 10 Year Low Flow	0.0214	ft^3/s
30 Day 10 Year Low Flow	0.032	ft*3/s
90 Day 10 Year Low Flow	0.0496	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.7.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2

Appendix B – WQM 7.0 Modeling – Summer Conditions

WQM 7.0 Effluent Limits

	08C 264	Stream Name Trib 26458 to Clearfield Creek							
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)		
.980	Coal Co Cap STP	PA0216151	0.004	CBOD5	25				
				NH3-N	10.24	20.48			
				Dissolved Oxygen			4		

WQM 7.0 Wasteload Allocations

	SWP Basin	Strea	am Code		St	ream Name			
	08C	2	6458		Trib 26458	to Clearfield	Creek		
NH3-N	Acute Allo	cation	s						
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	n
1.9	80 Coal Co Ca	p ST	16.76	50	16.76	50	0	0	_
NH3-N RMI	Chronic Al Discharge		ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	_
1.9	80 Coal Co Ca	p ST	1.89	10.24	1.89	10.24	0	0	
	ved Oxygen Dischar	Alloc	ations	CBOD5 ne Multiple	NH3-N Baseline Mu		ved Oxyger	Critical	Percent Reductio

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
08C	26458		Trib 26	458 to Clearfield Cre	eek
RMI	Total Discharge	Flow (mgd) Ana	lysis Temperature (°C	Analysis pH
1.980	0.00	4		18.825	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
3.216	0.28	7		11.201	0.030
Reach CBOD5 (mg/L)	Reach Kc	1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
7.41	0.34	6		2.55	0.639
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
10.510	20.95	i9		Owens	5
Reach Travel Time (days)		Subreach	Results		
3.995	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.400	6.50	1.98	8.43	
	0.799	5.70	1.53	8.43	
	1.199	5.00	1.19	8.43	
	1.598	4.39	0.92	8.43	
	1.998	3.85	0.71	8.43	
	2.397	3.38	0.55	8.43	
	2.797	2.96	0.43	8.43	
	3.196	2.60	0.33	8.43	
	3.596	2.28	0.26	8.43	
	3.995	2.00	0.20	8.43	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	\checkmark
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	\checkmark
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	6		
Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	V
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	v
D.O. Goal	5		

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	Name			
		08C	2	6458			Trib 264	58 to Cle	earfield C	reek		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-1	0 Flow											
1.980	0.02	0.00	0.02	.0066	0.00517	.287	3.22	11.2	0.03	3.995	20.00	7.00
Q1-1	0 Flow											
1.980	0.01	0.00	0.01	.0066	0.00517	NA	NA	NA	0.03	4.785	20.00	7.00
Q30-	10 Flow	,										
1.980	0.03	0.00	0.03	.0066	0.00517	NA	NA	NA	0.03	3.486	20.00	7.00

	SWP Basii			Stre	eam Name		RMI	Elevat	ion [Orainage Area (sq mi)	Slope (ft/ft)	PWS Withdraw (mgd)	val	Apply FC
	08C	264	158 Trib 26	6458 to CI	earfield Cre	ek	1.98	170	1.00	0.75	0.00000	C	0.00	\checkmark
					Sti	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Temp	<u>ributary</u> pH	Tem	<u>Stream</u> p p	Н	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)			
Q7-10 Q1-10	0.029	0.02	0.00	0.000	0.000	0.0	0.00	0.00	20.	00 7.0	0 0).00	0.00	
230-10		0.00	0.00	0.000	0.000									
					Di	scharge [Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow	ed Design Disc Flow	Reser Fact					

	Dis	charge D	utu					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flor (mg	c Res	erve T ctor	Disc emp (°C)	Disc pH
Coal Co Cap STP	PA0216151	0.0043	0.0043	0.0	043 (0.000	20.00	7.00
	Par	rameter D	ata					
Dara	meter Name	Dis Co		ib onc	Stream Conc	Fate Coef		
1 die	inictor Name	(mg	J/L) (mg	g/L)	(mg/L)	(1/days)		
CBOD5		2	5.00	2.00	0.00	1.50		
Dissolved Oxy	gen		4.00	9.01	0.00	0.00		
NH3-N		2	5.00	0.00	0.00	0.70		

Appendix C - WQM 7.0 Modeling - Winter Conditions

WQM 7.0 Effluent Limits

	SWP Basin Stream 08C 264		Stream Name Trib 26458 to Clearfield Creek				
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.980	Coal Co Cap STP	PA0216151	0.004	CBOD5	25		
				NH3-N	23.68	47.36	
				Dissolved Oxygen			4

WQM 7.0 Wasteload Allocations

		7	NUIN /	<u>.u was</u>	teroac	Allo	catio	<u>ns</u>		
	SWP Basin	Strea	ım Code			Stream	Name			
	08C	2	6458		Trib 26	6458 to CI	earfield (Creek		
NH3-N	Acute Alloc	ation	s							
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multipl Criterio (mg/L	on V	ultiple VLA ng/L)	Critical Reach	Percent Reduction	n
1.9	80 Coal Co Cap	ST	24.1	50) 2	24.1	50	0	0	_
NH3-N RMI	Chronic All Discharge N		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	n W	iple LA _J /L)	Critical Reach	Percent Reduction	_
1.9	80 Coal Co Cap	o ST	4.36	23.68	3 4	.36	23.68	0	0	
Dissolv	ed Oxygen	Alloc	ations							_
RMI	Dischar	ge Nam	_			Multiple (mg/L)			Critical	Percent Reductio

WQM 7.0 D.O.Simulation

SWP Basin S	Stream Code			Stream Nan	ne	
08C	26458		Trib 26	458 to Clearf		
RMI 1.980	Total Discharge) Anal	ysis Tempera	nture (°C)	Analysis pH 7.000
Reach Width (ft)	Reach De	0.004 7.350 h Depth (ft) Reach WDRatio			Reach Velocity (fps)	
3.216	0.28			11.201	auo	0.030
Reach CBOD5 (mg/L)	Reach Kc		R	each NH3-N	(ma/L)	Reach Kn (1/days)
7.41	0.58		_	5.56		0.264
Reach DO (mg/L)	Reach Kr	1/days)		Kr Equation	<u>on</u>	Reach DO Goal (mg/L)
10.510	20.95	59		Owens		5
Reach Travel Time (days)	1	Subreach	Results			
3.995	TravTime		NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.400	6.50	5.01	10.80		
	0.799	5.70	4.50	10.80		
	1.199	5.00	4.05	10.80		
	1.598	4.39	3.65	10.80		
	1.998	3.85	3.28	10.80		
	2.397	3.38	2.95	10.80		
	2.797	2.96	2.66	10.80		
	3.196		2.39	10.80		
	3.596	2.28	2.15	10.80		
	3.995	2.00	1.93	10.80		

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	✓
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	\checkmark
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		
Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	v
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	v
D.O. Goal	5		

WQM 7.0 Hydrodynamic Outputs

	SWP Basin 08C		Stream Code										
			2	26458			Trib 26458 to Clearfield Creek						
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH	
Q7-1	0 Flow 0.02	0.00	0.02	.0066	0.00517	.287	3.22	11.2	0.03	3.995	7.35	7.00	-
Q1-1	0.01	0.00	0.01	.0066	0.00517	NA	NA	NA	0.03	4.785	8.24	7.00	
Q30- 1.980	10 Flow 0.03	0.00	0.03	.0066	0.00517	NA	NA	NA	0.03	3.486	6.84	7.00	

Input Data WQM 7.0

	SWF Basi			Stre	am Name		RMI	Eleva (ft		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawa (mgd)	Apply I FC
	08C	264	458 Trib 26	6458 to Cl	earfield Cr	eek	1.98	B O 17	01.00	0.75	0.00000	0.0	00 🗹
					S	tream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Tem	<u>Stream</u> np pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C	()	
Q7-10 Q1-10 Q30-10	0.057	0.02 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00		5.00 7.	00	0.00 0.0	00
					D	ischarge [Data						
						Existing	Permitte	ed Design		Di	sc Di	ec	

	Dis	scharge Dat	ta				
Name	Permit Number	Disc	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
Coal Co Cap STP	PA0216151	0.0043	0.0043	0.0043	0.000	15.00	7.00
	Par	rameter Dat	ta				
Para	nmeter Name	Disc Cond			eam Fa		
T die	inotor reamo	(mg/L	L) (mg/	L) (m	g/L) (1/da	ays)	
CBOD5		25.	.00 2	2.00	0.00	1.50	
Dissolved Oxy	/gen	4.	.00 12	2.51	0.00	0.00	
NH3-N		25.	.00 0	0.00	0.00	0.70	

Appendix D - DEP Total Residual Chlorine Sheet -

TRC EVAL	UATION							
		n A3:A9 and D3:D9						
0.0214	4 = Q strea	m (cfs)	0.5	= CV Daily				
0.00425 = Q discharge (MGD) 0.5 = CV Hourly								
30	= no. sam	ples	1	1 = AFC_Partial Mix Factor				
0.3	= Chlorine	Demand of Stream	1 = CFC_Partial Mix Factor					
(= Chlorine	Demand of Discharg	15	= AFC_Crite	eria Compliance Time (mi			
0.9	= BAT/BP.	J Value	720 = CFC_Criteria Compliance Tin					
(= % Facto	or of Safety (FOS)		=Decay Co	efficient (K)			
Source	Reference	AFC Calculations		Reference	CFC Calculations			
TRC	1.3.2.iii	WLA afc =	1.057	1.3.2.iii	WLA cfc = 1.023			
PENTOXSD TRO	G 5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRO	G 5.1b	LTA_afc=	0.394	5.1d	LTA_cfc = 0.595			
Source		Fffluen	t Limit Calcu	lations				
PENTOXSD TRO	G 5.1f		AML MULT =					
PENTOXSD TRO	G 5.1g	AVG MON L	IMIT (mg/l) =	0.485	AFC			
	, i		.IMIT (mg/l) =					
WLA afo	(.019/e(-k	*AFC_tc)) + [(AFC_Yc	'Qs*.019/Q	d*e(-k*AFC_	tc))			
	+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1	-FOS/100)					
LTAMULT afc	EXP((0.5*L)	N(cvh^2+1))-2.326*LN(cvh	^2+1)^0.5)					
LTA_afc	wla_afc*LT	AMULT_afc						
WLA_cfc		*CFC_tc) + [(CFC_Yc*(CFC_Yc*Qs*Xs/Qd)]*(1		i*e(-k*CFC_i	tc))			
LTAMULT_efe		N(cvd^2/no_samples+1))-2		i^2/no sample	es+1)^0.5)			
LTA_cfc		AMULT_cfc		_				
AML MULT	EXP(2.326*	LN((cvd^2/no_samples+1)	^0 5)-0 5*I N	l(cvd^2/no_sa	mples+1))			
AVG MON LIMIT		PJ,MIN(LTA_afc,LTA_cfc)						
INST MAX LIMIT		mon_limit/AML_MULT)/						
THE PROPERTY OF THE PARTY OF TH	([4.4_1			,				