

Southwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0216216

APS ID 1074899

Authorization ID 1416212

	Applicant	and Facility Information	
Applicant Name	Burgettstown-Smith Township Jo Sewer Authority	int Facility Name	Raccoon Creek WWTP
Applicant Address	PO Box 389 377 Joffre Bulger Road	Facility Address	7 Columbia Drive
	Burgettstown, PA 15021-0389		Burgettstown, PA 15021
Applicant Contact	Shari Crawford	Facility Contact	Sam Duran
Applicant Phone	(724) 947-9609	Facility Phone	(724) 947-5365
Client ID	87542	Site ID	249843
Ch 94 Load Status	Not overloaded	Municipality	Smith Township
Connection Status	No limit	County	Washington
Date Application Rece	eived October 31, 2022	EPA Waived?	Yes
Date Application Acce	pted February 15, 2023	If No, Reason	
Purpose of Application	NPDES permit renewal.		

Summary of Review

- 1.0 General discussion: The PA Department of Environmental Protection received an NPDES permit renewal application from KLH Engineers, Inc. on October 31, 2022 on behalf of Burgettstown-Smith Township Joint Sewer Authority (permittee) for permittee's Raccoon Creek WWTP (facility), located in Smith Township, Washington County. This is a minor sewage facility with a design flow of 0.8 MGD that discharges into Raccoon Creek (WWF) in state watershed 19-B. The current permit will expire on April 30, 2023. The terms and conditions of the current permit is automatically extended since the renewal application was received at least 180 days prior to the expiration date. Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001. This fact sheet is developed in accordance with 40 CFR §124.56.
- **1.1 Changes in this renewal:** NH3-N, CBOD5, DO limits recalculated, E-coli monitoring added, lat/long for Outfall 001 is corrected.
- **1.2 Sludge use and disposal description and location(s):** Generated biosolids are stabilized using two aerobic digesters. The digested solids are applied to Reed Beds for dewatering.

1.3 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
V		n. 1.	
,		Reza H. Chowdhury, E.I.T. / Project Manager	March 1, 2023
Х		Pravin Patel	
, ,		Pravin C. Patel, P.E. / Environmental Engineer Manager	03/02/2023

1.4 Discharge, Recei	iving Waters and Water Supply In	formation			
Outfall No. 001		Design Flow (MGD)	0.8		
Latitude 40° 2	23' 12.89"	Longitude	-80° 22' 9.88"		
Quad Name Cli	inton	Quad Code	1503		
Wastewater Descri	iption: Sewage Effluent				
Receiving Waters	Racoon Creek (WWF)	Stream Code	33564		
NHD Com ID	99689786	RMI	38.78		
Drainage Area	19 mi ²	Yield (cfs/mi²)	0.044		
Q ₇₋₁₀ Flow (cfs)	0.307	Q ₇₋₁₀ Basis	See section 1.4.2		
Elevation (ft)	960.60	Slope (ft/ft)			
Watershed No.	19-B	Chapter 93 Class.	WWF		
Existing Use	WWF	Existing Use Qualifier	Ch. 93		
Exceptions to Use	None	Exceptions to Criteria			
Assessment Status	Attaining Use(s)				
Cause(s) of Impairr	ment				
Source(s) of Impair	rment				
TMDL Status	Final (4/7/2005)	Name Raccoon Cr	eek Watershed TMDL		
Background/Ambie	ent Data	Data Source			
pH (SU)	7.0	Default			
Temperature (°C)	25	Default			
Hardness (mg/L)	100	Default			
Nearest Downstrea	am Public Water Supply Intake	Denqusne Light Co-BVPS#1 i	n Shippingport Boro		
PWS Waters	Ohio River	Flow at Intake (cfs)			
PWS RMI	5.66	Distance from Outfall (mi)	44.12		

Changes Since Last Permit Issuance: None

1.4.1 Public Water Supply Intake:

The nearest downstream PWS intake is Denqusne Light Co-BVPS#1 in Shippingport Borough. The PWS water is Ohio River at 5.66 RMI which is approximately 44 miles downstream of the discharge point. Due to the distance, dilution in Ohio River, and effluent limitations, it is believed that the discharge will not cause any negative effect on the water supply. The previous permit's fact sheet identified Midland Boro Water Authority on Ohio River as nearest downstream PWS intake, however, this PWS wasn't identified during a search in eMapPa for downstream PWS intakes.

1.4.2 Stream flow:

USGS's web based watershed delineation tool StreamStats (accessible at https://streamstats.usgs.gov/ss/, accessed on February 16, 2023) was utilized to determine the drainage area and low flow statistics of the receiving stream at discharge point. The StreamStats delineation report shows a drainage area at the Outfall 001 to be 19 mi², Q_{7-10} of 0.307 cfs, and Q_{30-10} of 0.525 cfs.

Yield: 0.307/19 or 0.016 cfs/mi² Q_{30-10} : $Q_{1-10} = 0.525/0.307$ or 1.71

The flow statistics values are significantly lower than the values used in previous permits. The previous permits calculated Q_{7-10} at the Outfall 001 by calculating yield of 0.044 cfs/mi^2 at Moffat's Mill gaging station (which is inactive now) for the reporting period of 1943-1992. The previous protection report also used a drainage area of 36 mi² at the Outfall 001. A yield of 0.044 cfs/mi^2 is acceptable since it was derived from historical stream data, therefore, it will be used during the permit renewal. However, a drainage area of 19 mi² instead of 36 mi² will be used for stream flow calculation and modeling since this is updated drainage area and the previous permits couldn't support the source of higher drainage area.

 $Q_{7-10} = 0.044 \text{ cfs/mi}^2 \times 19 \text{ mi}^2 \text{ or } 0.836 \text{ cfs}$

Default Q₁₋₁₀:Q₇₋₁₀ and Q₃₀₋₁₀:Q₇₋₁₀ ratio of 0.64 and 1.36, respectively, will be used in modeling, if needed.

1.4.3 Outfall 001 location:

The previous permit used a lat/long of 40° 23' 31" and -80° 22' 21" which doesn't match with the issued permit, renewal application, or locational map provided with application, and identifies the WWTP in different township (Burgettstown Borough), different 7.5' quad map code (Ellsworth, 1805). The correct location per the NPDES permit application, locational map, and search in eMapPa is 40° 23' 12.89", -80° 22' 9.88". This results in the locational township as Smith Township, quad name Clinton, and quad code 1503. This also changes the NHD Com ID from 99411498 to 99689786 and RMI from 37.31 to 38.78. This corrected location explains the reduced drainage area at discharge point (as discussed in 1.4.2) since the next downstream confluence is at 38.4 mile (confluence with Burgetts Fork, 33846) where drainage area is 37.5 mi², very close to previous permit's drainage area of 36 m² at outfall 001.

1.4.4 Wastewater Characteristics:

A median pH of 7.0 was calculated from daily eDMR data for the months July-September for 2021-2022 reporting years. A default hardness of 100 mg/l and default discharge temperature of 25°C will be used for modeling, if needed.

1.4.5 Background Data:

There is no nearby WQN station from the Outfall 001, therefore, default values will be used. A default pH of 7.0, temperature of 25°C, and hardness of 100 mg/l will be used for modeling, as needed.

1.4.6 Raccoon Creek Watershed TMDL:

Raccoon Creek Watershed TMDL was finalized on February 3, 2025. The TMDL was needed to address the impairments in Acid Mine Drainage (AMD) affected segments, especially in Allegheny, Beaver, and Washington Counties. There is no WLA for this discharger, however, a monitoring requirement was added in previous permits to evaluate if the discharge from this facility is adding to existing impairment. A Reasonable Potential (RP) analysis will be conducted to determine if a numeric limitation is needed for the AMD parameters, i.e., Total Aluminum, Total Iron, and Total Manganese. If no RP is demonstrated, annual sampling will be carried over.

1.4.7 Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving streams are designated as Warm-Water Fishes (WWF.) No High-Quality stream or Exceptional Value water is impacted by this discharge; therefore, no Antidegradation Analysis is performed for the discharge.

	2.0	Treatment Facility Summa	ary	
Treatment Facility Na	me: Raccoon Creek WWT	TP		
WQM Permit No.	Issuance Date			
6397402	1997			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Tertiary	SBR W/Solids removal	UV	0.8
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.8	1,468	Not Overloaded	Dewatering	Combination of methods

Changes Since Last Permit Issuance: None

2.0 Treatment Plant:

2.1 Summary:

Burgettstown-Smith Township Joint Sewer Authority (BSTJSA/permittee) owns and operates a minor sewage treatment facility named Raccoon Creek WWTP (facility), located in Smith Township, Washington County. The average annual design flow and hydraulic design capacity is 0.8 MGD and organic loading capacity is 1,468 lbs. BOD5/day at 220 mg/l influent BOD5 concentration.

2.2 Tributary information:

The facility receives flows from the following contributing municipalities:

TRIBUTARY INFORMATION								
		Type of Sev	wer System					
Municipalities Served	Flow Contribution (%)	Separate (%)	Combined (%)	Population				
Burgettstown Borough	20%	100%						
Mount Pleasant Township	10%	100%						
Smith Township	70%	100%		2842 customers total				

2.3 Treatment units:

The raw sewage pumped to grit removal and screening, flows to 2 SBR units, and disinfected by UV disinfection units before discharge. Per the inspection conducted in November 14, 2018, the facility consists of the following treatment units:

- 1. Three raw sewage pumps
- 2. One Pista grit system
- 3. Two bar screens (1 manual, 1 auto)
- 4. Two SBR tanks
- 5. Three blowers
- 6. Two aerobic digesters
- 7. Three sludge waste pumps
- 8. One UV disinfection system
- 9. Nine reed drying beds
- 10. Two utility pumps

2.4 Industrial/commercial contributors:

The following table shows the industrial/commercial contributors (not categorical or significant users):

INDUSTRIAL / COMMERCIAL WASTEWATER CONTRIBUTIONS									
List name, type of business, and the average wastewater flow of any industrial or commercial establishment/business connected to the sewer system. Use additional sheets as necessary.									
Significant Industrial Business Name Significant Industrial Categorical Industrial User? Significant Categorical Hauled-in Wastewater Industrial User? Wastewater Flow (MGD)									
Union Electric Steel	Steel Mill				0.0074				
Langeloth	Producer of Langeloth Molybdenum								
Does the facility have an EPA-approved pretreatmen	t program? 🗌 Yes	⊠ No							

NPDES Permit Fact Sheet Raccoon Creek WWTP

2.5 hauled-in waste:

The facility received hauled-in waste and is planning to receive in future.

	Type of Waste(s) Received	Location Where Received	Annual Average Volume Received (gallons)
Past Three Years	Septage &	Influent Manhole	80,625
Past Tillee Tears	Porta-John waste		
Next Five Years	Septage &	Influent Manhole	59,500
Next rive rears	Porta-John Waste		

2.6 Biosolids management:

Generated biosolids are stabilized using two aerobic digesters. The digested solids are applied to Reed Beds for dewatering.

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from January 1, 2022 to December 31, 2022)

Parameter	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22
Flow (MGD)												
Average Monthly	0.442	0.437	0.315	0.439	0.401	0.394	0.353	0.666	0.553	0.479	1.011	0.547
Flow (MGD)												
Daily Maximum	0.714	1.367	0.488	1.436	1.055	1.142	0.812	3.99	1.186	0.591	3.254	1.599
pH (S.U.)												
Instantaneous												
Minimum	7.04	6.98	6.87	6.8	6.8	6.77	6.7	6.8	6.63	6.71	6.79	6.7
pH (S.U.) IMAX	7.4	7.35	7.28	7.15	7.25	7.11	7.01	7.19	7.72	7.07	7.42	7.2
DO (mg/L)												
Instantaneous												
Minimum	7.0	7.36	7.64	7.05	6.95	6.78	7.0	7.1	6.35	8.11	8.51	7.75
CBOD5 (lbs/day)												
Average Monthly	< 10.0	< 9.0	< 7.0	< 10.0	< 9.0	< 8.0	< 9.0	< 11.0	< 16.0	< 12.0	< 18.0	< 12.0
CBOD5 (lbs/day)												
Weekly Average	< 10.0	< 11.0	< 8.0	< 14.0	< 13.0	< 10.0	< 12.0	< 16.0	< 22.0	< 15.0	< 35.0	< 16.0
CBOD5 (mg/L)												
Average Monthly	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
CBOD5 (mg/L)												
Weekly Average	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	308	263	351.0	344	222	300	357	354	283	253	404	272
BOD5 (lbs/day)												
Raw Sewage Influent												
Daily Maximum	369	320	656	452	290	375	400	492	323	312	704	331
BOD5 (mg/L)												
Raw Sewage Influent	0.5	00	444	0.4	70	445	407	400	0.4	00	70.0	70.0
Average Monthly	95	93	144	94	79	115	127	102	61	66	72.0	72.0
TSS (lbs/day)	.40.0	. 0. 0	. 7.0	10.0	. 0. 0	. 0. 0	. 44.00	. 40.0	40.0	45.0		45.0
Average Monthly	< 10.0	< 9.0	< 7.0	< 10.0	< 9.0	< 8.0	< 11.00	< 13.0	< 16.0	< 15.0	< 23.0	< 15.0
TSS (lbs/day)												
Raw Sewage Influent	252	244	205	420	450	244	264	270	200	105	205	047
Average Monthly	252	211	365	439	152	341	264	279	288	185	325	217
TSS (lbs/day) Raw Sewage Influent												
Daily Maximum	302	268	800	723	180	635	297	488	610	222	532	334
TSS (lbs/day)	302	200	600	123	100	บงง	231	400	010	222	552	334
Weekly Average	10.0	< 11.0	< 8.0	< 14.0	< 13.0	10.0	20.0	27.0	< 22.0	20.0	< 35.0	26.0
vveekiy Avelage	10.0	< 11.0	< 0.0	< 14.0	< 13.0	10.0	20.0	21.0	< 22.0	20.0	< 30.0	20.0

NPDES Permit Fact Sheet Raccoon Creek WWTP

NPDES Permit No. PA0216216

TSS (mg/L)												
Average Monthly	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	3.0	< 4.0	< 3.0	< 3.0	< 4.0	< 4.0	< 4.0
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	78	71	149	114	54	121	95	77	72	48	56	56.0
TSS (mg/L)												
Weekly Average	3.0	< 3.0	< 3.0	< 3.0	< 3.0	3.0	5.0	5.0	< 3.0	5.0	7.0	6.0
Fecal Coliform												
(No./100 ml)												
Geometric Mean	2.0	< 1.0	< 2.0	< 2.0	< 12	< 1.0	< 1.0	< 1.0	< 3.0	< 2.0	< 9.0	< 1.0
Fecal Coliform												
(No./100 ml) IMAX	3.0	4.0	6.0	17	207	2	< 1.0	< 1.0	18	41	94	3.0
Ammonia (lbs/day)												
Average Monthly	2.0	< 0.4	< 0.3	< 1.0	0.5	< 0.5	0.07	0.7	1.0	1.0	3.0	2.0
Ammonia (mg/L)												
Average Monthly	0.52	< 0.14	< 0.11	< 0.26	0.17	< 0.19	0.25	0.20	0.24	0.25	0.27	0.56
UV Dosage												
(mjoules/cm²)												
Daily Minimum	2.7	2.48	2.63	2.44	2.29	2.45	2.25	2.06	1.81	1.61	1.8	2.47

3.2 Effluent Violation for Outfall 001 from February 1, 2022 to December 31, 2022

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Flow	02/28/22	Avg Mo	1.011	MGD	8	MGD

3.3 Summary of Discharge Monitoring Reports (DMRs):

DMRs review for the facility for the last 12 months of operation, as presented on the above in section 3.1, indicate that the facility was meeting the permit limits almost 100% of the time.

3.4 Summary of inspection:

11/14/2018: CEI conducted. Violations noted including effluent limits in Part A and SSO. Recommendations were made including update onsite safety plan, ensure SSO are reported to PADEP, implement routine alarm testing, influent sampling prior to any treatment, replace thermometer at influent sampler, supplemental reports for sewage sludge/biosolids production & disposal submitted each month, document calibration for DO meter, and a written SOP to direct non-certified operator activity. An NOV was issued on later date.

4.0 Existing Effluent Limits and Monitoring Requirements

			Effluent Limitations							
Donomotor	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Monitoring Red Minimum (2)	Required		
Parameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type		
Flow (MGD)	0.8	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded		
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab		
Dissolved Oxygen	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX	1/day	Grab		
Carbonaceous Biochemical Oxygen Demand (CBOD5)	166.9	250.4	XXX	25.0	37.5	50	1/week	8-Hr Composite		
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite		
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	xxx	XXX	1/week	8-Hr Composite		
Total Suspended Solids	200.3	300.4	XXX	30.0	45.0	60	1/week	8-Hr Composite		
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab		
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab		
Total Nitrogen	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab		
Ammonia-Nitrogen Nov 1 - May 31	46.7	XXX	XXX	7.0	XXX	14	1/week	8-Hr Composite		
Ammonia-Nitrogen Jun 1 - Oct 31	20.0	XXX	XXX	3.0	XXX	6	1/week	8-Hr Composite		
Total Phosphorus	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab		
Aluminum, Total	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab		
Iron, Total	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab		
Manganese, Total	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab		
Ultraviolet light dosage (mjoules/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Measured		

5.0 Development of Effluent Limitations									
Outfall No.	001	Design Flow (MGD)	0.8						
Latitude	40° 23' 12.89"	Longitude	-80° 22' 9.88"						
Wastewater D	Wastewater Description: Sewage Effluent								

5.1 Basis for Effluent Limitations

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

5.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

5.3 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lbs./day) = concentration limit (mg/L) \times design flow (mgd) \times 8.34

5.4 Water Quality-Based Limitations

5.4.1 WQM 7.0 Model input data:

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using Q₇₋₁₀ and current background water quality levels of the stream. The following data were used in the attached computer model (WQM 7.0) of the stream:

Discharge pH
 7.0 (median July-Sep, 2021-22, eDMR data)

Discharge Temperature
 Discharge Hardness
 25°C (Default)
 (Default)

NPDES Permit Fact Sheet Raccoon Creek WWTP

Stream pH
 Stream Temperature
 Stream Hardness
 7.0 (Default)
 (Default)
 (Default)

The following three nodes were used in modeling:

Node 1: At the outfall 001 on Raccoon Creek (33564)

Elevation: 960.60 ft (USGS TNM 2.0 viewer, 2/16/2023)
Drainage Area: 19 mi² (StreamStat Version 3.0, 2/16/2023)

River Mile Index: 39.13 (PA DEP eMapPA)

Low Flow Yield: 0.044 cfs/mi² Discharge Flow: 0.8 MGD

Node 2: At confluence with Burgetts Fork (33846)

Elevation: 955.89 ft (USGS TNM 2.0 viewer, 2/16/2023)
Drainage Area: 37.5 mi² (StreamStat Version 3.0, 2/16/2023)

River Mile Index: 38.4 (PA DEP eMapPA)

Low Flow Yield: 0.044 cfs/mi² Discharge Flow: 0.0 MGD

Node 2 At confluence with UNT 33839

Elevation: 926.84 ft (USGS TNM 2.0 viewer, 2/28/2023) Drainage Area: 44.2 mi² (StreamStat Version 3.0, 2/28/2023)

River Mile Index: 34.3 (PA DEP eMapPA)

Low Flow Yield: 0.044 cfs/mi² Discharge Flow: 0.0 MGD

5.4.2 NH₃-N

The attached results of the WQM 7.0 stream model indicates a summer monthly average limit (AML) of 2.38 mg/l and IMAX of 4.76 mg/l of NH₃-N is necessary to protect the aquatic life from toxicity effects. The current permit has summer AML of 3.0 mg/l which is less stringent. The winter limits are calculated by multiplying the summer limits with a factor of 3, per *Implementation Guidance of Section 93.7 Ammonia Criteria, 391-2000-013*. That results in winter AML of 7.14 mg/l and IMAX of 14.28 mg/l. The current permit has winter AML of 7.0 mg/l and IMAX of 14.0 mg/l, which are more stringent and will govern. Mass based summer and winter AMLs are calculated to be 15.88 lbs./day and 47.64 lbs./day, respectively. The summer mass limit is more stringent than previous permit but winter mass limit is more stringent in current permit (46.7 lbs./day). More stringent limits will be applied on this renewal. Mass limits are calculated using the equation presented in section 5.3. A review of the past 12 months eDMR data, as presented in section 3.1, indicates that the facility is discharging at an average concentration of <0.25 mg/l and mass loading of <1 lbs./day. Since the facility will be meeting more stringent limits year-round, more stringent limits will be applied from permit effective date without a compliance schedule.

5.4.3 CBOD₅

The model output shows an AML of 7.95 mg/l is required to protect the water quality of the stream. The current permit has the AML of 25 mg/l, Average Weekly Limit (AWL) of 37.5 mg/l, and IMAX of 50 mg/l. A review of the past 12 months eDMR data indicated that the facility is discharging at a concentration of <3.0 mg/l year-round. Therefore, more stringent limit will be applied from the permit effective date without a compliance schedule. The AWL and IMAX limits are calculated by multiplying the AML with a factor of 1.5 and 2, respectively, which results in AWL of 11.93 mg/l and IMAX of 15.9 mg/l. The calculated bass-based AML and AWL limits are 53 lbs./day and 79.6 lbs./day.

5.4.4 Dissolved Oxygen

The existing permit contains a limit of 4 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. 25 Pa Code §93.7 requires a minimum DO of 5.0 mg/l for WWF, which is also supported by model run with 5.0 mg/l as DO

NPDES Permit Fact Sheet Raccoon Creek WWTP

target. A review of past 12 months' eDMR data indicates that the facility is discharging at a minimum concentration of >7 mg/l, therefore, is able to meet the more stringent limit. More stringent limit of 5.0 mg/l will be applied from this renewal.

5.4.5 Total Suspended Solids (TSS)

There is no water quality criterion for TSS. A limit of 30 mg/l AML, 45 mg/l of AWL, and 60 mg/l as IMAX are applied in the existing permit which was based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1), 40CFR 133.102(b)(2), 25 PA § 92a.47(a)(1) and 25 PA § 92a.47(a)(2). Mass-based limits are calculated based on the equation presented in section 5.3. The resulting mass-based AML and AWL is 200.2 lbs./day and 300.24 lbs./day which are very close to the existing limits. Existing limits will be carried over.

5.4.6 Total Nitrogen and Total Phosphorus

The current permit has annual monitoring for TN and TP which will be carried over. The monitoring requirements are supported by 25 Pa Code §92a.61.

5.4.7 Ultraviolet Irradiation Disinfection

PADEP's SOP BCW-PMT-033 recommends UV parameter monitoring where UV is used as a method of disinfection, with the same frequency as would be if Chlorine was used for disinfection. The existing permit has a daily UV dosage monitoring in mJ/cm², which will be carried over.

5.4.8 pH

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 §§ 95.2(1), 92a.47) which are existing limits and will be carried over.

5.4.9 Fecal Coliform

25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. These are existing limits and will be carried over.

5.4.10 E. Coli

Pa Code 25 § 92a. 61 requires monitoring of E. Coli. DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends quarterly E. Coli monitoring for sewage dischargers with design flow between 0.05 MGD to <1.0 MGD. This requirement will be applied from this permit term.

5.4.11 Flow, influent BOD₅, and influent TSS monitoring

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR §122.44(i)1(ii). Influent BOD5 and TSS monitoring requirements are established in the permit per the requirements set in 25 Pa Code § 94.

5.4.12 Toxics

5.4.12.1 General Discussion on TMS

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic:

1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous

maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).

- 2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% 50% of the WQBEL.
- 3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% 50% of the WQBEL.
- **NOTE 4** If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.
- **NOTE 5** If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.
- 4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

5.4.12.2 Sampled toxic pollutants and model results

Minor sewage facilities with design flow more than 0.1 MGD and receiving flows from industrial/commercial contributors are required to collect and analyze at lease one sample for Total Copper, Total Lead, Total Zinc, and any other parameters that are known or suspected. The facility is in an approved AMD TMDL watershed which requires annual sampling of Total Aluminum, Total Iron, and Total Manganese. These pollutants were analyzed through TMS to determine if an RP is demonstrated. The model input data were presented in section 5.4.1. Maximum reported concentration for these pollutants were entered into the TMS model since the sample size is <10. The below table provides the output from TMS:

✓ Recommended WQBEI	Ls & Moi	nitoring Requirements
No. Samples/Month:	4	

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	μg/L	805	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	Report	Report	Report	Report	Report	μg/L	15.0	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	129	AFC	Discharge Conc > 10% WQBEL (no RP)

Since no RP is demonstrated, no numeric limitations are applicable. Existing monitoring requirements will be continued.

6.0 Other requirements

6.1 Anti-backsliding

Since proposed limits are at least as stringent as were in current permit unless otherwise noted, anti-backsliding policy isn't applicable.

6.2 Anti-degradation

The receiving stream is designated as WWF. No special protection watershed is impacted by this discharge, therefore, anti-degradation analysis wasn't performed.

6.3 Class A Wild Trout Fisheries

The receiving isn't listed as Class A trout stocking fisheries.

NPDES Permit Fact Sheet Raccoon Creek WWTP

6.4 Effluent monitoring frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

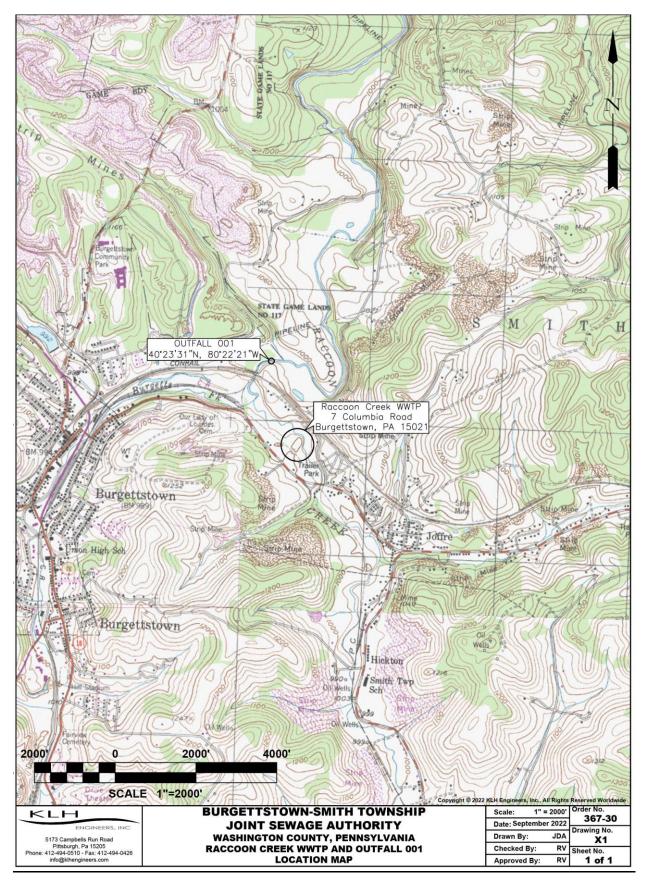
7.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

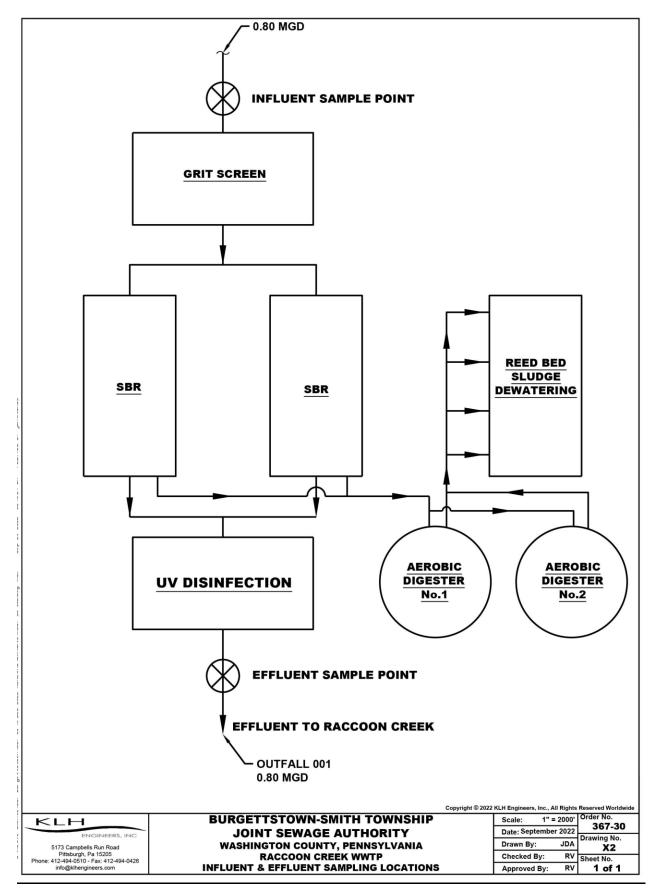
Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations						Monitoring Requirement		
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ons (mg/L)		Minimum (2)	Required	
r ai ainetei	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	0.8	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded	
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab	
Dissolved Oxygen	XXX	XXX	5.0 Inst Min	xxx	XXX	XXX	1/day	Grab	
Carbonaceous Biochemical Oxygen Demand (CBOD5)	53.0	79.6	XXX	7.95	11.93	15.9	1/week	8-Hr Composite	
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite	
Total Suspended Solids	200.3	300.4	XXX	30.0	45.0	60	1/week	8-Hr Composite	
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab	
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab	
Total Nitrogen	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab	
Ammonia-Nitrogen Nov 1 - May 31	46.7	XXX	XXX	7.0	XXX	14	1/week	8-Hr Composite	
Ammonia-Nitrogen Jun 1 - Oct 31	15.88	XXX	XXX	2.38	XXX	4.76	1/week	8-Hr Composite	

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)


			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	Mass Units (lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Total Phosphorus	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab
Aluminum, Total	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab
Iron, Total	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab
Manganese, Total	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab
Ultraviolet light dosage (mjoules/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Measured

Compliance Sampling Location: At Outfall 001


Other Comments: none

	8.0 Tools and References Used to Develop Permit
\square	WOM (WE I AN I I (AN I I AN I A
	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment C)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: BCW-PMT-033
	Other:

9.0 Locational map

10.0 Process flow diagram

11.0 Attachments

Attachment A StreamStats

PA0216216 at 001

Region ID: PA

PA20230217022845943000 Workspace ID:

Clicked Point (Latitude, Longitude): 40,38688, +80,36945

2023-02-16 21:29:05 -0500

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	19	square miles
ELEV	Mean Basin Elevation	1176	feet

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
DRNAREA	Drainage Area	19	square miles	2.26	1400	
ELEV	Mean Basin Elevation	1176	feet	1050	2580	

Low-Flow Statistics Flow Report [Low Flow Region 4]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	0.791	ft^3/s	43	43
30 Day 2 Year Low Flow	1.33	ft^3/s	38	38
7 Day 10 Year Low Flow	0.307	ft^3/s	66	66
30 Day 10 Year Low Flow	0.525	ft^3/s	54	54
90 Day 10 Year Low Flow	0.927	ft^3/s	41	41

Low-Flow Statistics Citations

PA0216216 at Node 2

Region ID:

PA20230217023135865000 Workspace |D:

Clicked Point (Latitude, Longitude): 40.38925, -80.37387

Time: 2023-02-16 21:31:55 -0500

Collapse All

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	37.5	square miles
ELEV	Mean Basin Elevation	1172	feet

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	37.5	square miles	2.26	1400
ELEV	Mean Basin Elevation	1172	feet	1050	2580

Low-Flow Statistics Flow Report [Low Flow Region 4]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	1.71	ft^3/s	43	43
30 Day 2 Year Low Flow	2.78	ft^3/s	38	38
7 Day 10 Year Low Flow	0.708	ft^3/s	66	66
30 Day 10 Year Low Flow	1.15	ft^3/s	54	54
90 Day 10 Year Low Flow	1.97	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.13.0

StreamStats Services Version: 1,2,22

NSS Services Version: 2.2.1

PA0216216 at node 3

Region ID:

Workspace |D: PA20230301023050986000

Clicked Point (Latitude, Longitude): 40.42348, -80.36875

2023-02-28 21:31:10 -0500

Collapse All

> Basin Characteristics **Parameter Code Parameter Description** Value Unit DRNAREA Area that drains to a point on a stream 44.2 square miles ELEV Mean Basin Elevation 1162 feet

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	44.2	square miles	2.26	1400
ELEV	Mean Basin Elevation	1162	feet	1050	2580

Low-Flow Statistics Flow Report [Low Flow Region 4]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	2.05	ft^3/s	43	43
30 Day 2 Year Low Flow	3.3	ft^3/s	38	38
7 Day 10 Year Low Flow	0.863	ft^3/s	66	66
30 Day 10 Year Low Flow	1.39	ft^3/s	54	54
90 Day 10 Year Low Flow	2.34	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.13.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

Attachment B. WQM 7.0

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	El	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	irawal	Apply FC
	20D	33	564 RACC	OON CR	EEK		39.13	30	960.60	19.00	0.00000	0	0.00	~
					St	ream Data	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary p pH	Te	Strean mp	n pH	
conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°	C)		
Q7-10 Q1-10 Q30-10	0.044	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.	00 2	5.00 7.0	00	0.00	0.00	
					Di	scharge [)ata]	
			Name	Per	rmit Number	Disc	Permitto Disc Flow (mgd)	Di:	sc Res	Dis serve Ten sctor (°C	np	Disc pH		
		Raco	oon Crk S1	TP PA	0216216	0.8000	0.800	0 0.	8000	0.000 2	5.00	7.00		
				Paramete			sc 1	Trib Conc ng/L)	Stream Conc (mg/L)	Fate Coef (1/days)				
	_		CBOD5			2	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				3.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	Ele	(ft)	Drainag Area (sq mi)		lope ft/ft)	PW Withda (mg	rawal	Apply FC
	20D	335	564 RACC	OON CR	EEK		38.40	00	955.89	37.	.50 0.0	00000		0.00	~
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary	<u>/</u> pH	Tem	<u>Stream</u> p	pH	
Conta.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.044	0.00 0.00 0.00	0.00	0.000 0.000 0.000		0.0	0.00	0.0	00 2	5.00	7.00	(0.00	0.00	
					Di	scharge (Data								
			Name	Per	rmit Number	Disc	Permitto Disc Flow (mgd)	Dis Flo	ic Res		Disc Temp (°C)	Di:	sc H		
						0.0000	0.000	0.0	0000	0.000	0.0	0	7.00		
					Pa	rameter l	Data								
				Paramete	r Namo			Trib Conc	Stream Conc	Fate Coef					
				aramete	rivame	(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.5	0				
			Dissolved	Oxygen			3.00	8.24	0.00	0.0	0				
			NH3-N				25.00	0.00	0.00	0.7	0				

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	20D	335	64 RACC	OON CRE	EEK		34.30	00	926.84	44.20	0.0000	0	0.00	v
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip pH	l Te	<u>Strean</u> mp	n pH	
conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°	C)		
Q7-10 Q1-10 Q30-10	0.044	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 2	0.00 7	.00	0.00	0.00	
					Di	scharge (Data						l	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	erve Te ctor	isc I mp C)	Disc pH		
						0.0000	0.000	0.0	000	0.000	25.00	7.00		
					Pa	rameter l	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				aramete	Ivanie	(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

		P Basin 20D		m Code 3564				Stream ACCOON	Name I CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10) Flow											
39.130	0.84	0.00	0.84	1.2376	0.00122	.602	23.4	38.85	0.15	0.303	25.00	7.00
38.400	1.65	0.00	1.65	1.2376	0.00134	.646	29.06	44.96	0.15	1.630	25.00	7.00
Q1-10) Flow											
39.130	0.54	0.00	0.54	1.2376	0.00122	NA	NA	NA	0.13	0.331	25.00	7.00
38.400	1.06	0.00	1.08	1.2376	0.00134	NA	NA	NA	0.14	1.855	25.00	7.00
Q30-	10 Flow	,										
39.130	1.14	0.00	1.14	1.2376	0.00122	NA	NA	NA	0.16	0.281	25.00	7.00
38.400	2.24	0.00	2.24	1.2376	0.00134	NA	NA	NA	0.17	1.468	25.00	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

Tuesday, February 28, 2023 Version 1.0b Page 1 of 1

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
20D	33564	RACCOON CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
39.13	0 Raccoon Crk ST	6.76	6	6.76	6	0	0
38.400	0	NA	NA	6.76	NA	NA	NA
112 M /	Chronic Allocati	one					
H3-N (Chronic Allocati		Baseline	Multiple	Multiple	Critical	Persent
H3-N (Chronic Allocati	ONS Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
RMI		Baseline Criterion	WLA	Criterion	WĽA		

Dissolved Oxygen Allocations

			CBC	DD5	NH	3-N	Dissolved	d Oxygen	Critical	Percent
	RMI	Discharge Name	Baseline (mg/L)			Multiple	Baseline (mg/L)	Multiple	Reach	Reduction
_	39.13	Raccoon Crk STP	7.95	7.95	2.38	2.38	5	5	0	0
	38.40		NA	NA	NA	NA	NA	NA	NA	NA

WQM 7.0 D.O.Simulation

SWP Basin St	tream Code			Stream Name	
20D	33564		R	ACCOON CREEK	
RMI	Total Discharge	Flow (mgd) Ana	lysis Temperature (°C)	Analysis pH
39.130	0.80			25.000	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
23.400	0.60	2		38.849	0.147
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
5.55	0.40			1.42	1.029
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L
6.307	1.92	3		Tsivoglou	5
ach Travel Time (days)		Subreach		5.0	
0.303	TravTime (days)	(mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.030	5.47	1.38	6.11	
	0.061	5.38	1.34	5.93	
	0.091	5.30	1.30	5.76	
	0.121	5.22	1.26	5.62	
	0.152	5.14	1.22	5.49	
	0.182	5.06	1.18	5.37	
	0.212	4.99	1.14	5.27	
	0.243	4.91	1.11	5.18	
	0.273	4.83	1.07	5.10	
	0.303	4.76	1.04	5.03	
	0.000	4.70	1.04	5.03	
RMI	Total Discharge	Flow (mgd		lysis Temperature (°C)	Analysis pH
38.400	Total Discharge	Flow (mgd		lysis Temperature (°C) 25.000	7.000
38.400 Reach Width (ft)	Total Discharge 0.800 Reach De	Flow (mgd		lysis Temperature (°C) 25.000 Reach WDRatio	7.000 Reach Velocity (fps)
38.400 Reach Width (ft) 29.064	Total Discharge 0.800 Reach De 0.640	Flow (mgd) pth (ft) 8) Ana	lysis Temperature (°C) 25.000 Reach WDRatio 44.958	7.000 Reach Velocity (fps) 0.154
38.400 Reach Width (ft) 29.064 Reach CBOD5 (mg/L)	Total Discharge 0.800 Reach De 0.640 Reach Kc (Flow (mgd 0 pth (ft) 8 1/days)) Ana	lysis Temperature (°C) 25.000 Reach WDRatio 44.958 leach NH3-N (mg/L)	7.000 Reach Velocity (fps) 0.154 Reach Kn (1/days)
38.400 Reach Width (ft) 29.064 Reach CBOD5 (mg/L) 3.98	Total Discharge 0.800 Reach De 0.640 Reach Kc (0.281	Flow (mgd 0 opth (ft) 8 1/days) 7) Ana	lysis Temperature (°C) 25.000 Reach WDRatio 44.958 Jeach NH3-N (mg/L) 0.75	7.000 Reach Velocity (fps) 0.154 Reach Kn (1/days) 1.029
38.400 Reach Width (ft) 29.064 Reach CBOD5 (mg/L)	Total Discharge 0.800 Reach De 0.640 Reach Kc (Flow (mgd 0 pth (ft) 8 1/days) 7 1/days)) Ana	lysis Temperature (°C) 25.000 Reach WDRatio 44.958 leach NH3-N (mg/L)	7.000 Reach Velocity (fps) 0.154 Reach Kn (1/days) 1.029
38.400 Reach Width (ft) 29.064 Reach CBOD5 (mg/L) 3.98 Reach DO (mg/L) 5.936 each Travel Time (days)	Total Discharge 0.800 Reach De 0.640 Reach Kc (0.280 Reach Kr (Flow (mgd 0 pth (ft) 8 1/days) 7 1/days) 8 Subreach) Ana	lysis Temperature (°C) 25.000 Reach WDRatio 44.958 leach NH3-N (mg/L) 0.75 Kr Equation Tsivoglou	7.000 Reach Velocity (fps) 0.154 Reach Kn (1/days) 1.029 Reach DO Goal (mg/l
38.400 Reach Width (ft) 29.064 Reach CBOD5 (mg/L) 3.98 Reach DO (mg/L) 5.936	Total Discharge 0.80(Reach De) 0.64(Reach Kc (0.28) Reach Kr (Flow (mgd 0 pth (ft) 8 1/days) 7 1/days) 8 Subreach) Ana	lysis Temperature (°C) 25.000 Reach WDRatio 44.958 leach NH3-N (mg/L) 0.75 Kr Equation	7.000 Reach Velocity (fps) 0.154 Reach Kn (1/days) 1.029 Reach DO Goal (mg/l
38.400 Reach Width (ft) 29.064 Reach CBOD5 (mg/L) 3.98 Reach DO (mg/L) 5.936 ach Travel Time (days)	Total Discharge 0.800 Reach De 0.640 Reach Kc (0.280 Reach Kr (2.200	Flow (mgd 0 pth (ft) 8 1/days) 7 1/days) 8 Subreach CBOD5	Results	lysis Temperature (°C) 25.000 Reach WDRatio 44.958 leach NH3-N (mg/L) 0.75 Kr Equation Tsivoglou D.O.	7.000 Reach Velocity (fps) 0.154 Reach Kn (1/days) 1.029 Reach DO Goal (mg/l
38.400 Reach Width (ft) 29.064 Reach CBOD5 (mg/L) 3.98 Reach DO (mg/L) 5.936 ach Travel Time (days)	Total Discharge 0.800 Reach De 0.640 Reach Kc (0.280 Reach Kr (2.200 TravTime (days)	Flow (mgd D pth (ft) 8 1/days) 7 1/days) 8 Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	lysis Temperature (°C) 25.000 Reach WDRatio 44.958 leach NH3-N (mg/L) 0.75 Kr Equation Tsivoglou D.O. (mg/L)	7.000 Reach Velocity (fps) 0.154 Reach Kn (1/days) 1.029 Reach DO Goal (mg/l
38.400 Reach Width (ft) 29.064 Reach CBOD5 (mg/L) 3.98 Reach DO (mg/L) 5.936 ach Travel Time (days)	Total Discharge 0.80(Reach De) 0.64(Reach Kc (0.28) Reach Kr (2.20(TravTime (days) 0.163	Flow (mgd D pth (ft) 8 1/days) 7 1/days) 8 Subreach CBOD5 (mg/L)	Results NH3-N (mg/L) 0.63	lysis Temperature (°C) 25.000 Reach WDRatio 44.958 leach NH3-N (mg/L) 0.75 Kr Equation Tsivoglou D.O. (mg/L) 5.95	7.000 Reach Velocity (fps) 0.154 Reach Kn (1/days) 1.029 Reach DO Goal (mg/l
38.400 Reach Width (ft) 29.064 Reach CBOD5 (mg/L) 3.98 Reach DO (mg/L) 5.936 sach Travel Time (days)	Total Discharge 0.80(Reach De 0.64(Reach Kc (0.28) Reach Kr (2.20(TravTime (days) 0.163 0.326	Flow (mgd D pth (ft) 8 1/days) 7 1/days) 8 Subreach CBOD5 (mg/L) 3.76 3.54	Results NH3-N (mg/L)	lysis Temperature (°C) 25.000 Reach WDRatio 44.958 leach NH3-N (mg/L) 0.75 Kr Equation Tsivoglou D.O. (mg/L) 5.95 6.04	7.000 Reach Velocity (fps) 0.154 Reach Kn (1/days) 1.029 Reach DO Goal (mg/l
38.400 Reach Width (ft) 29.064 Reach CBOD5 (mg/L) 3.98 Reach DO (mg/L) 5.936 sach Travel Time (days)	Total Discharge 0.80 Reach De 0.64 Reach Kc (0.28 Reach Kr (2.20 TravTime (days) 0.163 0.326 0.489	Flow (mgd D pth (ft) 8 1/days) 7 1/days) 8 Subreach CBOD5 (mg/L) 3.76 3.54 3.34	Results NH3-N (mg/L) 0.63 0.53	lysis Temperature (°C) 25.000 Reach WDRatio 44.958 leach NH3-N (mg/L) 0.75 Kr Equation Tsivoglou D.O. (mg/L) 5.95 6.04 6.17	7.000 Reach Velocity (fps) 0.154 Reach Kn (1/days) 1.029 Reach DO Goal (mg/l
38.400 Reach Width (ft) 29.064 Reach CBOD5 (mg/L) 3.98 Reach DO (mg/L) 5.936 sach Travel Time (days)	Total Discharge 0.80 Reach De 0.64 Reach Kc (0.28 Reach Kr (2.20 TravTime (days) 0.163 0.326 0.489 0.652	Flow (mgd D pth (ft) 8 1/days) 7 1/days) 8 Subreach CBOD5 (mg/L) 3.76 3.54 3.34 3.15	Results NH3-N (mg/L) 0.63 0.53 0.45 0.38	lysis Temperature (°C) 25.000 Reach WDRatio 44.958 leach NH3-N (mg/L) 0.75 Kr Equation Tsivoglou D.O. (mg/L) 5.95 6.04 6.17 6.33	7.000 Reach Velocity (fps) 0.154 Reach Kn (1/days) 1.029 Reach DO Goal (mg/l
38.400 Reach Width (ft) 29.064 Reach CBOD5 (mg/L) 3.98 Reach DO (mg/L) 5.936 each Travel Time (days)	Total Discharge 0.80 Reach De 0.64 Reach Kc (0.28 Reach Kr (2.20 TravTime (days) 0.163 0.326 0.489 0.652 0.815	Flow (mgd 0 pth (ft) 8 1/days) 7 1/days) 8 Subreach CBOD5 (mg/L) 3.76 3.54 3.34 3.15 2.97	Results NH3-N (mg/L) 0.63 0.45 0.38 0.32	lysis Temperature (°C) 25.000 Reach WDRatio 44.958 leach NH3-N (mg/L) 0.75 Kr Equation Tsivoglou D.O. (mg/L) 5.95 6.04 6.17 6.33 6.50	7.000 Reach Velocity (fps) 0.154 Reach Kn (1/days) 1.029 Reach DO Goal (mg/l
38.400 Reach Width (ft) 29.064 Reach CBOD5 (mg/L) 3.98 Reach DO (mg/L) 5.936 each Travel Time (days)	Total Discharge 0.800 Reach De 0.644 Reach Kc (0.280 Reach Kr (2.200 TravTime (days) 0.163 0.326 0.489 0.652 0.815 0.978	Flow (mgd 0 pth (ft) 8 1/days) 7 1/days) 8 Subreach CBOD5 (mg/L) 3.76 3.54 3.34 3.15 2.97 2.80	Results NH3-N (mg/L) 0.63 0.53 0.45 0.38 0.32 0.27	lysis Temperature (°C) 25.000 Reach WDRatio 44.958 leach NH3-N (mg/L) 0.75 Kr Equation Tsivoglou D.O. (mg/L) 5.95 6.04 6.17 6.33 6.50 6.66	7.000 Reach Velocity (fps) 0.154 Reach Kn (1/days) 1.029 Reach DO Goal (mg/l
38.400 Reach Width (ft) 29.064 Reach CBOD5 (mg/L) 3.98 Reach DO (mg/L) 5.936 each Travel Time (days)	Total Discharge 0.80(Reach De) 0.64(Reach Kc.(0.28) Reach Kr.(2.20(TravTime (days) 0.163 0.326 0.489 0.652 0.815 0.978 1.141	Flow (mgd 0 pth (ft) 8 1/days) 7 1/days) 8 Subreach CBOD5 (mg/L) 3.76 3.54 3.34 3.15 2.97 2.80 2.64	Results NH3-N (mg/L) 0.63 0.53 0.45 0.32 0.27 0.23	lysis Temperature (°C) 25.000 Reach WDRatio 44.958 leach NH3-N (mg/L) 0.75 Kr Equation Tsivoglou D.O. (mg/L) 5.95 6.04 6.17 6.33 6.50 6.66 6.82	7.000 Reach Velocity (fps) 0.154 Reach Kn (1/days) 1.029 Reach DO Goal (mg/l

WQM 7.0 Effluent Limits

	SWP Basin Stream Code 20D 33564						
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
39.130	Raccoon Crk STP	PA0216216	0.800	CBOD5	7.95		
				NH3-N	2.38	4.76	
				Dissolved Oxygen			5

Attachment C. TMS

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Discharge	Stream			
Facility:	Raccoon Creek	WWTP	NPDES Permit No	.: PA0216216	Outfall No.: 001
Evaluation T	ype: Major Se	ewage / Industrial Wast	Wastewater Descr	ription: Treated sewage	

			Discharge	Characterist	tics							
Design Flow	Hardness (mg/l)* pH (\$11)*											
(MGD)*	naruness (mg/l)*	pn (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh				
0.8	100	7										

						o Ir	left	t blank	0.5 If le	eft blank	0	If left blan	k	1 If lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc		rib		Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS		Chem Transl
	Total Dissolved Solids (PWS)	mg/L		452	\dashv	+	\vdash								
7	Chloride (PWS)	mg/L		90.3	t	†	Ħ								
Group	Bromide	mg/L	<	0.1	Į	Į	Ĺ								
ច	Sulfate (PWS)	mg/L		96.3	-	Ŧ	T								
	Fluoride (PWS)	mg/L			7	T	Η								
	Total Aluminum	μg/L	<	100		T	Ī								
1	Total Antimony	μg/L			II.	Ţ	Ĺ								
1	Total Arsenic	μg/L			7	+	H								
1	Total Barium	μg/L			Ŧ	T	Ħ								
1	Total Beryllium	µg/L													
1	Total Boron	µg/L			7	+	H								
1	Total Cadmium	μg/L			7	\top	H								
1	Total Chromium (III)	µg/L			\neg		Ħ								
1	Hexavalent Chromium	µg/L				Ţ									
1	Total Cobalt	µg/L			7	Ŧ	H								
1	Total Copper	μg/L		7	Ŧ	Ŧ	Ħ								
2	Free Cyanide	µg/L													
Group	Total Cyanide	µg/L			1	Ţ	Ħ								
18	Dissolved Iron	μg/L			Ŧ	Ŧ	H								
ľ	Total Iron	μg/L		20	\uparrow		Н								
1	Total Lead	μg/L	<	1	#	Ţ	Ħ								
1	Total Manganese	μg/L		30	+	÷	Ħ								
1	Total Mercury	μg/L			Ť	t	Ħ								
1	Total Nickel	μg/L													
1	Total Phenols (Phenolics) (PWS)	μg/L			+	÷	Ħ								
1	Total Selenium	μg/L			÷	÷	Ħ								
1	Total Silver	μg/L			+	+	Н								
1	Total Thallium	μg/L			#	Ţ	Ħ								
1	Total Zinc	µg/L	\vdash	57	+	÷	Ħ								
	Total Molybdenum	µg/L			+										
	Acrolein	µg/L	<												
	Acrylamide	µg/L	<												
	Acrylonitrile	µg/L	<		+		H								
	Benzene	µg/L	<		\uparrow		T								
	Bromoform	µg/L	<												

Discharge Information 3/1/2023 Page 1

1	Carbon Tetrachloride	μg/L	<	H							\vdash	
1	Chlorobenzene	µg/L	\vdash	\vdash	+	Н					₩	\rightarrow
1	Chlorodibromomethane	µg/L	<	Ħ	÷	H					H	
1			<	\mp		Ξ	\vdash					
1	Chloroethane	μg/L		₩	₩	H					H	$\dashv \dashv$
1	2-Chloroethyl Vinyl Ether	μg/L	<	4	₩	Н					Н	+
1	Chloroform	µg/L	<	₩	₩	Н					H	$\Rightarrow \Rightarrow$
1	Dichlorobromomethane	μg/L	<			\vdash					H	
1	1,1-Dichloroethane	μg/L	<		Τ	Π					П	
60	1,2-Dichloroethane	μg/L	<									
-	1,1-Dichloroethylene	µg/L	<		\vdash						H	\Rightarrow
Group	1,2-Dichloropropane	µg/L	<	H	÷	H					H	##
ō	1,3-Dichloropropylene	μg/L	<	Ħ	t	Ħ					Ħ	++
1	1,4-Dioxane	µg/L	<	H	₩	Н					H	
1			<			Ξ	\vdash				\exists	
1	Ethylbenzene	μg/L	_		+	Щ	\vdash				Щ	\rightarrow
1	Methyl Bromide	μg/L	<	Н	+	Н					Н	++
1	Methyl Chloride	μg/L	<	\vdash	+	H					H	$\Rightarrow \Rightarrow$
1	Methylene Chloride	μg/L	<								H	
1	1,1,2,2-Tetrachloroethane	μg/L	<	\Box		Τ					Ħ	
1	Tetrachloroethylene	μg/L	<									
1	Toluene	µg/L	<								П	
1	1,2-trans-Dichloroethylene	μg/L	<									-
	1,1,1-Trichloroethane	µg/L	<	+	+	H					+	++
1	1,1,2-Trichloroethane	µg/L	<	H	┿	Н					H	
1	Trichloroethylene		<	H		Ħ					Ħ	\rightarrow
1		μg/L		\blacksquare		Ш					П	\blacksquare
⊢	Vinyl Chloride	μg/L	<	H	+	Н					щ	\dashv
1	2-Chlorophenol	μg/L	<	H	₩	H					H	\dashv
1	2,4-Dichlorophenol	μg/L	<	\vdash	+	Н					H	
1	2,4-Dimethylphenol	μg/L	<	\Box		Η					\Box	
1	4,6-Dinitro-o-Cresol	μg/L	<									
4	2,4-Dinitrophenol	μg/L	<	\Box	F						П	\Box
ΙĦ	2-Nitrophenol	μg/L	<	H	Ŧ	H					H	\dashv
Group	4-Nitrophenol	μg/L	<	Ħ	÷	Ħ					Ħ	++
ľ	p-Chloro-m-Cresol	μg/L	<	\vdash	+	Н					Н	+
1	Pentachlorophenol	µg/L	<									
1	Phenol		<	\Box		Ш	\vdash				Н	\blacksquare
1		μg/L	<	H	┿	Н					₩	\dashv
\vdash	2,4,6-Trichlorophenol	μg/L	⊢	₩	┾	H	\vdash				H	$\dashv \dashv$
1	Acenaphthene	μg/L	<	H	+	H					\forall	\Rightarrow
1	Acenaphthylene	μg/L	<		Ϊ							
1	Anthracene	μg/L	<								Ш	
1	Benzidine	μg/L	<	4	Ļ	H					H	\dashv
1	Benzo(a)Anthracene	μg/L	٧	\vdash	-	Ť					\square	\rightarrow
1	Benzo(a)Pyrene	μg/L	<	H		Н					Н	\blacksquare
1	3.4-Benzofluoranthene	μg/L	<		\top	Н					Н	\top
1	Benzo(ghi)Perylene	μg/L	<									
1	Benzo(k)Fluoranthene	μg/L	<	Ħ	÷	Ħ					Ħ	##
1	Bis(2-Chloroethoxy)Methane	μg/L	<	H	÷	H					H	$\Rightarrow \Rightarrow$
	Bis(2-Chloroethyl)Ether	μg/L	<	-	+	H						++
1			_	Ħ	÷	Ħ	\vdash				Ħ	\rightarrow
1	Bis(2-Chloroisopropyl)Ether	μg/L	<	\exists		Ш					П	\blacksquare
1	Bis(2-Ethylhexyl)Phthalate	μg/L	<	H		Ц	\vdash				Щ	44
1	4-Bromophenyl Phenyl Ether	μg/L	<	H	₽	H					H	\dashv
1	Butyl Benzyl Phthalate	μg/L	<			H					\vdash	
1	2-Chloronaphthalene	μg/L	<	\vdash	$^{+}$	Н					\Box	
1	4-Chlorophenyl Phenyl Ether	μg/L	<		П						П	
1	Chrysene	μg/L	<									
1	Dibenzo(a,h)Anthrancene	μg/L	<	+								-
1	1,2-Dichlorobenzene	μg/L	<	+	+	H						+
1	1,3-Dichlorobenzene		<			H						
	•	µg/L	<			Ħ						-
5	1,4-Dichlorobenzene	μg/L	-									
Group	3,3-Dichlorobenzidine	μg/L	<			Ц					Щ	Ų.
12	Diethyl Phthalate	μg/L	<		-						Ш	
1	Dimethyl Phthalate	μg/L	<									
1	Di-n-Butyl Phthalate	μg/L	<									
1		name (I	<									
	2,4-Dinitrotoluene	μg/L	_			ш					\Box	

						_				
	2,6-Dinitrotoluene	μg/L	<							
	Di-n-Octyl Phthalate	μg/L	<		I					
	1,2-Diphenylhydrazine	μg/L	<	\Box	F	H				
	Fluoranthene	μg/L	<	H	T	Н				
	Fluorene	µg/L	<	Ħ		Ħ				
	Hexachlorobenzene	μg/L	<							
	Hexachlorobutadiene	μg/L	<	ļ.	F	H				
	Hexachlorocyclopentadiene	μg/L	<	Ħ	÷	Ħ				
	Hexachloroethane	μg/L	<	\vdash	+	Н				
	Indeno(1,2,3-cd)Pyrene	μg/L	<							
	Isophorone	µg/L	<		÷	Н				
	Naphthalene		<	H	┿	H				
	Nitrobenzene	μg/L	<	H	₩	Н				
		μg/L	⊢	Ħ	÷	H				
	n-Nitrosodimethylamine	μg/L	<		Е					
	n-Nitrosodi-n-Propylamine	μg/L	<	Н	+	Н				
	n-Nitrosodiphenylamine	μg/L	<	H	+	Н				
	Phenanthrene	μg/L	<		\pm	Н				
	Pyrene	μg/L	<							
	1,2,4-Trichlorobenzene	μg/L	<							
	Aldrin	μg/L	<							
	alpha-BHC	μg/L	<							
	beta-BHC	μg/L	<							
	gamma-BHC	μg/L	<							
	delta BHC	μg/L	<	\exists						
	Chlordane	µg/L	<	Ħ	÷	H				
	4.4-DDT		<	₩	┿	Н				
	4,4-DDE	μg/L	<	H	+	H				
	_	μg/L	_		+					
	4,4-DDD	μg/L	<	\Box	Ļ					
	Dieldrin	μg/L	<	4	+	Н				
	alpha-Endosulfan	μg/L	<	H	+	Н				
	beta-Endosulfan	μg/L	<							
9 0	Endosulfan Sulfate	μg/L	<							
Group	Endrin	μg/L	<	ļ.	Ļ	Ц				
ອັ	Endrin Aldehyde	μg/L	<	H	Ŧ	H				
	Heptachlor	μg/L	<	H		Н				
	Heptachlor Epoxide	µg/L	<							
	PCB-1016	μg/L	<							
	PCB-1221	μg/L	<	H		H				
	PCB-1232	μg/L	<	Ħ	+	H				
	PCB-1242	µg/L	<	Н	+	Н				
	PCB-1248	μg/L	<							
	PCB-1254		<							
	PCB-1260	μg/L	<	Н	+	Н				
		μg/L	-	H	₩	H				
	PCBs, Total	μg/L	<							
	Toxaphene	μg/L	<	Į.						
	2,3,7,8-TCDD	ng/L	<	4	H					
	Gross Alpha	pCi/L								
7	Total Beta	pCi/L	<							
_	Radium 226/228	pCi/L	<							
2	Total Strontium	μg/L	<							
9	Total Uranium	μg/L	<		F	H				
	Osmotic Pressure	mOs/kg								
				1						
				+	+					
						H				
				1	L					
				 		-		 		

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Raccoon Creek WWTP, NPDES Permit No. PA0216216, Outfall 001

Instructions Disch	arge Str	eam													
Receiving Surface W	ater Name:	Raccoon C	reek				No. Rea	iches to N	Model:1	<u> </u>	_	tewide Criteri at Lakes Crit			
Location	Stream Co	de* RMI	Elevati	DA (mail	²)* Sk	ope (ft/ft)		Withdrawa MGD)	al Apply F Criteria		OR	SANCO Crite	ria		
Point of Discharge	033564	39.1	3 960.	6 19					Yes						
End of Reach 1	033564	38.4	955.8	37.5					Yes						
Q ₇₋₁₀		LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	naver	Tributa	ary	Strea	m	Analys	sis
Location	RMI	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)		y (fps)	Time (days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	39.13	0.044							(nave)			100	7		
End of Reach 1	38.4	0.044													
Qh						•									
Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strea	m	Analys	sis
Location	PAVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dove)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	39.13														
End of Reach 1	38.4														

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Raccoon Creek WWTP, NPDES Permit No. PA0216216, Outfall 001

Wasteload Allocations								
☑ AFC CC	T (min): 7.	465	PMF:	1	Ana	lysis Hardne	ss (mg/l):	100 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	1,257	
Total Copper	0	0		0	13.439	14.0	23.5	Chem Translator of 0.96 applied
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	64.581	81.6	137	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	117.180	120	201	Chem Translator of 0.978 applied
	•							orient Hansiator of 6.676 applied
✓ CFC CC	Conc	465 Stream	PMF:	1 Fate	WQC	WQ Obj		100 Analysis pH: 7.00
Pollutants	Stream			Fate Coef			ess (mg/l):	100 Analysis pH: 7.00
Pollutants Total Dissolved Solids (PWS)	Conc (un/l)	Stream CV	Trib Conc	Fate Coef	WQC (µg/L) N/A	WQ Obj (µg/L)	ss (mg/l): WLA (μg/L)	100 Analysis pH: 7.00
Pollutants Total Dissolved Solids (PWS) Chloride (PWS)	Conc (ug/L)	Stream CV	Trib Conc	Fate Coef	WQC (µg/L)	WQ Obj (μg/L) N/A	WLA (µg/L)	100 Analysis pH: 7.00
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS)	Conc (ug/L) 0	Stream CV 0 0	Trib Conc	Fate Coef 0	WQC (µg/L) N/A N/A	WQ Obj (µg/L) N/A N/A	WLA (μg/L) N/A N/A N/A	100 Analysis pH: 7.00
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum	Conc (unit) 0 0 0	Stream CV 0 0	Trib Conc	Fate Coef 0 0	WQC (µg/L) N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A	100 Analysis pH: 7.00 Comments
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Copper	Conc (unit) 0 0 0 0	Stream CV 0 0 0	Trib Conc	Fate Coef 0 0 0	WQC (μg/L) N/A N/A N/A N/A 8.956	WQ Obj (µg/L) N/A N/A N/A N/A 9.33	WLA (µg/L) N/A N/A N/A N/A N/A 15.8	Comments Chem Translator of 0.96 applied
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Copper Total Iron	One (unit) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A 8.956	WQ Obj (µg/L) N/A N/A N/A N/A 9.33 1,500	WLA (μg/L) N/A N/A N/A N/A 15.8 2,513	Comments Chem Translator of 0.96 applied WQC = 30 day average; PMF = 1
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Copper	Conc (unit) 0 0 0 0	Stream CV 0 0 0	Trib Conc	Fate Coef 0 0 0	WQC (μg/L) N/A N/A N/A N/A 8.956	WQ Obj (µg/L) N/A N/A N/A N/A 9.33	WLA (µg/L) N/A N/A N/A N/A N/A 15.8	Comments Chem Translator of 0.96 applied

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	1,676	
Total Zinc	0	0		0	N/A	N/A	N/A	

Z (CRL C	CCT (min):	13.662	PMF:	1	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	Ī
-----	-------	------------	--------	------	---	---------------------------	-----	--------------	-----	---

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML	MDL	AML	MDL	IMAX	Units	Governing	WQBEL	Comments
Foliatarits	(lbs/day)	(lbs/day)	AME	WIDE	IIIIAA	Office	WQBEL	Basis	Confinents
Total Aluminum	Report	Report	Report	Report	Report	µg/L	805	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	Report	Report	Report	Report	Report	µg/L	15.0	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	129	AFC	Discharge Conc > 10% WQBEL (no RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable

Model Results 3/1/2023 Page 6

Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Iron	2,513	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	N/A	N/A	Discharge Conc < TQL
Total Manganese	1,676	μg/L	Discharge Conc ≤ 10% WQBEL