

Southwest Regional Office CLEAN WATER PROGRAM

Application Type	Renewal	NPDES PERMIT FACT SHEET	Application No.	PA0216291
Facility Type	Industrial	INDIVIDUAL INDUSTRIAL WASTE (IW)	APS ID	782238
Major / Minor	Minor	AND IW STORMWATER	Authorization ID	1318340

Applicant and Facility Information							
Applicant Name	Municipal Authority of the Borough of Carmichaels	Facility Name	Carmichaels Water Treatment Plant				
Applicant Address	104 North Pine Street	Facility Address	Browns Ferry Road				
	Carmichaels, PA 15320-1240		Carmichaels, PA 15320				
Applicant Contact	Lloyd Richard	Facility Contact	Lloyd Richard				
Applicant Phone	(724) 966-2250	Facility Phone	(724) 966-2250				
Client ID	37856	Site ID	249302				
SIC Code	4941	Municipality	Cumberland Township				
SIC Description	Trans. & Utilities - Water Supply	County	Greene				
Date Application Rece	eived June 17, 2020	EPA Waived?	Yes				
Date Application Acce	epted July 1, 2020	If No, Reason					
Purpose of Application	n Renewal of NPDES Industrial Wast	te Permit without an EL	.G.				

Summary of Review

The Department received a late NPDES permit renewal application from the Municipal Authority of the Borough of Carmichaels for the Carmichaels Water Treatment Plant (WTP) located in Cumberland Township of Greene County on July 17, 2020. The facility is a potable public WTP with SIC Code of 4941. The water treatment plant was constructed in 1949 and underwent major reconstruction in 1993-1994.

Raw water from the Monongahela River is collected, treated, and distributed for community potable water use. Potable water treatment terrain consists of the following:

- Raw water intake from the Monongahela River
- Chemical addition- Chlorine, Caustic Soda, Alum, and Active Carbon
- Flocculation
- Clarification
- Dual media Filtration
- Clearwell Storage
- Pumping to the distribution system
- Backwash of filters and clarifier sludge draw off to wastewater treatment lagoons (Average wastewater flow is 0.0242 MGD).

The wastewater treatment system is going under major re-construction as authorized by Water Quality Management (Part II) Permit No. 3076205-A2. The amendment changed the settling lagoons configuration. The lagoons were excavated, and a

Approve	Deny	Signatures	Date
Х		Curtin Holos D.E. / Environmental Engineering Specialist	August 29, 2020
		Curtis Holes, P.E. / Environmental Engineering Specialist	August 28, 2020
х		Michael E. Fifth, P.E. / Environmental Engineer Manager	September 9, 2020

Summary of Review

36-mil synthetic liner was installed along with increasing the settling volumes of both lagoons (71,150 gallons for the primary lagoon and 63,660 gallons for the secondary lagoon). The lagoon base grades are now sloped to allow the sludge to accumulate at the designed sump for sludge removal.

The backwash water, filter-to-waste water and sludge from two existing primary clarifiers (sedimentation basins) are collected in the existing concrete wastewater holding tank (23' 3" Long X 18' 3" Wide X 20' Deep). The wastewater from the holding tank is then pumped by one of the two proposed 200 gpm submersible pumps through the valve pit to the modified wastewater settling basin via a six (6) inch force main where its energy will be dissipated prior to entering the main bay. The wastewater from the initial bay will flow over a weir and enter the main settling chamber. After settling, the supernatant will flow over a weir into the effluent bay and it will be discharged to the Monongahela River via a 12 -inch PVC pipe via Outfall 001.

Residual waste disposal must meet solid waste regulations.

Part C language in the draft permit provides controls on floating solids, chemical additives, residual solids, Total Residual Chlorine and Sedimentation Basin Cleaning.

The Carmichaels Municipal Water Authority has no open violations pertaining to NPDES.

It is recommended that a draft permit be published for public comment in response to this application.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving	Discharge, Receiving Waters and Water Supply Information					
Outfall No. 001		Design Flow (MGD)	0.03			
Latitude 39°	54' 08"	Longitude	-79° 55' 48"			
Quad Name Car	rmichaels	Quad Code	1906			
Wastewater Descrip	otion: Lagoon supernatant from filt	er backwash water and sludge	e from settling tanks.			
Receiving Waters	Monongahela River	_ Stream Code	37185			
NHD Com ID	99415066	_ RMI	75.5			
Drainage Area	4,560 mi ²	Yield (cfs/mi²)	0.1162 cfs/mi ²			
Q ₇₋₁₀ Flow (cfs)	530 cfs	Q ₇₋₁₀ Basis	US Army Corp of Engineers			
Elevation (ft.)	769 ft.	Slope (ft./ft.)				
Watershed No.	19-B	_ Chapter 93 Class.	WWF			
Existing Use		Existing Use Qualifier				
Exceptions to Use	None	_ Exceptions to Criteria	None			
Assessment Status	Impaired					
Cause(s) of Impairn	nent Chlordane, PCBs, and Orga	nics				
Source(s) of Impairr	ment Source Unknown					
TMDL Status	Final, 04/09/2001	Name Monongahel	a River TMDL			
Nearest Downstrear	m Public Water Supply Intakes	Southwestern PA Water Autho	ority			
PWS Waters N	1onongahela River	_ Flow at Intake (cfs)	9.3 MGD			
PWS RMI7	1.7	_ Distance from Outfall (mi)	3.8 mi			

Changes Since Last Permit Issuance: None

Outfall 001 Drainage Basin

Compliance History				
Summary of DMRs:	No exceedances with permit effluent limits.			
Summary of Inspections:	The last inspection conducted by the Department was on July 2, 2015 by Pamela Russell and no violations were noted.			

Other Comments:

Compliance History

DMR Data for Outfall 001 (from July 1, 2019 to June 30, 2020)

Parameter	Limit	MAY-20	APR-20	MAR-20	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19
Flow (MGD)												
Average Monthly	Report				0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Flow (MGD)												
Daily Maximum	Report				0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
pH (S.U.)												
Minimum	6.0				7.13	7.10	7.15	7.14	7.15	7.11	7.12	7.06
pH (S.U.)												
Maximum	9.0				7.22	7.16	7.19	7.15	7.15	7.19	7.16	7.10
TRC (mg/L)												
Average Monthly	0.5				0.13	0.23	0.04	0.14	0.05	0.02	0.09	0.04
TRC (mg/L)												
Instantaneous												
Maximum	1.0				0.15	0.28	0.05	0.18	0.06	0.13	0.11	0.06
TSS (mg/L)											_	
Average Monthly	30.0				< 5.0	< 5.0	< 5.0	6.0	< 5.0	5.5	7	< 5.0
TSS (mg/L)												
Instantaneous	00.0					- 0	5 0	7.0		0.0	_	5 0
Maximum	60.0				< 5.0	< 5.0	< 5.0	7.0	< 5.0	6.0	7	< 5.0
Total Aluminum												
(mg/L)	4.0				0.2	0.0	0.2	0.85	0.2	0.75	0.0	0.2
Average Monthly	4.0				0.2	0.2	0.3	0.85	0.3	0.75	0.9	0.3
Total Aluminum (mg/L)												
Instantaneous												
Maximum	8.0				0.3	0.3	0.4	1.3	0.4	1.2	1.0	0.3
Total Iron (mg/L)	0.0				0.0	0.0	0.4	1.0	0.4	1.2	1.0	0.0
Average Monthly	2.0				0.04	0.06	0.06	0.15	< 0.03	0.11	0.15	0.07
Total Iron (mg/L)	2.0				0.0 1	0.00	0.00	0.10	1 0.00	0	0.10	0.07
Instantaneous												
Maximum	4.0				0.04	0.1	0.1	0.2	< 0.03	0.2	0.2	0.1
Total Manganese	1											
(mg/L)												
Average Monthly	1.0				0.07	0.02	0.07	0.07	0.07	0.06	0.15	0.1
Total Manganese	-				-	-	-		-			
(mg/L)												
Instantaneous												
Maximum	2.0				0.1	0.04	0.1	0.1	0.1	0.1	0.2	0.1

Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD	0.03
Latitude	39º 54' 08"	 Longitude	-79° 55' 48"
Wastewater D	escription:	Lagoon supernatant from filter backwash water and sluc	lge from settling tanks

Technology-Based Limitations

The Carmichaels WTP facility is not subject to Federal Effluent Limitation Guidelines (ELGs) as the SIC code is not listed under 40 CFR parts 405 through 471.

Regulatory Effluent Standards and Monitoring Requirements

The pH effluent range for all Industrial waste process and non-process discharges pursuant of 25 Pa. Code § 92a.48(a)(2) and 25 Pa. Code § 95.2 is indicated in Table 1 below.

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) as indicated in Table 1 below.

Pursuant to 25 Pa. Code § 95.2(4) effluent standards for industrial wastes may not contain more than 7 mg/L of dissolved iron as indicated in Table 1 below.

Pursuant to 25 Pa. Code § 92a.48(b) the imposition of technology-based Total Residual Chlorine (TRC) limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELG's or a facility specific BPJ evaluation as indicated in Table 1 below.

Table 1. Regulatory Effluent Standards

Parameter	Monthly Avg.	Daily Max	IMAX		
Flow (MGD)	Monitor	Monitor			
Iron, Dissolved			7.0 mg/L		
pH (S.U.)	6-9 at all times				
TRC	0.5 mg/L		1.6 mg/L		

Total Dissolved Solids (TDS)

Integral to the implementation of 25 Pa. Code § 95.10 is the principle that existing, authorized mass loadings of TDS are exempt from any treatment requirements under these provisions. Existing mass loadings of TDS up to and including the maximum daily discharge loading for any existing discharge, provided that the loading was authorized prior to August 21, 2010 are exempt. Discharge loadings of TDS authorized by the Department are typically exempt from the treatment requirements of Chapter 95.10 until the net TDS loading is increased, an existing discharge proposes a hydraulic expansion or a change in the waste stream. If there are existing mass or production-based TDS effluent limits, then these are used as the basis for the existing mass loading. The facility is not new or expanding waste loading of TDS, therefore, the facility is exempt from 25 Pa. Code § 95.10 treatment requirements.

Best Practicable Control Technology Currently Achievable (BPT)

The Department's Technical Support Document, *Technology-Based Control Requirements for Water Treatment Plant Wastes* (DEP-ID 362-2183-003) establishes BAT for discharges of WTPs wastewater, which are illustrated in Table 2 below.

Table 2. BAT Limits for WTP Filter Backwash Wastewater

Parameter	Monthly Avg. (mg/L)	Daily Max (mg/L)		
Total Suspended solids (TSS)	30.0	60.0		
Iron (total)	2.0	4.0		
Aluminum (total)	4.0	8.0		
Manganese (total)	1.0	2.0		
Flow	Monitor			
pH (S.U.)	6-9 at a	III times		
TRC	0.5	1.0		

Water Quality-Based Limitations

Total Maximum Daily Load (TMDL)

Wastewater discharges from Carmichaels WTP facility is located within the Monongahela River Watershed for which the Department has developed a TMDL. The TMDL was finalized on April 9, 2001 to address PCB, Organics and Chlordane within the Monongahela River Watershed. The Industrial Waste discharge for the Carmichaels WTP facility consist of filter backwash water and sludge from settling tanks. The facility does not use PCBs or Chlordane, therefore, the Ohio River TMDL does not pertain to the Carmichaels WTP.

Toxics Management Analysis

The Department's Toxics Management Spreadsheet (TMS) was utilized to facilitate calculations necessary for completing a reasonable potential analysis and determine Water Quality-Based Effluent Limitations (WQBELs) for discharges containing toxic pollutant concentrations. TMS combines the functionality of two (2) of the Department's analysis tools, Toxics Screening Analysis Spreadsheet and PENTOXSD water quality model.

DEP's procedures for evaluating reasonable potential are as follows:

- 1. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken form the permit application.
- 2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants, as reported in the permit application or on DMRs, are modeled by the TMS to determine the parameters of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion].
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by TMS.
 Establish an IMAX limit at 2.5 times the average monthly limit.
 - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
 - For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% - 50% of the WQBEL.

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and contained in the DMRs; data from those sources are used as inputs into the TMS. A summary of TMS Inputs is contained in Table 3 below.

Table 3. TMS Inputs

Parameter	Value
Discharge In	
Facility	Carmichaels WTP
Evaluation Type	Industrial
NPDES Permit No.	PA0216291
Wastewater Description	Industrial Wastewater and Stormwater
Outfall ID	001
Design Flow (MGD)	0.03
Hardness (mg/L)	76
pH (S.U.) `	7.5
Partial Mix Factors	Unknown – Calculated by TMS
Complete Mix Times	•
Q ₇₋₁₀ (min)	
Q _h (min)	
Stream Input	S
Receiving Surface Water	Monongahela River
Number of Reaches to	
Model	1
Stream Code	37185
RMI	75.5
Elevation (ft)	769
Drainage Area (mi ²)	4,560
Slope (ft/ft)	
PWS Withdrawal (MGD)	9.3
Apply Fish Criteria	Yes
Low Flow Yield (cfs/mi ²)	
Flows	F20/F20*
Stream (cfs)	530/530*
Tributary (cfs)	N/A 660/695*
Width (ft)	660/685*
Stream Hardness (mg/L)	100 7
Stream pH (S.U.)	/downstroom location values

^{*} Denotes discharge location/downstream location values.

Based on the recommendations of the TMS, weekly monitor and report for two (2) parameters: Chloride and Sulfate for weekly monitoring are reporting at Outfall 001. Analysis Report from the TMS run is included in Attachment A.

WQM 7.0 Model

In general, WQM 7.0 Model is run if the maximum $BOD_5/CBOD_5$ concentrations exceeds 30/25 mg/L respectively in the permit application or the DMRs. The permit application reports BOD_5 concentration of <4 mg/L, therefore, WQM 7.0 Model is not required to be run.

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and discharge chlorine demands for the receiving stream, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/L from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is then proposed. The results of the modeling, included in Attachment B, identify that BAT is the most stringent criteria for TRC at an average monthly limit of 0.5 mg/L limit for maximum daily.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Effluent Limitations and Monitoring Requirements for Outfall 001

Effluent limits applicable at Outfall 001 are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements as summarized in Table 4. The applicable limits and monitoring requirements provided below are based on in the most stringent limits listed in Tables 1 and 2 of this Fact Sheet.

Table 4. Effluent limits and monitoring requirements for Outfall 001

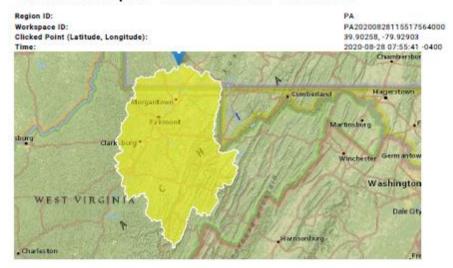
	Mass (pounds)		Cor	centration (
Parameter	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	Basis
Flow (MGD)	Report	Report	_	_	_	25 Pa. Code § 92a.61(d)(1)
Total Residual Chlorine			0.5	1.0	_	25 Pa. Code § 92a.48(b)
Total Suspended Solids	_	_	30.0	60.0	_	40 CFR § 125.3
Iron (total)	_		2.0	4.0	<u>—</u>	40 CFR § 125.3
Aluminum (total)	_	_	4.0	8.0	_	40 CFR § 125.3
Manganese (total)	_		1.0	2.0	<u>—</u>	40 CFR § 125.3
Chloride	_	_	Report	Report	_	25 Pa. Code § 96.3
Sulfate			Report	Report	<u>—</u>	25 Pa. Code § 96.3
pH (S.U.)	Within the range of 6.0 to 9.0					25 Pa. Code § 92a.48(a)(2) & 25 Pa. Code § 95.2

Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or as previous permits monitoring requirements for Carmichaels WTP are displayed in Table 5 below. The Toxics Management Spreadsheet recommended weekly monitoring of Chloride and Sulfate. To align with other monitoring requirements, twice per month monitoring frequency will be imposed for Chloride and Sulfate.

Table 5. Monitoring Requirements for Outfall 001

Parameter	Sample Type	Minimum Sample Frequency
Flow (MGD)	Meter	2/Month
TRC	Grab	2/Month
TSS	Grab	2/Month
Iron (total)	Grab	2/Month
Aluminum (total)	Grab	2/Month
Manganese (total)	Grab	2/Month
Chloride	Grab	2/Month
Sulfate	Grab	2/Month
pH (S.U.)	Grab	2/Month

12/97.		Tools and References Used to Develop Permit
PENTOXSD for Windows Model (see Attachment C) TRC Model Spreadsheet (see Attachment C) Tremperature Model Spreadsheet (see Attachment B) Toxics Management Spreadsheet (see Attachment B) Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-008, 9/97. Technical Reference Guide (TRG) WOM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischard 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Pc and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) WOM 7.0 For Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 1/9004. Implementation Guidance for Section 93.6 Management of Point Source Phosphorus Discharges to Lakes, Pc and Impoundments, 391-2000-010, 3/99. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 1/197. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drain Channels and Swales, and Storm Severs, 391-200		
TRC Model Spreadsheet (see Attachment C) Temperature Model Spreadsheet (see Attachment B) Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2 002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-003, 12/97. Technical Reference Guide (TRG) WOM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharga 191-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Pc and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drair Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance for Section 95.9 Phosphorus Discharges to Intermittent and Ephemeral Streams, Drair Channels and Swales, and Storm Sewers, 391-2000-017, 4/99. Implementation Guidance for Section 95.9 Phosphorus	_	· · · · · · · · · · · · · · · · · · ·
Temperature Model Spreadsheet (see Attachment B) Toxics Management Spreadsheet (see Attachment B) Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technical Guidance for Developments for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2 002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischar 391-2000-007, 10/1909. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Poand Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-015, 11/1994. Implementation Guidance for Section 95.9 Phosphorus Discharges to Intermittent and Ephemeral Streams, Draic Channels and Swales, and Storm Sewers, 391-2000-017, 4/2008. Implementation Guidance for Application of Section 93.5 (Per Potable Water Supply Protection Total Discosology, Native-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-015, 10/97. Fiel		
Toxics Management Spreadsheet (see Attachment B) Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2 002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WOM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischard Sal-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Poand Impoundments, 391-2000-011, 5/2004. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Poand Impoundments, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Draic Channels and Swales, and Storm Sewers, 391-2000-017, 4/09. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Disc		· · · · · · · · · · · · · · · · · · ·
Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2 002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WOM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischard 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Posicial Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drait Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Diss Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Sou		· · · · · · · · · · · · · · · · · · ·
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WGM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischar 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Intermittent and Ephemeral Streams, Drain Channels and Swales, and Storm Sewers, 391-2000-011, 4/2008. Implementation Guidance for Section 95.9 Phosphorus Discharges to Intermittent and Ephemeral Streams, Drain Channels and Swales, and Storm Sewers, 391-2000-013, 4/99. Implementation		Toxics Management Spreadsheet (see Attachment B)
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2 002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WOM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischar 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Pot and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drain Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/1991. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/1991. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Disconding Control of Protection Formation Surface Solidas, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.		Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WOM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischar 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Poand Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drair Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance for Section 93.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/1994. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/197. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge De Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determining of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluat		Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischar 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Poand Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Dissolved Oxygen Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drain Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance for Section 95.9 Phosphorus Discharges to Tree Flowing Streams, 391-2000-018, 10/10 Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/10 Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/10 Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Stream and Point Source Discharge De Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Bac		Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2002, 4/97. Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharge 1912-000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Point Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drain Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/1997. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge De Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determining of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Detriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Charact		Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Pennsylvania CSO Policy, 385-2000-011, 9/08.		Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.		Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2 002, 4/97.		Pennsylvania CSO Policy, 385-2000-011, 9/08.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischar 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Poand Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program of Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drait Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/10 Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Discot Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Delardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determina of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoun		
Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischar 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Potental Implements, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program of Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drain Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/99. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/10 Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Disson Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Defendences, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Dischar 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Poand Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Progrom Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drain Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/19. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Discosolids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge De Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determining of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharla 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Poland Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drain Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Disson Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Stream Flows, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determining Of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		Implementation Guidance Design Conditions, 391-2000-006, 9/97.
391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Poand Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drain Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/10 Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Disson Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Defendens, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determining Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Prog for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drain Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/19. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Determination Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		
for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drain Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/ Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissortion Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Determination Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		and Impoundments, 391-2000-010, 3/99.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drain Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/10. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Disson Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/10. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Disconsides, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Stream Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/ Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Disconsides, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Desercian Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/ Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissort Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Determines, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissortance Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Determined Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge De Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Determines, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		Design Stream Flows, 391-2000-023, 9/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV)
		· · · · · · · · · · · · · · · · · · ·
		·
SOP:		
Other:		


Attachment A – StreamStats Outfall 001

Attachment B – Toxic Management Spreadsheet Outfall 001

Attachment C – TRC Calculation Spreadsheet

Attachment A – StreamStats Outfall 001

StreamStats Report - Carmichaels WTP Outfall 001

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	4560	square miles
ELEV	Mean Basin Elevation	1941.1	feet
PRECIP	Mean Annual Precipitation	48,5	inches
FOREST	Percentage of area covered by forest	79.6	percent
URBAN	Percentage of basin with urban development	1.9	percent
CARBON	Percentage of area of carbonate rock	1.9	percent

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4560	square miles	0.92	1720
Peak-Flow Statistics Disclaim	TOTS(100 Percent (HSS) square miles) Peak Flow Region 4				
One or more of the parem	eters is outside the suggested range. Es	dimates were extrapo	plated with unknown errors		
Peak-Flow Statistics Flow Re	port(100 Persent (4500 square miles) Peak Flow Region 4)				
	POTQ+00 Percent (4550 square miles) Peak Flow Region 6]		Value	Ur	nit
Statistic	PORTI 120 Fement (4560 aguere milea) Feair-Row Region 4)		Value 82000	-	nit ^3/s
Statistic 2 Year Peak Flood	porti too Persert (455) aguse milesi Pesis Slow Region 4(20000000	ft	
Peak-Flow Statistics Flow Re Statistic 2 Year Peak Flood 5 Year Peak Flood 10 Year Peak Flood	porti jaa Penera (456) oguse milesi Pesis Plow Vegan (i		82000	ft/	^3/s
Statistic 2 Year Peak Flood 5 Year Peak Flood	port (100 Penserc (450) aguse miles) Pess Row Region 4(82000 117000	ft/	^3/s ^3/s
Statistic 2 Year Peak Flood 5 Year Peak Flood 10 Year Peak Flood	pOrt() too Percerc (450) aguse miles) Peak-Row Neglan 4(82000 117000 143000	ft: ft: ft:	^3/s ^3/s ^3/s

NPDES Permit Fact Sheet Carmichaels Municipal Water Authority

Roland, M.A., and Stuckey, M.H., 2008, Regression equations for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2008-5102, 57p. (http://pubs.usgs.gov/sir/2008/5102/)

Low-Flow Statistics Parameters(no Peoest (650 aquate rales) Low Row Region 4						
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
DRNAREA	Drainage Area	4560	square miles	2.26	1400	
ELEV	Mean Basin Elevation	1941.1	feet	1050	2580	
Low-Flow Statistics Disclaim	CTS(100 Percent (4550 square miles) Low Flow Region 4]					
One or more of the param	eters is outside the suggested range. Estima	tes were extrapolated	with unknown errors			

Low-Flow Statistics Flow Reports to Person (#850 aguire miles) Low-Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	618	ft*3/s
30 Day 2 Year Low Flow	828	ft*3/s
7 Day 10 Year Low Flow	351	ft*3/s
30 Day 10 Year Low Flow	416	ft*3/s
90 Day 10 Year Low Flow	630	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Annual Flow Statistics Paramet	BTS(100 Percent (4550 aquare miles) Statewide Mean and State-Flow)				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4560	square miles	2.26	1720
ELEV	Mean Basin Elevation	1941.1	feet	130	2700
PRECIP	Mean Annual Precipitation	48.5	Inches	33.1	50.4
FOREST	Percent Forest	79.6	percent	5.1	100
URBAN	Percent Urban	1.9	percent	0	89
CARBON	Percent Carbonate	1.9	percent	0	99

Annual Flow Statistics Disclaimers (not Percent (4550 aguare miles) (sometide Mean and Sase Flow)

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Annual Flow Statistics Flow Report; (650 square miles) Statewise Mean and State Row]

Statistic	Value	Unit
Mean Annual Flow	10200	ft^3/s
Harmonic Mean Streamflow	4220	ft^3/s

Annual Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Base Flow Statistics Parameter	275(100 Percent (4550 square miles) Statewide Mean and Base Flow(
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4560	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	48.5	inches	33.1	50.4
CARBON	Percent Carbonate	1.9	percent	0	99

NPDES Permit Fact Sheet Carmichaels Municipal Water Authority

Percent Forest Percent Urban Percent (4550 aguar miles) instancie Mean and Saan Roel s outside the suggested range. Estimates were extr	79.6 1.9 sepoleted with	percent percent unknown errors	5.1	100 89
Percent (4550 aguere miles) (instewde Mean and Sone Flow)		,	0	89
	apolated with	unknown errors		
s outside the suggested range. Estimates were extr	apolated with	unknown errors		
Percert (4550 square miles) Statewide Mean and Base Row]				
			Value	Unit
e Interval			4080	ft*3/s
e Interval			3690	ft*3/s
e Interval			3450	ft*3/s
	e interval e interval e interval v, base-flow, and mean-flow regression equ	e interval e interval e interval	e interval e interval e interval v, base-flow, and mean-flow regression equations for Pennsylvania streams:	value de Interval 4080 de Interval 3690 de Interval 3450 v, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Su

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit		
DRNAREA	Drainage Area	4560	square miles	2.62	207		
CARBON	Percent Carbonate	1.9	percent				
Bankfull Statistics Disclaimers;100 Percent (1500 agues niles) Serieute ferridal Honoritomes 2016 5006 One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors							
one or more or the param	eters is outside the suggested range. Esti	imates were extrapola	ted with unknown errors				
	eters is outside the suggested range. Esti At this Percent (456) aquae miles) statevide Bankfull Noncarbo		ted with unknown errors				
Bankfull Statistics Flow Repo	**		Value	Unit			
Bankfull Statistics Flow Repo	**			Unit ft*2			
Bankfull Statistics Flow Repo Statistic Bankfull Area	**		Value				
	**		Value 9940	ft*2			

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

Clune, J.W., Chaplin, J.J., and White, K.E.,2018, Comparison of regression relations of bankfull discharge and channel geometry for the glaciated and nonglaciated settings of Pennsylvania and southern New York: U.S. Geological Survey Scientific Investigations Report 2018

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

-5066, 20 p. (https://doi.org/10.3133/sir20185066)

NPDES Permit Fact Sheet Carmichaels Municipal Water Authority	NPDES Permit No. PA0216291
Attachment B – Toxics Management Spreadsheet	Outfall 001

Toxics Management Spreadsheet Version 1.0, July 2020

Discharge Information

Total Zinc

Acrolein

Acrylamide

Acrylonitrile

Bromoform

Benzene

Total Molybdenum

Instructions Disc	charge Stream		
Facility: Carmi	chaels Water Treatment Plant	NPDES Permit No.: PA0216291 Outfall No.: 001	
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: Industrial Wastewater & Stormwate	r
	Disabas	ma Characteristics	

					Discha	arge (Cha	racterist	tics						
De	esign Flow	114 (104		e i n		P	arti	al Mix Fa	actors (l	PMFs)		Com	plete Mi	x Times	(min)
	(MGD)*	Hardness (mg/l)*	pH (SU	AF	С		CFC	THE	1	CRL	Q	7-10	G	Q _h
	0.03	76	7	.5											
				0	If let	t blank	0.5 17 16	eft blank	0) if left blan	k	1 If lef	t blank		
	Discharge Pollutant		Units	Ma	x Discharge Conc	Tri Co	_	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	
	Total Dissolve	ed Solids (PWS)	mg/L		158										
p 1	Chloride (PW	S)	mg/L		14.5										
Į.	Bromide		mg/L	<	0.032	HH	7								
ē	Sulfate (PWS	5)	mg/L		63.8										
	Fluoride (PW:	S)	mg/L		0.1	m									
	Total Aluminu	ım	μg/L		1300										
	Total Antimor	ıy	μg/L	<	0.33										
	Total Arsenic		ua/L	<	0.5										

Total Barium 25 µg/L Total Beryllium 0.1 μg/L Total Boron μg/L 23 0.16 Total Cadmium μg/L Total Chromium (III) 0.33 μg/L Hexavalent Chromium 0.047 µg/L Total Cobalt μg/L 0.83 Total Copper μg/L 6.3 Free Available Cyanide µg/L Total Cyanide 1.6 μg/L Dissolved Iron 64 μg/L Total Iron μg/L 300 Total Lead μg/L 0.39 Total Manganese 200 μg/L Total Mercury 0.00017 μg/L Total Nickel μg/L 1.8 Total Phenols (Phenolics) (PWS) μg/L 4 0.66 Total Selenium μg/L < 0.33 Total Silver μg/L Total Thallium 0.16 µg/L

Discharge Information 8/28/2020 Page 1

µg/L

μg/L

μg/L

µg/L

μg/L

μg/L

μg/L

<

<

<

13

0.33

Chrosoteromename in jul. 4 Chrosoteromename in j	1				1		_	_					П
Chlorodithy Viryl Ether Jg/L		Carbon Tetrachloride	μg/L	<		Ħ	7						Н
Chloroethy Viryl Ether 19/L				_			_	4					Д
2-Chloroethyl Vinyf Ether		Chlorodibromomethane	μg/L	<									
Chloroformomethane		Chloroethane	μg/L	<		Ц	Ų	Ţ					Д
Chloroformomethane		2-Chloroethyl Vinyl Ether	μg/L	<		\Box	4	7					П
Dichlorobromomehane			ua/L	<		H	7	7					Н
1.1.Dichloroethane				<		Ħ	7	+					Ħ
1.1-Dichoreshyne				-		H	+	+					Н
1_1.Dichloroethylene						H	-	+					 Н
1,Doxane		_		_		H	\Rightarrow	\Rightarrow					H
1,Doxane	ΙĦ	-		_		Ħ	7	\Rightarrow					Ħ
1,-Doxino gutyyene	1,5						7	7					Д
Bettyleensene	1		μg/L	<				1					
Methy Chloride		1,4-Dioxane	μg/L	<		Ц	4	4					Ц
Methyl Chloride		Ethylbenzene	μg/L	<		Ц	4	Ţ					Д
Methyl Chloride		Methyl Bromide	ug/L	<		H	7	7					П
Methylene Chloride				<		Ħ	7	+					Ħ
Tetrachloroethane				-		Ħ	7	+					H
Tetrachloroethylene						Н	-	+	_				Н
Toluene				_		H	+	\Rightarrow					H
1.1.1-Trichloroethane				-		Ħ	\Rightarrow	\rightarrow					Ħ
1.1.1-Trichloroethane				_		口	7	7					Д
1,1,2-Trichloroethylene		•	μg/L	<									
Virticoloroethylene μg/L		1,1,1-Trichloroethane	μg/L	<									
Vinyl Chloride		1,1,2-Trichloroethane	μg/L	<		Ц	Į	Ţ					Д
Vinyl Chloride		Trichloroethylene	µg/L	<		Ħ	⇉	#					Ħ
2-Chlorophenol				<		Ħ	7	7					Ħ
2.4-Dinterophenol µg/L	\vdash	-		<		Ħ	7	+					Ħ
2.4-Dimethylphenol				_		Н	+	+					Н
4,8-Dinitro-O-Cresol µg/L				_		H	+	+	_				H
2.4-Dinitrophenol				-		Ħ	7	+					H
2-Nitrophenol yg/L	l 🕳	_		_		Ħ	7	\Rightarrow					Д
P-Chloro-m-Cresol	2			_									I
P-Chloro-m-Cresol	18	2-Nitrophenol	μg/L	<									Ц
Pentachlorophenol yg/L	ত	4-Nitrophenol	μg/L	<		Ц	4	4					Ц
Phenol		p-Chloro-m-Cresol	μg/L	<		Н	4	7					 Я
Phenol		Pentachlorophenol	μg/L	<		H	7	7					Я
2.4,6-Trichlorophenol		Phenol	ua/L	<		Ħ	7	7					Ħ
Acenaphthene				<		H	7	+					Н
Acenaphthylene	\vdash	-		_		H	7	+					Н
Anthracene				-		Ħ	T	Ť					Ħ
Benzidine							=	-					H
Benzo(a)Anthracene				_			4	4					Д
Benzo(a)Pyrene				-		Ц	4	4					 Ц
3.4-Велгобиогалthеne						Ц	4	4					Ц
Benzo(ghi)Perylene			μg/L	<		Н	4	4					Н
Benzo(k)Fluoranthene		3,4-Benzofluoranthene	μg/L	<		Н	\rightarrow	\pm					Н
Bis(2-Chloroethoxy)Methane		Benzo(ghi)Perylene	μg/L	<		H	7	7					Н
Bis(2-Chloroethoxy)Methane		Benzo(k)Fluoranthene		<		Ħ	寸	T					Ħ
Bis(2-Chloroethyl)Ether		Bis(2-Chloroethoxy)Methane		<		П		\top					Ĭ
Bis (2-Chloroisopropyl)Ether				<									Ī
Bis (2-Ethylhexyl)Phthalate		, ,,		<		Ħ	⇉	#					Ħ
4-Bromophenyl Phenyl Ether µg/L Butyl Benzyl Phthalate µg/L 2-Chloronaphthalene µg/L 4-Chlorophenyl Phenyl Ether µg/L Chrysene µg/L Dibenzo(a,h)Anthrancene µg/L 1,2-Dichlorobenzene µg/L 1,3-Dichlorobenzene µg/L 1,4-Dichlorobenzene µg/L 3,3-Dichlorobenzidine µg/L Diethyl Phthalate µg/L Dimethyl Phthalate µg/L Din-Butyl Phthalate µg/L						H	=	+					H
Butyl Benzyl Phthalate				-		H	+	+					Н
2-Chloronaphthalene μg/L <				_		Н	-	+					Н
4-Chlorophenyl Phenyl Ether μg/L <						H	4	+					H
Chrysene				-		H	=	+					Н
Dibenzo(a,h)Anthrancene μg/L 1,2-Dichlorobenzene μg/L 1,3-Dichlorobenzene μg/L 1,4-Dichlorobenzene μg/L 3,3-Dichlorobenzidine μg/L Diethyl Phthalate μg/L Dimethyl Phthalate μg/L Di-n-Butyl Phthalate μg/L			μg/L	<				\perp					İ
1,2-Dichlorobenzene µg/L 1,3-Dichlorobenzene µg/L 1,4-Dichlorobenzene µg/L 3,3-Dichlorobenzidine µg/L Diethyl Phthalate µg/L Dimethyl Phthalate µg/L Di-n-Butyl Phthalate µg/L		Chrysene	μg/L	<									Í
1,2-Dichlorobenzene µg/L 1,3-Dichlorobenzene µg/L 1,4-Dichlorobenzene µg/L 3,3-Dichlorobenzidine µg/L Diethyl Phthalate µg/L Dimethyl Phthalate µg/L Di-n-Butyl Phthalate µg/L		Dibenzo(a,h)Anthrancene	μg/L	<									П
1,3-Dichlorobenzene				<									۵
1,4-Dichlorobenzene μg/L < 3,3-Dichlorobenzidine μg/L < Diethyl Phthalate μg/L < Dinethyl Phthalate Dinethyl Phthalate μg/L < Dinethyl Phthalate Din				<									H
3,3-Dichlorobenzidine								-					H
Di-n-Butyl Phthalate µg/L <	5			-			+	+					H
Di-n-Butyl Phthalate µg/L <	l no	_		_		H	-	-					H
Di-n-Butyl Phthalate µg/L <	5	-		-		H	+	+					H
	1			-		H	-	+					H
2,4-Dinitrotoluene µg/L <				_									H
		2,4-Dinitrotoluene	μg/L	<									

1	2,6-Dinitrotoluene		-										П
		μg/L	<			4	_					Ξ	\blacksquare
	Di-n-Octyl Phthalate	μg/L	<		_	4						Ļ	щ
1	1,2-Diphenylhydrazine	μg/L	<	Ц	4	4					L	Ļ	+
1	Fluoranthene	μg/L	<	H	4	4					╘	Ł	\dashv
1	Fluorene	μg/L	<	Н	_	\Rightarrow					L	Ł	+
1	Hexachlorobenzene	μg/L	<	H	_	_						t	\Box
	Hexachlorobutadiene	μg/L	<	Ħ	╗	T	1				F	Т	\Box
1	Hexachlorocyclopentadiene	μg/L	<								Г	Π	\Box
1	Hexachloroethane	μg/L	<										
	Indeno(1,2,3-cd)Pyrene	μg/L	<	Ħ		⇉					E	t	\Rightarrow
1	Isophorone	μg/L	<	H		#					F	F	\Rightarrow
	Naphthalene	μg/L	<	Ħ	=	7					F	t	Ħ
1	Nitrobenzene	µg/L	<	Н	-	+					⊢	Н	+
	n-Nitrosodimethylamine		<	H	=	7					H	÷	***
		µg/L	<	Ħ	7	7	_				H	F	Ħ
	n-Nitrosodi-n-Propylamine	μg/L				-	_					Ε	\blacksquare
	n-Nitrosodiphenylamine	μg/L	<	Ц	4	4					L	Ļ	\sqcup
	Phenanthrene	μg/L	<	Ц	4	4					L	Ļ	+
	Pyrene	μg/L	<	H	4	4					╘	Ł	\dashv
<u></u>	1,2,4-Trichlorobenzene	μg/L	<			4						+	
1	Aldrin	μg/L	<									1	
1	alpha-BHC	μg/L	<				1						
	beta-BHC	μg/L	<										
1	gamma-BHC	μg/L	<	П		Ţ						F	П
	delta BHC	μg/L	<	H		7	-					F	H
1	Chlordane	μg/L	<	H	7	7					F	F	
1	4.4-DDT	μg/L	<	Ħ	╡	7					F	Ħ	\Box
1	4.4-DDE	μg/L	<	Н		\neg					Т	T	\Box
	4,4-DDD	μg/L	<			I						Ī	
1	Dieldrin	μg/L	<	H		#					E	t	\Rightarrow
1	alpha-Endosulfan	μg/L	<	H	=	#					H	t	##
1	beta-Endosulfan	μg/L	<	H	7	+					H	t	+
9	Endosulfan Sulfate	µg/L	<	Н	+	+					Н	H	+
Group	Endrin	µg/L	<	Ħ	7	7					H	午	***
2	Endrin Aldehyde	µg/L	<		3	3					Е	Ξ	
9	Heptachlor		<	H	٥	#					H	ŧ	\forall
1		μg/L	<	Н	4	+					⊢	Ł	₩
1	Heptachlor Epoxide PCB-1016	μg/L	<	Н	4	+					⊢	╁	₩
1		μg/L	_	H	7	7					H	÷	#
1	PCB-1221	μg/L	<	H	7	7					F	E	\Rightarrow
1	PCB-1232	μg/L	<			4						Ξ	\square
1	PCB-1242	μg/L	<	Ц	4	4					L	Ļ	Щ.
	PCB-1248	μg/L	<	Ц	4	4					L	Ļ	+
	PCB-1254	μg/L	<	Н	4	4					L	Ł	+
	PCB-1260	μg/L	<	H	=	_						t	\Rightarrow
	PCBs, Total	μg/L	<										
	Toxaphene	μg/L	٧										
	2,3,7,8-TCDD	ng/L	٧	Ц	_	4						Ļ	Ш
	Gross Alpha	pCi/L		Н	4	4	-				L	Ł	+
	Total Beta	pCi/L	<	Н	-	7						F	\Box
9	Radium 226/228	pCi/L	<	Ħ	7	7						Т	\Box
Group	Total Strontium	μg/L	<		T	T						ī	\Box
ြ	Total Uranium	μg/L	<			Į						Į	
	Osmotic Pressure	mOs/kg		H		7					F	F	\Box
				H	7	7					Г	Т	
				Ħ	7	7					Т	_	
				П		T					Н	_	
				H		+							
				H		+					-		
				H		+							
											-	_	
											L		

Toxics Management Spreadsheet Version 1.0, July 2020

Stream / Surface Water Information

Carmichaels Water Treatment Plant, NPDES Permit No. PA0216291, Outfall 001

Instructions Disch	arge Str	ream														
Receiving Surface W	Receiving Surface Water Name: Monongahela River No. Reaches to Model: 1 Statewide Criteria Great Lakes Criteria ORSANCO Criteria ORSANCO Criteria															
Location	Stream Cod	de* RMI	Elevat	DA (mi	²)* Si	ope (ft/ft)		Withdraw MGD)	al Apply Crite			OR	SANCO Crite	eria		
Point of Discharge	037185	75.5	769	4560)				Ye	25						
End of Reach 1	037185	71.7	762	4600)			9.3	Ye	25						
Q 7-10	RMI	LFY		(cfs)	W/D	Width	Depth	Velocit	i ravei Time		Tributa	•	Strea		Analys	
		(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Har	dness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	75.5	0.1	530			660	9						100	7		
End of Reach 1	71.7	0.1	530			685	9									
Qh						•										
Location	RMI	LFY	Flow	/ (cfs)	W/D	Width	Depth	Velocit	Time		Tributa	ry	Strea	m	Analys	is
Location	KMI	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Har	dness	pН	Hardness	pН	Hardness	pН
Point of Discharge	75.5															
End of Reach 1	71.7												1			

Toxics Management Spreadsheet Version 1.0, July 2020

Madal Da بدادي

iviodei	Result	S						Ca	rmicha	aels Wat	er Treatme	ent Plant, NPDI	S Permit No.	PA0216291,	Outrall 001
Instructions	Results		RETUR	N TO INPU	тѕ	S	SAVE AS PD	F)		PRINT	⊚ AI	I () Inputs	○ Results) Limits	
☑ Hydrod	lynamics														
Q 7-10															
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream Flow (cfs			ge Analysis w (cfs)	Slope (ft	t/ft) [Depth (ft)	Width (ft) W/D Ratio	Velocity (fps)	Time	Complete Mix Time (min)
75.5	530			530		0	.046	0.0003	5	9.	660.	73.333	0.089	2.602	1183.683
71.7	530	14.38	7	515.6129)										
Qh											_				
RMI	Flow (cfs) (cfs) Flow (cfs)				ge Analysis w (cfs)	Slope (ft	t/ft) [Depth (ft)	Width (ft) W/D Ratio	Velocity (fps)	Time	Complete Mix Time (min)		
75.5	1786.51 1786.51			0	.046	0.0003	5	15.361	660.	42.965	0.176	1.318	530.89		
71.7															
✓ Wasteld	oad Allocatio		T (min):	15	PM	F: [0.113	Analy	ysis Ha	ardness ((mg/l):	99.981	Analysis pH:	7.00	
	Pollutants		Conc	Stream CV	Trib Co (µg/l		Fate Coef	WQC (µg/L)	WQ (µg	- 100	'LA (µg/L)		С	omments	
	ssolved Solid	, ,	0	0			0	N/A	N/	-	N/A				
	hloride (PWS	•	0	0			0	N/A	N/		N/A				
	Sulfate (PWS Tuoride (PWS		0	0		+++	0	N/A N/A	N/		N/A N/A				
	otal Aluminur	•	0	0			0	750	75		964.920				
	Total Antimon		0	0			0	1,100	1,1		.415,216				
	Total Arsenic	,	0	0			0	340	34		437,430		Chem Tran	slator of 1 ap	polied
	Total Barium 0 0						0 :	21,000	21,0		7,017,753				•
	Total Boron		0	0			0	8,100	8,1	00 10	0,421,133				
	Total Cadmium 0 0					0	2.013	2.1		2,744		Chem Transl			
	Total Chromium (III) 0 0 -						69.676	1,8		,319,376		Chem Transl		• •	
Hexa	Hexavalent Chromium 0 0					0	16	16		20,962		Chem Transl	ator of 0.982	applied	
	Total Cobalt 0		0			0	95	95		122,223					
	Total Copper	0	0			0	13.437	14	1.0	18,007		Chem Trans	lator of 0.96	applied	

Model Results 8/28/2020 Page 5

Total Silver

Total Thallium

Total Zinc

0

0

0

0

Chem Translator of 1 applied

Chem Translator of 0.986 applied

Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	64.568	81.6	105,016	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0 -		0	1.400	1.65	2,119	Chem Translator of 0.85 applied
Total Nickel	0	0		0	468.162	469	603,525	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	3.216	3.78	4,867	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	83,626	
Total Zinc	0	0		0	117.162	120	154,127	Chem Translator of 0.978 applied
☑ CFC CC	T (min): 7	20	PMF:	0.780		alysis Hardne	ess (mg/l):	99.997 Analysis pH: 7.00
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(unit)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	1,959,676	
Total Arsenic	0	0		0	150	150	1,336,143	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	36,521,236	
Total Boron	0	0		0	1,600	1,600	14,252,190	
Total Cadmium	0	0		0	0.246	0.27	2,411	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	74.113	86.2	767,639	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	92,595	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	169,245	
Total Copper	0	0		0	8.956	9.33	83,096	Chem Translator of 0.98 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	17,131,429	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.517	3.18	28.339	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	8.069	Chem Translator of 0.85 applied
Total Nickel	0	0		0	52.005	52.2	464.638	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	and the state of t
Total Selenium	0	0		0	4.600	4.99	44,441	Chem Translator of 0.922 applied
T-t-1 Cit		-		-	AU/A	NI/A	AUA	Chara Tanadata of 4 and ad

☑ THH	CCT (min): 720	0 THH PMF:	0.780	Ana	alysis Hardne	ss (mg/l):	N/A	Analysis pH: N/A	PWS PMF:	1
Pollutants	Conc	Stream Trib Conc CV (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Comments		

N/A

13.0

120

N/A

115,799

1,067,255

N/A

13

118.136

0

0

0

Model Results 8/28/2020 Page 6

NPDES Permit No. PA0216291

Total Dissolved Solids (PWS)	0	0	0	500,000	500,000	**********	WQC applied at RMI 71.7 with a design stream flow of 530 cfs
Chloride (PWS)	0	0	0	250,000	250,000	**********	WQC applied at RMI 71.7 with a design stream flow of 530 cfs
Sulfate (PWS)	0	0	0	250,000	250,000	*********	WQC applied at RMI 71.7 with a design stream flow of 530 cfs
Fluoride (PWS)	0	0	0	2,000	2,000	22,841,905	WQC applied at RMI 71.7 with a design stream flow of 530 cfs
Total Aluminum	0	0	0	N/A	N/A	N/A	
Total Antimony	0	0	0	5.6	5.6	49,883	
Total Arsenic	0	0	0	10	10.0	89,076	
Total Barium	0	0	0	2,400	2,400	21,378,285	
Total Boron	0	0	0	3,100	3,100	27,613,618	
Total Cadmium	0	0	0	N/A	N/A	N/A	
Total Chromium (III)	0	0	0	N/A	N/A	N/A	
Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	300	300	2,672,286	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	1,000	1,000	8,907,619	
Total Mercury	0	0	0	0.050	0.05	445	
Total Nickel	0	0	0	610	610	5,433,647	
Total Phenols (Phenolics) (PWS)	0	0	0	5	5.0	57,105	WQC applied at RMI 71.7 with a design stream flow of 530 cfs
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	0.24	0.24	2,138	
Total Zinc	0	0	0	N/A	N/A	N/A	

	###### PMF:	1	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	
--	-------------	---	---------------------------	-----	--------------	-----	--

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0 .		0	N/A	N/A	N/A	
Total Aluminum	0	0 -		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0 .		0	N/A	N/A	N/A	
Total Boron	0	0 -		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0 -		0	N/A	N/A	N/A	
Total Cobalt	0	0 -		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	

NPDES Permit Fact Sheet Carmichaels Municipal Water Authority

Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	- 0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

	Mass	Limits		Concentra	ition Limits		1		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Chloride (PWS)	Report	Report	Report	Report	Report	mg/L	2,855,238	THH-PWS	Discharge Conc > 10% WQBEL (no RP)
Sulfate (PWS)	Report	Report	Report	Report	Report	mg/L	2,855,238	THH-PWS	Discharge Conc > 10% WQBEL (no RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments	
Total Dissolved Solids (PWS)	5,710,476	mg/L	Discharge Conc ≤ 10% WQBEL	
Bromide	N/A	N/A	No WQS	
Fluoride (PWS)	22,842	mg/L	Discharge Conc ≤ 10% WQBEL	
Total Aluminum	618,475	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Antimony	N/A	N/A	Discharge Conc < TQL	
Total Arsenic	N/A	N/A	Discharge Conc < TQL	
Total Boron	6,679,526	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Beryllium	N/A	N/A	No WQS	
Total Cadmium	1,759	μg/L	Discharge Conc < TQL	
Total Chromium (III)	767,639	μg/L	Discharge Conc < TQL	
Hexavalent Chromium	13,436	μg/L	Discharge Conc < TQL	
Total Cobalt	78,340	μg/L	Discharge Conc < TQL	
Total Iron	17,131,429	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Lead	28,339	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Cyanide	N/A	N/A	No WQS	
Total Nickel	386,835	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Phenols (Phenolics) (PWS)	57,105	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Mercury	445	μg/L	Discharge Conc < TQL	

Model Results 8/28/2020 Page 8

NPDES Permit Fact Sheet Carmichaels Municipal Water Authority

Total Zinc	98,789	μg/L	Discharge Conc ≤ 10% WQBEL
Total Selenium	44,441	μg/L	Discharge Conc < TQL
Total Silver	3,120	μg/L	Discharge Conc < TQL
Total Thallium	2,138	μg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS

NPDES Permit Fact Sheet Carmichaels Municipal Water	Authority

NPDES Permit No. PA0216291

 $Attachment \ C-TRC \ Calculation \ Spread sheet$

TRC EVALUATION Carmichaels WTP Outfall 001

530	= Q stream ((cfs)	0.5	= CV Daily			
	0.03 = Q discharge (MGD)			= CV Hourly			
4 = no. samples			0.705 = AFC_Partial Mix Factor				
0.3 = Chlorine Demand of Stream		1 = CFC_Partial Mix Factor					
0.3 - Chlorine Demand of Stream 0 - Chlorine Demand of Discharge		15 = AFC_Criteria Compliance Time (min)					
0.5 = BAT/BPJ Value			720 = CFC_Criteria Compliance Time (min)				
= % Factor of Safety (FOS)		120	=Decay Coefficient (K)				
Source	Reference	AFC Calculations		Reference CFC Calculations			
TRC	1.3.2.iii		2568.309	1.3.2.iii	WLA cfc = 3551.616		
PENTOXSD TRO		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRO		LTA afc=		5.1d	LTA cfc = 2064.743		
	3112	2			211 _ 210 _ 200 111 10		
Source Effluent Limit Calculations							
PENTOXSD TRO	3 5.1f		AML MULT =	1.720			
PENTOXSD TRO	3 5.1g	AVG MON L	.IMIT (mg/l) =	0.500	BAT/BPJ		
		INST MAX L	.IMIT (mg/l) =	1.170			
WLA afc		FC_tc)) + [(AFC_Yc*Q C_Yc*Qs*Xs/Qd)]*(1-F	-	·k*AFC_tc))			
LTAMULT afc	I						
LTA_afc	wla_afc*LTA	MULT_afc					
WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))							
+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)							
LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)							
LTA_cfc wla_cfc*LTAMULT_cfc							
AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))							
AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)							
INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)							