

Application Type	Renewal
Facility Type	Non- Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0216666

 APS ID
 1062286

 Authorization ID
 1394487

Applicant and Facility Information

Applicant Name	Iron Cumberlar	nd LLC	Facility Name	Iron Cumberland Prep Plant	
Applicant Address	855 Kirby Road	PO Box 1020	Facility Address	158 Portal Road	
	Waynesburg, PA	A 15370-3020		Waynesburg, PA 15370-3592	
Applicant Contact	Noah Beazell		Facility Contact	Same as Applicant	
Applicant Phone	(724) 395-3231		Facility Phone	Same as Applicant	
Client ID	329531		Site ID	532875	
Ch 94 Load Status	Not Overloaded	Not Overloaded	t Overloaded Municipality	Municipality	Whiteley Township
Connection Status	No Limitations		County	Greene	
Date Application Recei	ved April 22	2, 2022	EPA Waived?	Yes	
Date Application Accept	oted May 2,	2022	If No, Reason		
Purpose of Application	Applica	tion for renewal of a NP	DES Permit for treated sew	/age.	

Summary of Review

The permittee has applied for renewal of NPDES Permit No. PA0216666. PA0216666 was previously issued by the PA Department of Environmental Protection (DEP) on August 22, 2017 and expired on August 31, 2022. The renewal application was not submitted 180 days prior to expiration.

Sewage at this facility is treated with flow equalization, extended aeration, clarification, and chlorine disinfection prior to discharge through Outfall 002 to Whitelely Creek (Stream Code ID 41178). Whiteley Creek is a Trout Stock Fishery (TSF) permit Chapter 93 Designated Use.

The permittee is currently enrolled in and will continue to use eDMR.

The applicant has complied with Act 14 Notification with letters dated March 16, 2022 to Whiteley Township and Greene County.

Sewage sludge at this facility is hauled off site and disposed of by H&H Water Controls Inc.

Since the last permit, the TRC limit has changed to become more restrictive and annual *E. coli* monitoring has been added.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation

Approve	Deny	Signatures	Date
х		Stephanie Conrad / Environmental Engineering Specialist	November 22, 2022
x		MAHBUBA JASMINS	
		Mahbuba lasmin, Ph.D., P.E. / Environmental Engineering Manager	December 2, 2022

Summary of Review

addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply	y Information
Outfall No. 002	Design Flow (MGD) 0.02
Latitude <u>39º 47' 42.9"</u>	Longitude80° 9' 38.6"
Quad Name Oak Forest	Quad Code 2004
Wastewater Description: Sewage Effluent	
Receiving Waters <u>Whiteley Creek (TSF)</u>	Stream Code
NHD Com ID 99418460	RMI20.43
Drainage Area 1.77	Yield (cfs/mi ²) 0.0698
Q ₇₋₁₀ Flow (cfs) 0.0173	Q7-10 Basis USGS Stream Stats
Elevation (ft) 1080	Slope (ft/ft)
Watershed No. 19-G	Chapter 93 Class. TSF
Existing Use	Existing Use Qualifier
Exceptions to Use	Exceptions to Criteria
Assessment Status Impaired	
Cause(s) of Impairment Siltation	
Source(s) of Impairment Agriculture and Su	ibsurface (Hardrock) Mining
TMDL Status Tentative	Name Whiteley Creek Watershed
Background/Ambient Data	Data Source
pH (SU)	
Temperature (°F)	
Hardness (mg/L)	
Other:	
Nearest Downstream Public Water Supply Intal	Ke Southwestern PA Water Authority
PVVS vvaters Monongahela River	Flow at Intake (MGD) 5.0
PWS RMI <u>14.2</u>	Distance from Outfall (mi) 21.7

Changes Since Last Permit Issuance: Q_{7-10} basis has changed since last permit issuance to reflect department policy changing from using Bulletin 12 to USGS Stream Stats. Receiving stream flow has changed as a result.

Other Comments:

Treatment Facility Summary

Treatment Facility Name	me: Prep Plant STP							
WQM Permit No.	Issuance Date	Purpose						
3075402	September 8, 1995	 Permit issued to Cumberland Contura, LLC from PADEP approving construction of a new treatment facility including: Two (2) 10,000-gallon equalization basins One (1) 1" manually cleaned bar screen One (1) 0.02 mgd comminutor One (1) 6,097-gallon primary aeration tank and 20 gpm effluent grinder pump One (1) 9,250- gallon secondary aeration tank One (1) 2,216-gallon intermediate clarifier One (1) 4,007-gallon final clarifier and 20 gpm effluent pump One (1) 5090-gallon aerated sludge digester Gas chlorination, and One (1) 413-gallon chlorine contact tank 						
3075402 A-1	January 23, 2020	Permit issued to Cumberland Contura, LLC from PADEP approving replacement of the existing chlorinator with a UVIREX model 50 disinfection unit and construction of two 5,000 gpd submersible pump stations for conveying clarified						
3075402 T-2	January 3, 2022	Permit issued by PADEP approving the transfer of the WQM permit from Cumberland Contura, LLC to Iron Cumberland LLC.						
	Degree of			Avg Annual				
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)				
Sewage	Secondary with Ammonia Reduction	Extended Aeration	Chlorine	0.02				
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposa				
0.02	5	Not Overloaded	Aerobic Digestion	Other WWTP				

Changes Since Last Permit Issuance: WQM Permit No. 3075402 A-1 was issued by the department in January 2020, approving the installation of a UV treatment unit. The unit is only capable of treating 0.005 MGD, therefore, the work would reduce hydraulic capacity and annual average flow to 0.005 MGD. The work has not been completed to date and there is no estimate for when the work will be completed. TRC limits will be included in the permit and limits were calculated for a continued design flow of 0.02 MGD. The permittee should be advised that the department must be notified when construction begins. An amendment to the NPDES Permit will be required when construction is completed.

Additionally, WQM Permit No. 3075402 approved the transfer of the facility to Iron Cumberland, LLC.

Compliance History

Operations Compliance Check Summary Report

Facility: Iron Cumberland Prep Plant

NPDES Permit No.: PA0216666

Compliance Review Period: 5/2017 – 5/2022

Inspection Summary:

INSP ID	IN SPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC
3255382	09/23/2021	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted
3058378	07/23/2020	Administrative/File Review	PA Dept of Environmental Protection	No Violations Noted
<u>3210405</u>	06/24/2021	Administrative/File Review	PA Dept of Environmental Protection	No Violations Noted

Violation Summary:

No violations

Open Violations by Client ID:

No open CW violations for client id 329531

Enforcement Summary:

No enforcements

DMR Violation Summary:

MONITORING END DATE	PARAMETER	STATISTICAL BASE CODE	PERMIT VALUE	SAMPLE VALUE	UNIT OF MEASURE
6/30/2019	Dissolved Oxygen	Minimum	6	5.8	mg/L
5/31/2019	Dissolved Oxygen	Minimum	6	4.8	mg/L
12/31/2018	Total Residual Chlorine (TRC)	Average Monthly	0.13	0.75	mg/L
12/31/2018	Total Residual Chlorine (TRC)	Instantaneous Maximum	0.3	10.8	mg/L
11/30/2018	Dissolved Oxygen	Minimum	6	5.9	mg/L
11/30/2018	Total Residual Chlorine (TRC)	Average Monthly	0.13	0.91	mg/L
11/30/2018	Total Residual Chlorine (TRC)	Instantaneous Maximum	0.3	2	mg/L
10/31/2018	Total Residual Chlorine (TRC)	Average Monthly	0.13	0.73	mg/L
10/31/2018	Total Residual Chlorine (TRC)	Instantaneous Maximum	0.3	3.4	mg/L
1/31/2018	Dissolved Oxygen	Minimum	6	0	mg/L
11/30/2017	Dissolved Oxygen	Minimum	6	0	mg/L

Compliance Status:

Permittee in compliance. Operations will monitor DMR exceedances.

Completed by: John Murphy

Completed date: 5/13/2022

Compliance History

DMR Data for Outfall 002 (from October 1, 2021 to September 30, 2022)

Parameter	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21
Flow (MGD)												
Average Monthly	0.00114	0.00167	0.00150	0.00143	0.00114	0.00183	0.00114	0.00171	0.00125	0.00125	0.00138	0.00113
pH (S.U.)												
Instantaneous												
Minimum	6.3	6.6	6.9	7.1	6.8	6.8	6.3	6.2	6.3			
pH (S.U.)												
Minimum										6.3	6.7	6.6
pH (S.U.)												
Instantaneous												
Maximum	8.8	8.6	8.4	8.3	8.2	8.3	8.1	8.3	8.2			
pH (S.U.)												
Maximum										8.5	8.2	8.0
DO (mg/L)												
Instantaneous												
Minimum	6.9	7.0	7.8	7.0	6.0	6.3	6.0	8.3	8.1			
DO (mg/L)												
Minimum										7.8	7.4	6.7
IRC (mg/L)												
Average Monthly	0.05	0.03	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
IRC (mg/L)												
Instantaneous	0.05		0.05	0.00		0.00	0.40	0.05		0.00	0.07	0.05
	0.25	0.14	0.25	0.02	0.04	0.02	0.13	0.05	0.04	0.03	0.07	0.05
CBOD ₅ (mg/L)						0.5						0.0
	2.2	2.0	2.0	2.0	2.0	2.5	2.0	2.0	2.2	2.3	2.0	2.2
CBOD₅ (mg/L)												
Instantaneous	2.4	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.2	26	2.0	2.4
	2.4	2.0	2.0	2.0	2.0	2.9	2.0	2.0	2.3	2.0	2.0	2.4
155 (mg/L)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Movimum	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Focal Coliform	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
(No /100 ml)												
Geometric Mean	1	1	1	1	1	1	1	1	1	7	1	1

NPDES Permit Fact Sheet Iron Cumberland Prep Plant

Fecal Coliform (No./100 ml) Instantaneous												
Maximum	1	1	1	1	1	1	1	1	1	45	1	1
Total Nitrogen (mg/L) Daily Maximum										8.83		
Ammonia (mg/L) Average Monthly	0.3	0.2	0.15	0.1	0.2	0.2	0.2	0.15	0.2	0.25	0.35	0.15
Ammonia (mg/L) Instantaneous												
Maximum	0.4	0.2	0.20	0.1	0.2	0.3	0.2	0.20	0.3	0.30	0.40	0.20
Total Phosphorus (mg/L) Daily Maximum										1.1		

Compliance History

Summary of Inspections: The facility was inspected twice in 2021, once as an administrative review in June and once as a compliance evaluation in September. Neither inspection resulted in violations.

Development of Effluent Limitations

Outfall No.	002	Design Flow (MGD)	.02
Latitude	39º 47' 42.90"	Longitude	-80º 9' 38.60"
Wastewater De	escription: Sewage Effluent		

Technology-Based Limitations (TBELs)

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations (WQBELs)

Pursuant to EPA's approval of Pennsylvania's 2017 Triennial Review of Water Quality Standards and corresponding regulatory changes published in the *Pennsylvania Bulletin* on July 11, 2020, new water quality criteria for ammonia-nitrogen apply to waters of the commonwealth. Therefore, WQBELs for Outfall 002 are being re-evaluated even though there have been no changes to the facility.

WQM 7.0 Water Quality Modeling

The Department's WQM 7.0 version 1.1 model is a Microsoft Access® Program used for sewage dischargers to determine whether TBELs are sufficient to meet in-stream water quality criteria for ammonia-nitrogen, carbonaceous biochemical oxygen demand (CBOD₅), and dissolved oxygen (DO). To accomplish this, the model simultaneously simulates mixing and degradation of ammonia-nitrogen and mixing and consumption of DO through CBOD₅ and ammonia-nitrogen degradation. WQM 7.0 determines the highest pollutant loadings that the stream can assimilate while still meeting water quality criteria under design conditions.

The model is a two-step process. The discharge is first modeled for the summer period (May through October) because warm temperatures are more likely to result in critical loading conditions. Reduced DO levels likely also play a role in ammonia toxicity and solubility of DO decreases at increased water temperature. If summer modeling determines WQBELs are appropriate for the summer period, then modeling is completed for the winter period (November through April). This is in accordance with the Department's *"Implementation Guidance of Section 93.7 Ammonia Criteria"* [Doc. No. 391-2000-013] (Ammonia Guidance).

River Mile Index (RMI) was measured in eMAP PA as the distance from the facility's outfall to the mouth of the Ohio River. Elevation was read by applying a topomap in eMAP PA. Discharge point and downstream drainage areas as well as Q₇₋₁₀ flow were generated by USGS Stream Stats. USGS Stream Stats output files are included in Attachment A. In the absence of site-specific data, discharge temperature, stream temperature, and stream pH were assumed to be 20, 25, and 7 in accordance with the Ammonia Guidance. Stream width to depth was assumed to be 10.

WQM 7.0 modeling inputs are documented in the table below:

NPDES Permit Fact Sheet Iron Cumberland Prep Plant

Discharge Characterist	ics	Basin/Stream Characteristics		
Parameter	Value	Parameter	Value	
River Mile Index (RMI)	20.43	Drainage Area (mile)	1.77	
Discharge Flow (MGD)	0.02	Q7-10 (cfs)	0.0173	
Discharge Temp (°C)	20	Low-flow yield (cfs/mi ²)	0.0098	
Ammonia-Nitrogen (mg/L)	2.0	Elevation (ft)	1080	
CBOD₅ (mg/L)	25	Stream Width/Depth	10	
DO (mg/L)	6	Stream Temp (°C)	25	
pH (s.u.)	7	Stream pH (s.u.)	7	

The effluent was modeled using WQM 7.0 to evaluate CBOD₅, ammonia-nitrogen, and dissolved oxygen (DO) parameters. Modeling confirmed that technology based effluent limits are appropriate for CBOD₅. Modeling also confirmed that water quality-based effluent limits (WQBELs) for ammonia-nitrogen and DO are necessary to meet in-stream water quality criterion. In accordance with The Department's Standard Operating Procedure (SOP) for the Clean Water Program-Establishing Effluent Limitations for Individual Sewage Permits [SOP No. PCW-PMT-033, version 1.0], winter ammonianitrogen limits are assessed by comparing the winter WQM 7.0 output value with one calculated from the summer limit using a seasonal multiplier of three. The more restrictive of the two values is then imposed. For this facility, the winter ammonianitrogen limit to be imposed is the value generated using WQM 7.0 modeling. Ammonia-nitrogen and DO limits are not changing from the previous permit cycle. WQM 7.0 output files are provided in Attachment B.

Total Residual Chlorine Modeling

The Department's Total Residual Chlorine (TRC) Spreadsheet is a Microsoft Excel® Program used to evaluate WQBELs for TRC using a mass balance. In accordance with the Department's SOP for *Establishing Effluent Limitations for Individual Sewage Permits* [SOP No. BCW-PMT-033 Version 1.9], default values of 0.3 mg/L and 0 mg/L for in-stream and discharge chlorine demand were used as model inputs. Additionally, a discharge flow of 0.02 MGD and a Q₇₋₁₀ flow of 0.0098 were used as model inputs.

TRC was modeled with PADEP's TRC Spreadsheet and it was determined that a new, more restrictive WQBEL is necessary to meet in-stream water quality standards. The facility as currently operating should be able to meet the new, more restrictive limits. TRC Spreadsheet output files are included in Attachment C.

TRC modeling was conducted using default stream parameter values. Because of this, the permittee has the option to conduct a site-specific study in accordance with the Department's guidance document, *Implementation Guidance Total Residual Chlorine (TRC) Regulation.* If the permittee elects to conduct a site-specific study, then they shall notify DEP of this within 60 days of permit issuance and submit the study results within 15 months of permit issuance. If the Department agrees that the study results in modification of the WQBELs, then the Department will initiate an amendment to the permit. Part C. II. has been added to the permit.

WQM Permit No. 3075402 A-1 was issued in January 2020 approving the replacement of chlorine disinfection with UV disinfection and a reduction of hydraulic loading and design flow. The work has not been completed, so TRC limits will be included in this permit. WQBELs were modeling with a design flow rate of 0.02 MGD. When construction is complete, the permittee will need to apply for an amendment to the NPDES permit to remove TRC limits and impose monitoring for UV.

WQBELs

The table below summarizes the WQBELs which will be imposed in this permit.

Parameter	Limit (mg/l)	SBC	Model
Ammonia-Nitrogen			
(winter)	4.0	Average Monthly	WQM 7.0
Ammonia-Nitrogen			
(summer)	2.0	Average Monthly	WQM 7.0
Dissolved Oxygen (DO)	6.0	Average Monthly	WQM 7.0

Total Residual Chlorine			
(TRC)	0.091	Average Monthly	TRC Spreadsheet

Additional Considerations

In accordance with Section 1.A. of the Department's SOP for *Establishing Effluent Limitations for Individual Sewage Permits* [SOP No. BCW-PMT-033 Version 1.9], pursuant to EPA's approval of Pennsylvania's 2017 Triennial Review of Water Quality Standards and corresponding regulatory changes published in the *Pennsylvania Bulletin* on July 11, 2020 and under the authority of 25 Pa. Code § 93.7(a) and § 92.a.61, sewage discharges will include monitoring, at a minimum for *E. coli*. For new and reissued permits, a monitoring frequency of 1/year will be imposed for facilities with a design flow between 0.002 and 0.05 MGD.

In accordance with Section 1.A. of the Department's SOP for *Establishing Effluent Limits for Individual Sewage Permits* [SOP No. BCW-PMT-033 Version 1.9], and under the authority of 25 Pa. Code § 92a.61(b), nutrient monitoring for total nitrogen and total phosphorus will be imposed. The intent of this monitoring is to establish the nutrient load of the wastewater and evaluate the impact that load may have on the quality of the receiving stream. During the last permit cycle, total nitrogen monitoring resulted in four samples with results ranging from 1.51 mg/L to 8.83 mg/L. Total phosphorus sampling resulted in four samples with results ranging from 0.04 mg/L to 1.1 mg/L. The SOP states that if the receiving stream is not impaired for nutrients, then discretion may be used in setting the monitoring frequency. Whiteley Creek is not impaired for nutrients, therefore, a monitoring frequency of 1/year will again be imposed.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Department's *Technical Guidance for the Development and Specification of Effluent Limitations* [Doc No. 362-0400-001]. Please note that no monitoring frequencies have changed from the previous permit.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	0.02	XXX	ххх	XXX	XXX	ххх	2/month	Measured
pH (S.U.)	XXX	xxx	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	ХХХ	XXX	6.0 Inst Min	XXX	XXX	xxx	1/day	Grab
TRC	ХХХ	XXX	ХХХ	0.091	XXX	0.296	1/day	Grab
CBOD₅	ххх	xxx	ххх	25.0	xxx	50.0	2/month	Grab
TSS	ххх	xxx	ххх	30.0	xxx	60.0	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	xxx	XXX	2000 Geo Mean	xxx	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	ХХХ	XXX	ххх	xxx	xxx	Report	1/year	Grab
Total Nitrogen	XXX	xxx	ХХХ	xxx	Report Daily Max	ххх	1/year	Grab
Ammonia Nov 1 - Apr 30	XXX	xxx	xxx	4.0	XXX	8.0	2/month	Grab
Ammonia May 1 - Oct 31	XXX	xxx	ххх	2.0	xxx	4.0	2/month	Grab
Total Phosphorus	ХХХ	XXX	xxx	XXX	Report Daily Max	xxx	1/year	Grab

Compliance Sampling Location: Outfall 002 Other Comments:

ATTACHMENT A

USGS Stream Stats Output

Discharge Point

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20220614122307588000

 Clicked Point (Latitude, Longitude):
 39.79521, -80.16049

 Time:
 2022-06-14 08:23:27 -0400

Collapse All

Basin Characteri	stics		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	1.77	square miles
ELEV	Mean Basin Elevation	1291	feet

Low-Flow Statistics Flow Report [Low Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0572	ft*3/s
30 Day 2 Year Low Flow	0.108	ft*3/s
7 Day 10 Year Low Flow	0.0173	ft*3/s
30 Day 10 Year Low Flow	0.0358	ft*3/s
90 Day 10 Year Low Flow	0.0723	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Downstream of Discharge

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20220614123117103000

 Clicked Point (Latitude, Longitude):
 39.79241, -80.14363

 Time:
 2022-06-14 08:31:37 -0400

Collapse All

Basin Characteri	stics		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	5.45	square miles
ELEV	Mean Basin Elevation	1273	feet

ATTACHMENT B

WQM 7.0 Modeling Results

Summer

	SWP Basir	Strea Coo	im ie	Stre	eam Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	e Slo) (ft/	pe P With ft) (r	WS ndrawal ngd)	Apply FC
	19G	411	178 WHITE	ELEY CR	EEK		20.43	30 1	1080.00	1.	.77 0.00	0000	0.00	\checkmark
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary	<u>и</u> рн	<u>Strea</u> Temp	am pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.010	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.0	0 2	5.00	7.00	0.00	0.00	
					Di	scharge (Data						٦	
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitt Disc Flow (mgd)	ed Desi Dis Flo) (mg	gn c Res w Fa (d)	erve ctor	Disc Temp (°C)	Disc pH		
		Iron (Cumberland	D PA	0216666	0.000	0.020	0.0 0.0	000	0.000	20.00	7.00		
					Pa	arameter l	Data							
			F	Paramete	r Name	Di C	sc 1 onc C	Trib Conc	Stream Conc	Fate Coef				
						(m	g/L) (r	ng/L)	(mg/L)	(1/days))			
			CBOD5			:	25.00	2.00	0.00	1.5	0			
			Dissolved	Oxygen			6.00	8.24	0.00	0.0	0			
			NH3-N				2.00	0.00	0.00	0.7	0			

Input Data WQM 7.0

Tuesday, June 14, 2022

Version 1.1

	SWF Basir	Strea n Coo	im le	Stre	am Name		RMI	Elevati (ft)	ion Dr (rainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	19G	411	178 WHITE	ELEY CRE	EK		19.01	0 105	0.00	5.45	0.00000	0.00	\checkmark
					Str	eam Dat	a						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tri</u> Temp	i <u>butary</u> pH	Tem	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
27-10 21-10 230-10	0.010	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.00	25.0	0 7.0	0 0	0.00 0.00	
					Dis	scharge [Data						
			Name	Per	mit Number	Existing Disc Flow (mod)	Permitted Disc Flow (mod)	d Design Disc Flow (mod)	Reserv Facto	Diso ve Tem r (°C)	c Dis p pł	ic H	

Input Data WQM 7.0

	Name	Permit Number	Disc Flow (mgd)	Disc Flow (mgd)	Disc Flow (mgd)	Rese Fac	rve Te tor (emp °C)	рН
		Par	0.0000	0.0000	0.000	0 0	.000	25.00	7.00
		Fai	ameter Dat	đ					
	Pa	rameter Name	Disc Conc	Trib Con	o Str ic C	eam onc	Fate Coef		
_			(mg/L) (mg/	L) (n	ng/L)	(1/days)		
	CBOD5		25.0	00 2	2.00	0.00	1.50		
	Dissolved O	xygen	3.0	8 00	.24	0.00	0.00		
	NH3-N		25.0	0 00	0.00	0.00	0.70		

Tuesday, June 14, 2022

Version 1.1

Page 2 of 2

	SW	P Basin	Strea	m Code				Stream	Name			
		19G	4	11/8			W	HITELEY	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
20.430	0.02	0.00	0.02	.0309	0.00400	.317	4.58	14.45	0.03	2.604	21.80	7.00
Q1-1	0 Flow											
20.430	0.01	0.00	0.01	.0309	0.00400	NA	NA	NA	0.03	2.814	21.32	7.00
Q30-	10 Flow	,										
20.430	0.02	0.00	0.02	.0309	0.00400	NA	NA	NA	0.04	2.433	22.16	7.00

WQM 7.0 Hydrodynamic Outputs

Tuesday, June 14, 2022

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	6		

Tuesday, June 14, 2022

Version 1.1

_

1	<u>SWP Basin</u> 19G	<u>Strea</u> 4	am Code 1178			St WHIT	TELEY CR	e EEI	¢	
NH3-N A	Acute Alloc	ation	s							
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baselin WLA (mg/L)	e	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	2	Critical Reach	Percent Reduction
20.43	0 Iron Cumber	land	15.02		4	15.02		4	0	0
IH3-N (Chronic All	ocati	ons							
RMI	Discharge N	ame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)		Multiple Criterion (mg/L)	Multiple WLA (mg/L)		Critical Reach	Percent Reduction
20.43	0 Iron Cumber	land	1.64		2	1.64		2	0	0

WQM 7.0 Wasteload Allocations

Dissolved Oxygen Critical Percent CBOD5 NH3-N Discharge Name Baseline Multiple Baseline Multiple Baseline Multiple RMI Reach Reduction (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 25 20.43 Iron Cumberland 25 2 2 6 6 0 0

Tuesday, June 14, 2022

Version 1.1

SWP Basin	Stream Code			Stream Name	
19G	41178		W	HITELEY CREEK	
RMI	Total Discharge	Flow (mgd) Anal	ysis Temperature (°C)	Analysis pH
20.430	0.02	0		21.798	7.000
Reach Width (ft)	Reach De	epth (ft) Reach WDRatio			Reach Velocity (fps)
4.577	0.31	7		14.455	0.033
Reach CBOD5 (mg/L)	Reach Kc ((1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
16.74	0.75	1		1.28	0.804
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)
6.806	19.46	35		Owens	6
Reach Travel Time (days	5)	Subreach	Reculte		
2.604	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.260	13.53	1.04	7.76	
	0.521	10.94	0.84	7.98	
	0.781	8.85	0.68	7.98	
	1.042	7.16	0.55	7.98	
	1.302	5.79	0.45	7.98	
	1.562	4.68	0.37	7.98	
	1.823	3.78	0.30	7.98	
	2.083	3.06	0.24	7.98	
	2.344	2.47	0.19	7.98	
	2.604	2.00	0.16	7.98	

WQM 7.0 D.O.Simulation

Tuesday, June 14, 2022

Version 1.1

		W Galvi			5			
	SWP Basin S	tream Code		Stream Name	<u>e</u>			
	19G	41178		WHITELEY CRE	EEK			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
20.430	Iron Cumberlan	d PA0216666	0.000	CBOD5	25			
				NH3-N	2	4		
				Dissolved Oxygen			6	

WQM 7.0 Effluent Limits

Tuesday, June 14, 2022

Version 1.1

Winter

NPDES Permit Fact Sheet Iron Cumberland Prep Plant

	SWF Basi	Strea n Cod	im le	Stre	eam Name		RMI	Eleva (fr	ation t)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	/S Irawal gd)	Apply FC
	19G	411	178 WHITE	LEY CR	EEK		20.4	30 10	080.00	1.77	0.0000	00	0.00	\checkmark
					St	ream Dat	a							
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	т	<u>Strean</u> emp	n pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°C)		
Q7-10 Q1-10 Q30-10	0.020	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.00	ł	5.00 7.	00	0.00	0.00	
					Di	ischarge	Data						1	
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd	ted Design Disc Flow) (mgd	n Res r Fac)	Di: erve Ter ctor (°(sc np C)	Disc pH		
		Iron C	Cumberland	PA	0216666	0.000	0 0.02	00 0.00	00 0	0.000	15.00	7.00		
					Pa	arameter	Data							
			F	aramete	r Name	D	isc onc (Trib S Conc	tream Conc	Fate Coef				
						(m	ng/L) (i	mg/L) (mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			6.00	12.51	0.00	0.00				
			NH3-N				4.00	0.00	0.00	0.70				

Input Data WQM 7.0

Tuesday, June 14, 2022

Version 1.1

NPDES Permit Fact Sheet Iron Cumberland Prep Plant

	SWF Basi	n Coo	im ie	Stre	eam Name		RMI	Eleva (ft	tion (Drainage Area (sq mi)	Slope (ft/ft)	PV Withd (m	VS Irawal gd)	Apply FC
	19G	411	178 WHITE	ELEY CR	EEK		19.01	10 10	50.00	5.45	0.0000	D	0.00	\checkmark
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>1</u> Temp	<u>Fributary</u> pH	Те	<u>Strear</u> mp	n pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°	C)		
Q7-10 Q1-10 Q30-10	0.020	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.00	5.	.00 7.0	0	0.00	0.00	
					Di	scharge l	Data						1	
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitt Disc Flow (mgd)	ed Design Disc Flow) (mgd)	Rese Fac	Dise rve Tem tor (°C)	с [ір)	Disc pH		
						0.000	0.000	000.00	0 0	.000 2	5.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name	Di C	isc 1 onc C	Trib St Conc (ream Conc	Fate Coef				
						(m	ig/L) (r	ng/L) (r	ng/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50		-		
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

Tuesday, June 14, 2022

Version 1.1

Page 2 of 2

	SW	P Basin	Strea	m Code				Stream	Name			
		19G	4	1178			W	HITELEY	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
20.430	0.03	0.00	0.03	.0309	0.00400	.332	4.99	15.03	0.04	2.196	9.73	7.00
Q1-1	0 Flow											
20.430	0.02	0.00	0.02	.0309	0.00400	NA	NA	NA	0.04	2.471	10.83	7.00
Q30-	10 Flow											
20.430	0.05	0.00	0.05	.0309	0.00400	NA	NA	NA	0.04	1.992	8.97	7.00

WQM 7.0 Hydrodynamic Outputs

Tuesday, June 14, 2022

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	V
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	V
D.O. Saturation	90.00%	Use Balanced Technology	¥
D.O. Goal	6		

Tuesday, June 14, 2022

Version 1.1

_

SWP Basin Stream Code Stream Name										
19G			1178							
	100						LEFON		`	
NH3-N	Acute Alloc	ation	s							
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Mi Cr (1	ultiple iterion ng/L)	Multiple WLA (mg/L)	2	Critical Reach	Percent Reduction
20.43	30 Iron Cumber	land	24.1	1	8	24.1		8	0	0
NH3-N	Chronic All	ocati	ons							
	Discharge N	ame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Mult Crite (m)	tiple erion a/L)	Multiple WLA (mg/L)		Critical Reach	Percent Reduction
RMI			(····a· =/							

Dissolved Oxygen Allocations

		CBC	CBOD5		NH3-N		Dissolved Oxygen		Derest
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
20.431	ron Cumberland	25	25	4	4	6	6	0	0

Tuesday, June 14, 2022

Version 1.1

<u>SWP Basin</u> 19G	Stream Code 41178		w	<u>Stream Na</u> /HITELEY C	<u>me</u> REEK	
<u>RMI</u> 20.430 <u>Reach Width (ft)</u> 4.999 <u>Reach CBOD5 (mg/L)</u> 12.87	Total Discharge 0.02 <u>Reach De</u> 0.33 <u>Reach Ke (</u> 1.17 Booth Ke (EFlow (mqd 0 pth (ft) 2 (1/days) 6	<u>) Ana</u>	lysis Temper 9.727 Reach WD 15.025 leach NH3-N 1.89	rature (°C) Ratio (mq/L)	<u>Analysis pH</u> 7.000 <u>Reach Velocity (fps)</u> 0.040 <u>Reach Kn (1/days)</u> 0.317 Boath Carl (mdi)
Reach DO (mg/L) 9.433	15.00	1/ <u>03¥5)</u>)7		Owens	<u>on</u> . ;	6
Reach Travel Time (days 2.196) TravTime (days)	Subreact CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)		
	0.220	10.96	1.76	10.20		
	0.439	9.32 7.94	1.64	10.20 10.20		
	0.878	6.76	1.43	10.20		
	1.098	5.75	1.33	10.20		
	1.318	4.89	1.24	10.20		
	1.53/	4.17	1.16	10.20		
	1.976	3.02	1.01	10.20		
	2.196	2.57	0.94	10.20		

WQM 7.0 D.O.Simulation

Tuesday, June 14, 2022

Version 1.1

		A COLOR			5		
	SWP Basin S	Stream Code		Stream Name	<u>e</u>		
	19G	41178		WHITELEY CRE	EEK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
20.430	Iron Cumberlar	nd PA0216666	0.000	CBOD5	25		
				NH3-N	4	8	
				Dissolved Oxygen			6

WQM 7.0 Effluent Limits

Tuesday, June 14, 2022

Version 1.1

ATTACHMENT C

TRC Modeling Results

TRC_CALC_PA0216666

TRC EVALUA	ATION							
Input appropria	te values in /	A3:A9 and D3:D9						
0.0173	= Q stream (cfs)	0.5	= CV Daily				
0.02	= Q discharg	e (MGD)	0.5	= CV Hourly				
30	= no. sample	8	1	= AFC_Partial N	lix Factor			
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial N	lix Factor			
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)			
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)				
0	= % Factor o	of Safety (FOS)		Decay Coeffici	ent (K)			
Source	Reference	AFC Calculations		Reference	CFC Calculations			
TRC	1.3.2.iii	WLA afc =	0.197	1.3.2.iii	WLA cfc = 0.185			
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRG	5.1b	LTA_afc=	0.074	5.1d	LTA_cfc = 0.107			
Source Effluent Limit Calculations								
PENTOXSD TRG 5.1f AML MULT = 1.231								
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.091	AFC			
		INST MAX	LIMII (mg/I) =	0.296				
WLA afo	(.019/e(-k*A	FC tc)) + ((AFC Yc*Qs*.019/	Qd*e(-k*AFC	tc))				
	+ Xd + (AF)	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)					
LTAMULT afo	EXP((0.5*LN	(cvh^2+1))-2.326*LN(cvh^2+	1)^0.5)					
LTA_afo	wla_afc*LTA	MULT_afc						
WLA_cfc	(.011/e(-k*C	FC_tc) + [(CFC_Yc*Qs*.011/0	d*e(-k*CFC_	tc))				
	+ Xd + (CF)	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)					
LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.32	6*LN(cvd^2/n	o_samples+1)^0	.5)			
LTA_cfc	wla_cfc*LTA	MULT_cfc						
	EVE/2 2204	N//			0			
	EXP(2.326*L	N((CVC*2/no_samples+1)*0.8	5)-0.5"LN(CVC	"2no_samples+"	<i>m</i>			
AVG MON LIMIT	1 Skilov mo	o, mini(LTA_atc, LTA_CTC)*AN	T ofo)					
INGT MAA LIMIT	1.5-((av_moi	MOLI/LIAMOL	i _alicj					