

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Major

Southwest Regional Office CLEAN WATER PROGRAM

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0216941

 APS ID
 1082420

 Authorization ID
 1429350

Applicant and Facility Information								
Applicant Name	Forest Hills Municipal Authority	Facility Name	South Fork Region WWTP					
Applicant Address	900 Locust St., P.O. Box 337	Facility Address	151 Cross Street					
	Saint Michael, PA 15951-0337		South Fork, PA 15956					
Applicant Contact	Matthew Roman	Facility Contact	Matthew Roman					
Applicant Phone	(814) 459-5614	Facility Phone	(814) 459-5614					
Client ID	160	Site ID	263683					
Ch 94 Load Status	Not Overloaded	Municipality	Conemaugh Township					
Connection Status	Dept. Imposed Connection Prohibitions	County	Cambria					
Date Application Recei	ved February 27, 2023	EPA Waived?	No					
Date Application Accep	ted	If No, Reason	Major Facility					
Purpose of Application	NPDES permit renewal application.							

Summary of Review

The PA Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application from Forest Hills Municipal Authority (Permittee) on February 27, 2023 for permittee's South Fork Regional WWTP (facility), located in Conemaugh Township, Cambria County. This is a major sewage facility with design flow of 1.2 MGD that discharges into Little Conemaugh River (WWF) in state watershed 18-E. The current permit will expire on August 31, 2023. The terms and conditions of the current permit is automatically extended since the renewal application was received at least 180 days prior to the expiration date. Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001.

This fact sheet is developed in accordance with 40 CFR §124.56.

Changes in this renewal: <u>Added:</u> quarterly Total Copper and Total Zinc monitoring; limits requirements for Benzo(a)Anthracene and Butyl Benzyl Phthalate; E-Coli. <u>Removed</u>: Total Bromide monitoring. Revised: DO limit.

Sludge use and disposal description and location(s): Currently the generated biosolids are aerobically digested, dewatered through belt filter press, and landfilled. A WQM permit was issued on March 2023 that authorized construction of an Autothermal Thermophilic Aerobic Digestion (ATAD)/Storage Nitrification Denitrification Reactor (SNDR) process to produce Class A Biosolids. A general permit, PAG078609 was issued on September 27, 2022 for beneficial land application of biosolids.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
\checkmark		Reza H. Chowdhury, E.I.T. / Project Manager	August 2, 2023
Х		<i>Pravin Patel</i> Pravin C. Patel, P.E. / Environmental Engineer Manager	08/04/2023

Discharge, Receiving Waters and Water Supply Inform	mation
Outfall No. 001	Design Flow (MGD) <u>1.2</u>
Latitude 40° 22' 8.14"	Longitude78° 48' 22.19"
Quad Name Geistown	Quad Code 1615
Wastewater Description: Sewage Effluent	
Receiving Waters Little Conemaugh River (WWF)	Stream Code 45815
NHD Com ID <u>123719007</u>	RMI11.28
Drainage Area <u>159 mi²</u>	Yield (cfs/mi ²) 0.05
Q ₇₋₁₀ Flow (cfs) 7.95	Q ₇₋₁₀ Basis See below
Elevation (ft) 1447	Slope (ft/ft)
Watershed No. 18-E	Chapter 93 Class. WWF
Existing Use WWF	Existing Use Qualifier Ch. 93
Exceptions to Use	Exceptions to Criteria
Assessment Status Impaired	
Cause(s) of Impairment <u>METALS</u>	
Source(s) of Impairment ACID MINE DRAINAGE	
TMDL Status Final, 01/29/2010	Kiskiminetas-Conemaugh River Name Watersheds TMDL
Background/Ambient Data	Data Source
pH (SU) 7.0	Default
Temperature (°C) 25	Default
Hardness (mg/L) 129	Application data
Other:	
Nearest Downstream Public Water Supply Intake	Saltsburg Municipal Waterworks, Saltsburg Boro, Indiana County
PWS Waters Conemaugh River	Flow at Intake (cfs)
PWS RMI 0.52 mile	Distance from Outfall (mi) 63.13

Changes Since Last Permit Issuance: None

Other Comments:

Streamflow:

USGS's web based watershed delineation tool StreamStats (accessible at <u>https://streamstats.usgs.gov/ss/</u>, accessed on May 5, 2023) was utilized to determine the drainage area and low flow statistics at discharge point. The StreamStats report shows the drainage area at the discharge point is 159 mi² and Q₇₋₁₀ of 16.2 cfs. Default Q₁₋₁₀:Q₇₋₁₀ of 0.64 and Q₃₀₋₁₀:Q₇₋₁₀ of 1.36 will be used in modeling.

Q₇₋₁₀ runoff rate (low flow yield): 16.2 cfs/159 mi² or 0.1 cfs/mi²

PWS Intake:

The nearby downstream PWS intake is Saltsburg Municipal Municipal Authority on Conemaugh River in Saltsburg Borough, Indiana County, which is approximately 63.13 miles downstream of discharge point. Due to the distance, dilution, and effluent limitations, it is expected that the discharge will not adversely impact the PWS intake.

Wastewater Characteristics:

A pH of 7.23 (daily eDMR data, 90th percentile, July- September 2021-2022), default temperature of 25^oC (Default per 391-2000-007), and Hardness value of 97.7 mg/l (application data) will be used for modeling, if needed.

Background data:

There is no nearby WQN station to calculate the stream data. In absence of site-specific data, default or permittee provided data will be used. The default stream temperature of 25°C (default), hardness of 129 mg/l (application data), and pH of 7.0 (default) will be used for modeling, as appropriate.

Kiskiminetas-Conemaugh River Watersheds TMDL:

Kiskiminetas-Conemaugh River Watersheds TMDL was approved by EPA on January 29, 2010 for AMD discharges. There is no reason to believe the STP will be discharging these metals in high concentrations. The discharge of metals from a sewage treatment plant of this nature is expected to be less than water quality criteria and not contributing to stream impairment. PADEP's Southwest Region's policy is to determine the Reasonable Potential for those three toxic pollutants listed in the TMDL (Total Aluminum, Total Manganese, and Total Iron) from the sample results collected during the last permit term. The permittee collected quarterly samples for those three pollutants, results of which will be analyzed to determine RP. If no RP is determined, quarterly monitoring will be continued.

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving streams are designated as Warm-Water Fishes (WWF.) No High-Quality stream or Exceptional Value water is impacted by this discharge; therefore, no Antidegradation Analysis is performed for the discharge.

Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

	Treatment Facility Summary										
Treatment Facility Na	me: S Fork Region WWTP										
WQM Permit No.	Issuance Date										
1197403 A-5	3/1/2023										
	Degree of			Avg Annual							
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)							
Sewage	Tertiary	SBR with solids removal	UV	1.2							
Hydraulic Capacity	Organic Capacity			Biosolids							
(MGD)	(Ibs/day)	Load Status	Biosolids Treatment	Use/Disposal							
			Conditioning (chemical,								
3.0	5,200	Not Overloaded	heat etc.)	Landfill							

Changes Since Last Permit Issuance: Installation of an Autothermal Aerobic Digestion (ATAD)/Storage Nitrification Denitrification Reactor (SNDR) process and upgrading the UV system.

Treatment Plant Description

Forest Hill Municipal Authority (FHMA/permittee) owns and operates a major sewage treatment plant named South Fork Regional WWTP (facility), located in Conemaugh Township, Cambria County. This major facility has an Average Annual Design Flow of 1.2 MGD, Hydraulic Design Capacity of 3.0 MGD, and Organic Design Capacity of 5,200 lbs. BOD5/day. The treatment system is an SBR with the following treatment train: grinder \rightarrow main pump station \rightarrow fine screen \rightarrow grit separator \rightarrow three tank SBR \rightarrow UV disinfection \rightarrow discharge to Conemaugh River through Outfall 001. There is no assigned stormwater outfall from this facility. The facility receives flows from the below contributing municipalities:

	TRIBUTARY INFORMA	TION		
		Type of Se	wer System	
Municipalities Served	Flow Contribution (%)	Separate (%)	Combined (%)	Population
Adams Township	27	100		
Croyle Township	12.4	100		
Richland Township	24.3	100		
Summerhill Township	11.2	100		
Ehrenfeld Borough	2.3	100		
South Fork Borough	14.1	100		And the second s
Summerhill Borough	6.2	100		
Wilmore Borough	2.5	100		

The following wastewater treatment chemicals are used in the treatment plant:

Chemical Name	Purpose	Maximum Usage Rate	Units
Magnesium Hydroxide	Adjust Alkalinity when needed	18/day	pounds
Calcium Hypochlorite	control filamentous bacteria when needed	30/day	pounds
Phosphoric acid	nutrient balance(available but not used)		
Urea	available but not used		
Polymer	Flocculent for belt filter press aid	2/day	gallons
		5.7.8.7.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	

The facility receives sludge in previous year from the following sources:

Source Name	Gallons Received	% Solids	Dry Tons Received
Village of 42 STP	28,800		
Pleasant View Mobile Home Park STP	7,200	~1.42	~0.43
Meyersdale WTP	119,000	~1.16	~5.76
Allegiance Rehabilitation Center STP	10,800	2.84	~1.28
		Total:	108.29

Pepsi Bottling Company is the only significant non-categorical industrial user contributing to this facility. A pre-treatment permit is not issued by the permittee to this IU.

Biosolids management:

Currently the generated biosolids are aerobically digested, dewatered through belt filter press, and landfilled. A WQM permit was issued on March 2023 that authorized construction of an Autothermal Thermophilic Aerobic Digestion (ATAD)/Storage Nitrification Denitrification Reactor (SNDR) process to produce Class A Biosolids. A general permit, PAG078609 was issued on September 27, 2022 for beneficial land application of biosolids.

Compliance History

DMR Data for Outfall 001 (from February 1, 2022 to January 31, 2023)

Parameter	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22
Flow (MGD)												
Average Monthly	0.559	0.463	0.465	0.426	0.491	0.458	0.429	0.449	0.513	0.531	0.477	0.599
Flow (MGD)												
Daily Maximum	1.334	0.576	0.703	0.543	0.818	0.6	0.499	0.523	0.997	0.690	0.538	1.109
pH (S.U.)												
Minimum	6.89	6.83	7.17	7.05	7.11	7.06	6.93	7.29	7.11	7.04	7.08	7.01
pH (S.U.)												
Maximum	7.16	7.30	7.34	7.37	7.22	7.23	7.17	7.68	7.46	7.29	7.27	7.58
DO (mg/L)												
Minimum	7.82	7.58	8.02	7.83	7.48	6.88	6.12	6.84	8.03	8.57	7.78	9.0
CBOD5 (lbs/day)												
Average Monthly	< 57	40	< 26	< 21	< 22	< 23	32	37	< 34	45	43	56
CBOD5 (lbs/day)												
Weekly Average	< 105	50	29	29	28	30	43	43	53	55	52	70
CBOD5 (mg/L)												
Average Monthly	< 10	10	< 7	< 6	< 5	< 6	9	9	< 8	10	11	13
CBOD5 (mg/L)												
Weekly Average	< 11	12	7	8	8	8	12	11	11	12	14	18
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	1550	1793	1560	1352	1845	2073	1495	1718	1347	1762	1786	2511
BOD5 (lbs/day)												
Raw Sewage Influent												
Weekly Average	1826.5	2171.5	1828	1600	2542	3178.5	2039.5	2011.5	1740	2072.5	2306.5	4667
BOD5 (mg/L)												
Raw Sewage Influent		40.4	107	a- 4	170							
Average Monthly	336	464	407	374	470	523	413	442	322	387	443	554
BOD5 (mg/L)												
Raw Sewage Influent	400	540.05	504 5	450	740	705.05	500 75	544.05	000 75	40.4 5	040	004
Vveekly Average	428	546.25	501.5	450	719	765.25	596.75	514.25	363.75	434.5	618	931
TSS (lbs/day)		45					05	45		10		50
Average Monthly	63	45	31	< 20	< 22	< 22	< 35	< 45	< 34	46	39	59
ISS (lbs/day)												
Raw Sewage Influent	4040	4700	4004	4000	04.00	0444	00.40	4000	4.400	4.400	1000	2000
	1648	1792	1261	1666	2129	2411	2248	1666	1420	1406	1903	2960
Raw Sewage Influent	0004	0000	1000 5	0040	2000	2000	2000	0405 5	4005 5	4740	4440	7007
vveekiy Average	2084	2239	1890.5	2646	2899	3202	3260	2435.5	1695.5	1746	4418	1881

NPDES Permit No. PA0216941

TSS (lbs/day)												
Weekly Average	130	53	52	28	30	25	59	52	53	62	52	75
TSS (mg/L)												
Average Monthly	11	12	8	< 6	< 5	< 6	< 9	< 12	< 8	10	10	14
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	347	462	323	459	531	609	603	428	342	307	493	631
TSS (mg/L)												
Raw Sewage Influent												
Weekly Average	478	613	430	719	791	777	815.25	629.5	434.5	372.25	1228	1576
TSS (mg/L)												
Weekly Average	14	13	13	8	8	6	16	14	11	12	13	19
Fecal Coliform (No./100												
ml) Geo Mean	< 8	18	< 7	9	21	28	41	161	49	28	> 40	> 230
Fecal Coliform (No./100												
ml) IMAX	23	34	25.2	29.2	37	52	158.5	866.4	411	291	> 2420	> 2419.6
UV Transmittance (%)												
Minimum	62	62	60	61	63	60	53	53	55	55	60	58
Total Nitrogen (mg/L)												
Daily Maximum		7.564			< 5.270			< 6.553			16.483	
Ammonia (mg/L)	_									_		
Average Monthly	2	< 1	< 1	< 0.1	< 0.1	< 0.1	< 0.1	< 1.0	< 0.01	8	20	18
Ammonia (mg/L)												
IMAX	3.559	2.531	3.894	0.14	< 0.5	0.217	0.561	2.636	0.462	16.42	28.2	20.51
Total Phosphorus (mg/L)												
Daily Maximum		4.66			3.91			2.25			3.08	
Total Aluminum (mg/L)												
Daily Maximum		< 0.100			< 0.100			< 0.100			< 0.100	
I otal Iron (mg/L)												
Daily Maximum		< 0.200			< 0.200			< 0.200			< 0.200	
Total Manganese (mg/L)		<									0.0500	
Daily Maximum		0.0200			0.0299			< 0.0200			0.0582	
Bromide (mg/L)												
Average Monthly	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Bromide (mg/L)												
Daily Maximum	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2

Compliance History

Effluent Violations for Outfall 001, from: March 1, 2022 To: January 31, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	03/31/22	Geo Mean	> 40	No./100 ml	2000	No./100 ml

Fecal Coliform 03/31/22 IMAX > 2420 No./100 ml 10000 No./100	31/22 IMAX > 2420 No./100 ml 10000 No./100	No./100	No./100
--	--	---------	---------

Summary of Inspections:

March 23, 2022: CEI conducted. eDMR violation noted for fecal coliform.

May 27, 2021: CEI conducted. eDMR violation noted for fecal coliform. Noncompliance included failure to use an NIST thermometer.

February 26, 2020: CEI conducted. eDMR violation noted for fecal coliform.

Existing Effluent Limits and Monitoring Requirements

	Effluent Limitations					Monitoring Re	quirements	
Baramatar	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	Continuous	Recorded
рН (S.U.)	ххх	xxx	6.0	xxx	9.0 Max	xxx	1/day	Grab
Dissolved Oxygen	XXX	XXX	4.0	XXX	XXX	XXX	1/day	Measured
CBOD5	250	375	XXX	25	38	50	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	Report	XXX	2/week	24-Hr Composite
TSS	300	450	xxx	30	45	60	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report	xxx	Report	Report	xxx	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	xxx	xxx	2000 Geo Mean	xxx	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	XXX	xxx	200 Geo Mean	XXX	1000	2/week	Grab
UV light transmittance (%)	ХХХ	XXX	Report	ХХХ	XXX	ХХХ	1/day	Measured
Total Nitrogen	xxx	XXX	xxx	XXX	Report Daily Max	xxx	1/quarter	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	ххх	xxx	xxx	Report	xxx	Report	2/week	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	xxx	xxx	xxx	12.0	xxx	24.0	2/week	24-Hr Composite

		Monitoring Requirements						
Baramatar	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
					Report			24-Hr
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
					Report			24-Hr
Aluminum, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
					Report			24-Hr
Iron, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
					Report			24-Hr
Manganese, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
					Report			24-Hr
Bromide	XXX	XXX	XXX	Report	Daily Max	XXX	2/week	Composite

Other Comments: None

	Development of Effluent Limitations									
Outfall No.	001	Design Flow (MGD)	1.2							
Latitude	40° 22' 8.14"	Longitude	-78º 48' 22.19"							
Wastewater D	Description: Sewage Effluent									

Basis for Effluent Limitations

In general, the Clean Water Act (CWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

Water Quality-Based Limitations

Model input data

The following data will be used for modeling, as needed:

•	Discharge pH	7.17	(median July-Sep 2021- 2022, daily eDMR data)
•	Discharge Temperature	25°C	(Default per 391-2000-007)
•	Discharge Hardness	97.7 mg/l	(Application data)
•	Stream pH	7.0	(Default data)
•	Stream Temperature	25°C	(Default)
•	Stream Hardness	129 mg/l	(Application data)

The following three nodes were used in modeling:

Node 1:At the outfall 001 on Little Conemaugh River (45815)Elevation:1447 ft (USGS National Map Advanced Viewer, 05/03/2023)

	Drainage Area: River Mile Index: Low Flow Yield: Q ₇₋₁₀ : Discharge Flow:	159 mi ² (StreamStat Version 3.0, 05/03/2023) 11.28 (PA DEP eMapPA) 0.1 cfs/mi ² 16.2 cfs 1.2 MGD
Node 2:	At confluence with Bear	Run (45845)
	Elevation:	1415 ft (USGS National Map Advanced Viewer, 05/03/2023)
	Drainage Area:	162 mi ² (StreamStat Version 3.0, 05/03/2023)
	River Mile Index:	9.9 (PA DEP eMapPA)
	Low Flow Yield:	0.1 cfs/mi ²
	Discharge Flow:	0.0 MGD
Node 3:	At confluence with Saltli	ck Run (45830)
	Elevation:	1360 ft (USGS National Map Advanced Viewer, 05/03/2023)
	Drainage Area:	175 mi ² (StreamStat Version 3.0, 05/03/2023)
	River Mile Index:	7.61 (PA DEP eMapPA)
	Low Flow Yield:	0.05 cfs/mi ²
	Discharge Flow:	0.0 MGD

WQM 7.0 Model

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using Q_{7-10} and current background water quality levels of the stream.

<u>NH₃-N</u>

WQM 7.0 suggested NH₃-N limit of 12 mg/l as Average Monthly Limit (AML) and 24.0 mg/l as IMAX limit during summer to protect water quality standards. These limits are the same as existing limits. Current limits will be carried over.

CBOD5

WQM 7.0 suggests CBOD5 limit of 25 mg/l which is the same as existing limit. Existing limit will be carried over.

<u>D0</u>

WQM 7.0 suggests minimum DO of 5.0 mg/l which is the model input value. The current permit has a minimum DO of 4.0 mg/l. Pa Code 25 § 93.7 requires a minimum DO of 5.0 mg/l. A review of last 12 months eDMR data indicated that the facility's discharge consistently had a minimum DO of >6.0 mg/l. More stringent 5.0 mg/l will be applied.

General Discussion on Toxics Management Spreadsheet (TMS)

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic:

1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).

2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% - 50% of the WQBEL.

3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% - 50% of the WQBEL.

NOTE 4 – If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.

NOTE 5 – If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.

4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

Output from the TMS is provided below:

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4	_								
	Mass	Limits		Concentra	tion Limits		1		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	50.3	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	422	AFC	Discharge Conc > 10% WQBEL (no RP)
Benzo(a)Anthracene	0.0005	0.0007	0.046	0.072	0.11	µg/L	0.046	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Butyl Benzyl Phthalate	0.01	0.015	0.96	1.49	2.39	µg/L	0.96	THH	Discharge Conc ≥ 50% WQBEL (RP)

Each of the pollutants is discussed below:

Total Copper:

TMS suggests monitoring requirements for Total Copper based on a model input value of 16.4 ug/l, maximum of three sample results. A quarterly monitoring will be added in this renewal.

Total Zinc:

TMS suggests monitoring requirements for Total Zinc based on a model input value of 182 ug/l, maximum of three sample results. A quarterly monitoring will be added in this renewal.

Benzo(a)Anthracene:

TMS suggests concentration-based AML of 0.046 ug/l, MDL of 0.072 ug/l, IMAX of 0.11 ug/l, mass-based AML of 0.0005 lbs./day, and MDL of 0.0007 lbs./day. These values were calculated from model input value of 0.28 ug/l, maximum of three sample results. Since this is a new parameter with limits requirement, it'll be added in pre-draft survey for permittee's input. Based on the responses on the returned pre-draft survey, a compliance schedule will be provided in the final permit to meet the final WQBEL.

Butyl Benzyle Phthalate:

TMS suggests concentration-based AML of 0.96 ug/l, MDL of 1.49 ug/l, IMAX of 2.39 ug/l, mass-based AML of 0.01 lbs./day, and MDL of 0.015 lbs./day. These values were calculated from model input value of 0.48 ug/l, maximum of three sample results. Since this is a new parameter with limits requirement, it'll be added in pre-draft survey for permittee's input. Based on the responses on the returned pre-draft survey, a compliance schedule will be provided in the final permit to meet the final WQBEL.

TMDL parameters (Total Aluminum, Total Iron, and Total Manganese):

No RP was demonstrated for the TMDL parameters; therefore, existing quarterly monitoring will be continued.

Total Bromide:

Historically PADEP compared the effluent concentration of Total Bromide with a threshold of >1.0 mg/l for facilities with flow greater than 0.1 MGD or 10 mg/l for flows less than 0.1 MGD. if this criterion is met, a monitoring requirement was added in the permit. Total Bromide was a special parameter along with TDS, Sulfate, Chloride, and 1,4-Dioxane. Since PADEP has more than 7-years' worth of data on these special parameters, a monitoring is no longer implemented unless required by other agencies, e.g. DRBC. Therefore, it is recommended that the existing monitoring requirements to be removed for Total Bromide.

Additional Consideration:

Fecal Coliform:

The recent coliform guidance in 25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. These are existing limits and will be carried over.

E. Coli:

Pa Code 25 § 92a. 61 requires monitoring of E. Coli. DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends monthly E. Coli monitoring for major sewage dischargers. This requirement will be applied from this permit term.

pH:

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 §§ 95.2(1), 92a.47) which are existing limits and will be carried over.

Total Suspended Solids (TSS):

There is no water quality criterion for TSS. The existing limits of 30 mg/L average monthly, 45 mg/l average weekly, and 60 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b). The mass based average monthly and weekly average limits are calculated to be 300 lbs./day and 450 lbs./day respectively, which are the same as were in existing permit and will be carried over.

UV Disinfection:

PADEP's SOP BCW-PMT-033 recommends UV parameter monitoring where UV is used as a method of disinfection, with the same frequency as would be if Chlorine is used for disinfection. The current permit has UV Transmittance monitoring in % which will be carried over.

Flow and Influent BOD₅ and TSS Monitoring Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). Influent BOD₅ and TSS monitoring requirements are established in the permit per the requirements set in Pa Code 25 Chapter 94.

Best Professional Judgement (BPJ):

Total Phosphorus:

The current permit has monitoring requirements for Total Phosphorus which is consistent with Pa Code 25 Ch. 92a.61 and will be carried over.

<u>Total Nitrogen:</u> Pa Code 25 § 92a.61 requires monitoring, at a minimum, for all sewage facilities. Existing quarterly monitoring will be continued.

Monitoring Frequency and Sample Types:

Unless otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

Anti-Backsliding

The proposed limits are at least as stringent as are in existing permit, unless otherwise stated; therefore, anti-backsliding is not applicable.

Stormwater Outfalls:

The current permit has listed two stormwater outfalls with PPC and BMP requirements in Part C of the permit. These outfalls are:

Outfall No.	Area Drained (ft ²)	Latitude	Longitude	Description
002	65,000	40° 22' 04"	78° 48' 20"	Treatment plant yard
003	22,000	40° 22' 02"	78° 48' 22"	Treatment plant yard

The current Part C conditions will be continued in this renewal.

Whole Effluent Toxicity (WET)

For Outfall 001, \Box Acute \boxtimes Chronic WET Testing was completed:

imes	

For the permit renewal application (4 tests).

Quarterly throughout the permit term.

Quarterly throughout the permit term and a TIE/TRE was conducted.

Other:

The dilution series used for the tests was: 100%, 60%, 30%, 10%, and 5%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 35.3%.

Summary of Four Most Recent Test Results

(NOTE – Enter results into one table, depending on which data analysis method was used).

TST Data Analysis

(NOTE – In lieu of recording information below, the application manager may attach the DEP WET Analysis Spreadsheet).

	Ceriodaphnia F	Results (Pass/Fail)	Pimephales Results (Pass/Fail)			
Test Date	Survival	Reproduction	Survival	Growth		
9/3/2019	Pass	Pass	Pass	Pass		
8/31/2020	Pass	Pass	Pass	Pass		
7/26/2021	Pass	Pass	Pass	Pass		
8/16/2022	Pass	Pass	Pass	Pass		

* A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is less than the critical t value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE* – *In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

🗌 YES 🖾 NO

Comments: None

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 0.425 Chronic Partial Mix Factor (PMFc): 1

1. Determine IWC – Acute (IWCa):

(Q_d x 1.547) / ((Q₇₋₁₀ x PMFa) + (Q_d x 1.547))

[(1.2 MGD x 1.547) / ((16.2 cfs x 0.425) + (1.2 MGD x 1.547))] x 100 = **21.2%**

Is IWCa < 1%? YES X NO (YES - Acute Tests Required OR NO - Chronic Tests Required)

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

Type of Test for Permit Renewal: Chronic

2a. Determine Target IWCa (If Acute Tests Required)

TIWCa = IWCa / 0.3 = %

2b. Determine Target IWCc (If Chronic Tests Required)

(Q_d x 1.547) / (Q₇₋₁₀ x PMFc) + (Q_d x 1.547)

[(1.2 MGD x 1.547) / ((16.2 cfs x 1) + (1.2 MGD x 1.547))] x 100 = 10.2%

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies). Dilution Series = 100%, 60%, 30%, 10%, and 8%.

WET Limits

Has reasonable potential been determined? \Box YES \boxtimes NO

Will WET limits be established in the permit? $\hfill \mbox{YES}\ensuremath{\boxtimes}\ensuremath{\mathsf{NO}}$ NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through End of Interim Period 1.

		Monitoring Requirements						
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falanetei	Average Monthly	Average Weekly	Minimum	Average	Daily Maximum	Instant.	Measurement	Sample
	wontiny	weekiy	wiiniinum	Quarterry	Waximum	Waximum	Frequency	Туре
								24-Hr
Benzo(a)Anthracene (ug/L)	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Composite
								24-Hr
Butyl Benzyl Phthalate (ug/L)	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Composite

Compliance Sampling Location: At Outfall 001

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: End of Interim Period 1 through Permit Expiration Date.

		Monitoring Requirements						
Baramatar	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average Quarterly	Daily Maximum	Minimum	Average Quarterly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
Benzo(a)Anthracene (ug/L)	0.0005	0.0007	XXX	0.046	0.072	0.11	1/quarter	Composite
								24-Hr
Butyl Benzyl Phthalate (ug/L)	0.01	0.015	XXX	0.96	1.49	2.39	1/quarter	Composite

Compliance Sampling Location: At Outfall 001

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent Li	mitations			Monitoring Re	quirements
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ons (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	xxx	xxx	Continuous	Recorded
pH (S.U.)	XXX	ххх	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	ххх	5.0 Daily Min	XXX	xxx	xxx	1/day	Measured
Carbonaceous Biochemical Oxygen Demand (CBOD5)	250	375	XXX	25	38	50	2/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	xxx	xxx	Report	XXX	XXX	2/week	24-Hr Composite
Total Suspended Solids	300	450	XXX	30	45	60	2/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	ХХХ	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	ххх	XXX	2000 Geo Mean	xxx	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	ххх	XXX	200 Geo Mean	xxx	1000	2/week	Grab
E. Coli (No./100 ml)	XXX	xxx	XXX	XXX	xxx	Report	1/month	Grab
Ultraviolet light transmittance (%)	XXX	ххх	Report	XXX	xxx	xxx	1/day	Measured
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	xxx	1/quarter	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	Report	XXX	Report	2/week	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

				Monitoring Requirements				
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Ammonia-Nitrogen								24-Hr
May 1 - Oct 31	XXX	XXX	XXX	12.0	XXX	24.0	2/week	Composite
					Report			24-Hr
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
					Report			24-Hr
Aluminum, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
					Report			24-Hr
Copper, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
					Report			24-Hr
Iron, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
					Report			24-Hr
Manganese, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite
					Report			24-Hr
Zinc, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite

Compliance Sampling Location: At Outfall 001

Other Comments: None

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment)
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

R:\3083 FHMA\21582 ATAD\06 CADD\20 MS\21582-C-GI-000-GEN.dwg, 1/24/2023 9:58:56 AM

StreamStats at Outfall 001

PA0216941 at 001

Collapse All

Basin Characteristics	3		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	159	square miles
ELEV	Mean Basin Elevation	2109	feet
PRECIP	Mean Annual Precipitation	47	inches

> Low-Flow Statistics

Low Flow Statistics Parameters [100.0 Percent (159 square miles) Low Flow Region 3]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	159	square miles	2.33	1720
ELEV	Mean Basin Elevation	2109	feet	898	2700
PRECIP	Mean Annual Precipitation	47	inches	38.7	47.9

Low-Flow Statistics Flow Report [100.0 Percent (159 square miles) Low Flow Region 3]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp	
7 Day 2 Year Low Flow	27.5	ft*3/s	43	43	
30 Day 2 Year Low Flow	37.4	ft*3/s	38	38	
7 Day 10 Year Low Flow	16.2	ft*3/s	54	54	

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0216941

StreamStats at node 2

PA0216941 at 002

Collapse All

Basin Characteristics	1		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	162	square miles
ELEV	Mean Basin Elevation	2106	feet
PRECIP	Mean Annual Precipitation	47	inches

> Low-Flow Statistics

Low-Flow Statistics Parameters [100.0 Percent (162 square miles) Low Flow Region 3]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	162	square miles	2.33	1720
ELEV	Mean Basin Elevation	2106	feet	898	2700
PREC P	Mean Annual Precipitation	47	inches	38.7	47.9

Low-Flow Statistics Flow Report [100.0 Percent (162 square miles) Low Flow Region 3]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	28	ft^3/s	43	43
30 Day 2 Year Low Flow	38.1	ft*3/s	38	38
7 Day 10 Year Low Flow	16.5	ft*3/s	54	54

WQM 7.0

Input Data WQM 7.0

	SWP Basir	Strea Cod	im le	Stre	am Name		RMI	Elevati (ft)	ion Draii Ar (sq	nage Si rea (mi) (f	lope PV With ft/ft) (m	VS drawal Igd)	Appl FC
	18E	458	15 LITTL	E CONEN	AUGH RIV	ER	11.28	0 144	7.00	159.00 0.0	00000	0.00	\checkmark
					St	ream Dat	a						
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	i <u>tary</u> pH	<u>Strea</u> Temp	m pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	25.00	7.00	0.00	0.00	
					Di	scharge	Data					7	
			Name	Per	mit Number	Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH		
		S For	k Reg WW	TP PA	0216941	1.200	0 1.200	0 1.2000	0.000	25.0	0 7.17		
					Pa	arameter	Data		-				
			1	Paramete	r Name	D C (m	isc I onc C ig/L) (m	nd Stro conc Co ng/L) (m	eam Fa onc Co g/L) (1/d	ite pef ays)			
	-		CBOD5				25.00	2.00	0.00	1.50			

5.00

12.00

8.24

0.00

0.00

0.00

0.00

0.70

Dissolved Oxygen

NH3-N

	SWP Basir	Strea n Coo	am Je	Stre	eam Name		RMI	Elevati (ft)	on Drair Ar (sq	nage rea mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Appl FC
	18E	45	815 LITTL	E CONEN	AUGH RIV	ER	9.90	00 141	5.00 1	62.00	0.00000	0.00	v
					St	ream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	tary pH	Tem	<u>Stream</u> p pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.00	25.00	7.00) (.00 0.0	0
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
					Di	scharge l	Data						
			Name	Per	mit Number	Existing Disc Flow	Permitte Disc Flow	ed Design Disc Flow	Reserve Factor	Disc Temp	p Dis	ic H	
						(mgd)	(mgd)	(mgd)		(°C)			
						0.000	0.000	0.0000	0.000	25	.00	7.00	
					Pa	arameter	Data						
						Di	sc 1 onc C	Trib Stre Conc Co	eam Fai onc Co	te ef			
				Paramete	r Name								

25.00

3.00

25.00

(mg/L) (mg/L) (mg/L) (1/days)

0.00

0.00

0.00

1.50

0.00

0.70

2.00

8.24

0.00

Input Data WQM 7.0

CBOD5

NH3-N

Dissolved Oxygen

					119 %1	v ajn	anne	044	- u . u			
	SWP Basin Stream Code							Stream	Name			
		18E	45815		LITTLE CONEMAUGH RIVER							
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
11.280	15.90	0.00	15.90	1.8564	0.00439	.839	62.04	73.97	0.34	0.247	25.00	7.01
Q1-1	0 Flow											
11.280	10.18	0.00	10.18	1.8564	0.00439	NA	NA	NA	0.27	0.307	25.00	7.02
Q30-	10 Flow	/										
11.280	21.62	0.00	21.62	1.8564	0.00439	NA	NA	NA	0.40	0.211	25.00	7.01

WQM 7.0 Hydrodynamic Outputs

Version 1.0b

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

Monday, June 5, 2023

Version 1.0b

	SWP Basin 18E	<u>Stre</u>	<u>am Code</u> 15815		<u>St</u> LITTLE CO	<u>ream Name</u> DNEMAUGH F	RIVER	
H3-N	Acute Alloc	atior	IS					
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
44.00	0. C Early Days	ww	0.00	24	0.00	24	0	0
11.20	SU S FOR Reg	****	0.00	24	0.00	24		
11.2	Chronic All	locati	ons	24	0.00	24	U	0
IH3-N RMI	Chronic All Discharge N	locati	ONS Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

WQM 7.0 Wasteload Allocations

RMI Baseline Multiple Baseline Multiple Baseline Multiple Discharge Name Reach Reduction (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 11.28 S Fork Reg WWTP 25 5 0 25 12 12 5 0

Monday, June 5, 2023

Version 1.0b

<u>SWP Basin</u> <u>St</u> 18E	ream Code 45815		LITTLE	Stream Name CONEMAUGH RIVE	R
RMI	Total Discharge	Flow (mgd) <u>Anal</u>	lysis Temperature (°C)	Analysis pH
11.280	1.20	0		25.000	7.015
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
62.041	0.83	9		73.974	0.341
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
4.40	0.80	4		1.25	1.029
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)
7.904	11.51	5		Tsivoglou	5
Reach Travel Time (days) 0.247	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.025	4.30	1.22	7.54	
	0.049	4.19	1.19	7.54	
	0.074	4.09	1.16	7.54	
	0.099	3.99	1.13	7.53	
	0.124	3.89	1.10	7.49	
	0.148	3.79	1.08	7.48	
	0.173	3.70	1.05	7.47	
	0.198	3.61	1.02	7.47	
	0.222	3.52	1.00	7.48	
	0.247	3.43	0.97	7.49	

WQM 7.0 D.O.Simulation

Monday, June 5, 2023

Version 1.0b

	<u>SWP Basin</u> 18E	<u>Stream (</u> 4581	<u>Code</u> 5		<u>Stream Name</u> LITTLE CONEMAUGI	e H RIVER			
RMI	Name		Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
11.280	S Fork Reg W	/WTP	PA0216941	1.200	CBOD5	25			
					NH3-N	12	24		
					Dissolved Oxygen			5	

WQM 7.0 Effluent Limits

Toxics Management Spreadsheet V1.4

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Ins	tructions	ischarge Stream	1															
Fac	sility: S Fe	ork Regional WWTP	,					NP	DES Per	mit No.:	PA0216	941		Outfall	No.: 001	I		
Eva	aluation Type:	Major Sewage	Industr	ial V	Nast	e		Wa	stewater	Descrip	tion: Tre	ated Se	wage					
_																		
						Discha	rge	Cha	aracteris	tics								
D	esign Flow	Hardness (mg/l)*		sin				Parti	al Mix Fa	actors (I	PMFs)		Com	plete Mi	x Times	(m	in)	1
	(MGD)*	naroness (mgn)	prit	30)		AFC	2		CFC	THE	H	CRL	Q	7-10	0	a _n		
	1.2	97.7	7.2	227														
			•															
								0 lf le	ft blank	0.5 11 16	eft blank	0) if left blan	ĸ	1 If lef	t bla	ink	
	Disch	arge Pollutant	Units	Ma	ix Dis Co	scharge Inc	1 C	rib onc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	CI Tr	her ran	m sl
	Total Dissolve	ed Solids (PWS)	mg/L															
5	Chloride (PW	S)	mg/L															
l III	Bromide		mg/L															
5	Sulfate (PWS)	mg/L															
	Fluoride (PW	S)	mg/L															
	Total Aluminu	m	µg/L			30.8		\square										
	Total Antimor	iy .	µg/L	<		1		\square										
	Total Arsenic		µg/L	<		2.5	4	\downarrow										
	Total Barium		µg/L			20.4	⊨	╞┼								⊢		
	Total Berylliur	n	µg/L	<	(0.676	⊨	╞			L					⊢		
	Total Boron		µg/L		<u> </u>	273	⊨	\Rightarrow								⊢		_
	Total Cadmiu	m	µg/L	<	(0.123	H-	++										
	Total Chromit	um (III)	µg/L	_	<u> </u>		Ħ	++	<u> </u>									_
	Hexavalent C	hromium	µg/L	<	<u> </u>	0.25	Ħ	Ħ	<u> </u>		<u> </u>							
	Total Copper		µg/L	<	<u> </u>	18.4										⊢		_
~	Free Cyanide		µg/L	<u> </u>	<u> </u>	8			<u> </u>									
8	Total Cyanide		ug/L	~	<u> </u>	10			-								+	÷
2	Dissolved Iror	1	ug/l	-		70			-							-	_	_
0	Total Iron		uo/l			80		++	-									_
	Total Lead		uo/L			0.66		+										_
1	Total Managan					24.2	H=										_	_

µg/L

<

<

<

<

<

<

<

<

<

<

<

34.2

0.104

2.75

4

2.5

0.274

0.5

182

8.58

1.95

0.51

0.43

0.34

0.51

Π

Total Manganese

Total Phenols (Phenolics) (PWS)

Total Mercury

Total Selenium

Total Nickel

Total Silver

Total Zinc

Acrolein

Acrylamide

Acrylonitrile

Bromoform

Benzene

Total Thallium

Total Molybdenum

Carbon Tetrachloride

	Chlorobenzene	ua/l		0.21							
1	Chlorodihromomothano	ug/	-	0.20	Ħ	+++	1	<u> </u>			
	Chlorodibromomethane	Pg/L		0.58	Ħ	++	-				
	Chloroethane	µg/L	<	0.42	Ħ	++					
1	2-Chloroethyl Vinyl Ether	µg/L	<	4							
	Chloroform	µg/L		0.89		+-+	-				
1	Dichlorobromomethane	ua/L	<	0.32							
	1.1-Dichloroethane	ua/L	<	0.42							
	1.2 Disbloroothans	ual	-	0.20							
100	1,2-Dichloroethalie	Pgrt		0.00				<u> </u>			
5	1,1-Dichloroethylene	µg/L	<	0.33	Ť.	11	1				
18	1,2-Dichloropropane	µg/L	<	0.42		ii					
0	1,3-Dichloropropylene	µg/L	<	0.59	H						
	1.4-Dioxane	ua/L	<	3	H						
1	Ethylhenzene	ual	<	0.27		++	-				
	Mathud Respire	- Part		0.48		++	-	<u> </u>			
	Methyl Bromide	µg/L	~	0.40							
	Methyl Chloride	µg/L	<	0.36	1	+					
	Methylene Chloride	µg/L	<	0.45							
1	1,1,2,2-Tetrachloroethane	µg/L	<	0.36			1				
	Tetrachloroethviene	ua/L	<	0.39	t-						
	Toluene	ug/l	<	0.33	h	+++					
1	1.2.trans_Dickloreathylana	ugi	-	0.20	H-	+++					
1	1,2-Gans-Diomoroeutylene	Pg/L	-	0.58							
1	1, 1, 1-1 nonioroetnane	µg/L	<	0.38							
1	1,1,2-Trichloroethane	µg/L	<	0.24							
1	Trichloroethylene	µg/L	<	0.46							
1	Vinvl Chloride	ua/L	<	0.46							
\vdash	2 Chlorophonol	ual	1	0.12	H-	††					
	2.4 Disklassikasi	Pg/L		0.15	⊬	+++	<u> </u>	<u> </u>		<u> </u>	
	2,4-Dichiorophenol	µg/L	<	0.25	⊭⊨	╞╤┼					
	2,4-Dimethylphenol	µg/L	<	0.26	⊢⊢						
	4,6-Dinitro-o-Cresol	µg/L	<	0.9	Ц.						
4	2.4-Dinitrophenol	ug/L	<	0.86							
15	2-Nitrophenol	ua/L	<	0.25							
2	4 Nitrophonol	ual	-	0.10	F						
0	4-Nitrophenoi	Pg/L		0.18	Ħ	÷	1	<u> </u>		<u> </u>	
	p-Chloro-m-Cresol	µg/L	<	0.4		++					
1	Pentachlorophenol	µg/L	<	0.97		++					
	Phenol	µg/L	<	0.25			-				
	2.4.6-Trichlorophenol	ua/L	<	0.24		++					
\vdash	Acenanothene	ual	<	0.26			<u> </u>				
	Assessebilitudese	PS-C	-	0.20		++		 <u> </u>			
	Acenaphinylene		-	0.22							
		µg/L	<	0.22		i i	<u> </u>				
1	Anthracene	μg/L μg/L	<	0.22 0.16							
	Anthracene Benzidine	µg/L µg/L µg/L	<	0.22 0.16 0.35			-				
	Anthracene Benzidine Benzo(a)Anthracene	µg/L µg/L µg/L µg/L	<	0.22 0.16 0.35 0.28							
	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene	μg/L μg/L μg/L μg/L μg/L	< < <	0.22 0.16 0.35 0.28 0.29							
	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3.4-Benzofluoranthene	μg/L μg/L μg/L μg/L μg/L	< < < <	0.22 0.16 0.35 0.28 0.29 0.31							
	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(chi)Bandone	μg/L μg/L μg/L μg/L μg/L μg/L	< < < < <	0.22 0.16 0.35 0.28 0.29 0.31							
	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	< < < < <	0.22 0.16 0.35 0.28 0.29 0.31 0.32							
	Anthracene Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	< < < < < < < < < < < < < <	0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4							
	Anthracene Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane	μ <u>γ</u> μ μο/L μο/L μο/L μο/L μο/L μο/L μο/L	<	0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15							
	Anthracene Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethyl)Ether	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	< <tr> <</tr>	0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25							
	Anthracene Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-ChloroethoyI)Ether Bis(2-ChloroethoyI)Ether	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	< <tr> <</tr>	0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34							
	Anthracene Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroethyl)Ether Bis(2-Chloroisoproyl)Ether Bis(2-Ethylbayyl)Pythalate	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	< <tr> <</tr>	0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83							
	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4. Dremeshered Dhered Ether	<u>ру</u> L <u>ру</u> L <u>ру</u> L <u>ру</u> L <u>ру</u> L <u>ру</u> L <u>ру</u> L <u>ру</u> L <u>ру</u> L		0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.40							
	Anthracene Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether	руі руі руі руі руі руі руі руі		0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.4							
	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate	<u>ру</u> L <u>ру</u> L	<	0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.48							
	Anthracene Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene	<u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> µg/L	<	0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.48 0.28							
	Anthracene Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether	<u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u>	<	0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.48 0.28 0.29							
	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene	<u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u>		0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.48 0.28 0.29 0.45							
	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a b)Anthrancene	<u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u>		0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.48 0.28 0.29 0.45 0.29							
	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1 - 2 Dielembenzene	<u>ру</u> L <u>ру</u> L		0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.48 0.28 0.29 0.45 0.28 0.29							
	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene	<u>µ9/L</u> <u>µ9/L</u> <u>µ9/L</u> <u>µ9/L</u> <u>µ9/L</u> <u>µ9/L</u> <u>µ9/L</u> <u>µ9/L</u> <u>µ9/L</u> <u>µ9/L</u> <u>µ9/L</u> <u>µ9/L</u> <u>µ9/L</u> <u>µ9/L</u> <u>µ9/L</u> <u>µ9/L</u> <u>µ9/L</u>		0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.48 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.44 0.25 0.25 0.34 0.28 0.29 0.45 0.25 0.34 0.28 0.29 0.34 0.48 0.25 0.34 0.48 0.28 0.29 0.34 0.48 0.28 0.29 0.34 0.48 0.28 0.29 0.34 0.48 0.28 0.29 0.34 0.48 0.28 0.29 0.34 0.48 0.28 0.29 0.34 0.28 0.29 0.34 0.28 0.29 0.34 0.28 0.29 0.48 0.28 0.29 0.48 0.28 0.29 0.48 0.28 0.29 0.45 0.29 0.48 0.29 0.45 0.29 0.48 0.29 0.45 0.29 0.48 0.29 0.45 0.29 0.45 0.28 0.29 0.45 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.29 0.32 0.32 0.32 0.32 0.29 0.32 0.32 0.32 0.32 0.32 0.29 0.32 0.32 0.32 0.32 0.29 0.32 0							
	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	<u>ру</u> Г. <u>ру</u> Г.		0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.48 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.25 0.25 0.34 0.28 0.25 0.34 0.25 0.34 0.45 0.28 0.25 0.34 0.45 0.28 0.25 0.34 0.45 0.25 0.34 0.48 0.28 0.29 0.34 0.48 0.28 0.29 0.34 0.42 0.48 0.28 0.29 0.34 0.48 0.28 0.48 0.28 0.29 0.34 0.48 0.28 0.48 0.28 0.29 0.44 0.28 0.29 0.44 0.28 0.29 0.44 0.28 0.29 0.45 0.28 0.29 0.44 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.29 0.45 0.29 0.45 0.29 0.45 0.29 0.45 0.28 0.29 0.45 0.28 0.28 0.29 0.45 0.28 0.28 0.28 0.28 0.29 0.45 0.28 0.28 0.28 0.28 0.29 0.45 0.28 0.28 0.28 0.29 0.45 0.28 0.32 0.32 0.32 0.45 0.32 0.34 0.32 0.32 0.34 0.32 0.34 0.32 0.34 0.32 0.34 0.34 0.32 0.34 0.32 0.34 0.34 0.32 0.34 0.34 0.32 0.34 0.34 0.34 0.34 0.34 0							
2	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	<u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u>		0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.48 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.25 0.25 0.34 0.48 0.29 0.45 0.25 0.34 0.48 0.28 0.29 0.44 0.45 0.25 0.25 0.28 0.29 0.45 0.25 0.28 0.29 0.45 0.25 0.28 0.29 0.45 0.28 0.29 0.31 0.25 0.28 0.29 0.31 0.25 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.29 0.45 0.29 0.45 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.28 0.29 0.45 0.28 0.28 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.35 0.32 0.32 0.32 0.32 0.32 0.35 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.35 0							
ip 5	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzene	<u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u>		0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.48 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.32 0.17 0.15 0.13							
oup 5	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 3,3-Dichlorobenzene Diethyl Phthalate	<u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u>		0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.48 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.34 0.28 0.29 0.34 0.28 0.29 0.34 0.28 0.29 0.34 0.28 0.29 0.34 0.28 0.29 0.34 0.28 0.29 0.34 0.28 0.28 0.25 0.34 0.28 0.28 0.28 0.25 0.34 0.28 0.28 0.28 0.25 0.34 0.28 0.28 0.28 0.34 0.28 0.28 0.28 0.28 0.34 0.28 0.29 0.48 0.28 0.29 0.45 0.28 0.29 0.34 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.32 0.17 0.15 0.13 0.27 0.13 0.27 0.13 0.27 0.13 0.27 0.13 0.27 0.13 0.27 0.13 0.27 0.27 0.13 0.27 0.27 0.13 0.27 0.27 0.27 0.13 0.27 0							
Group 5	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 3,3-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate	<u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u>		0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.48 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.31 0.25 0.34 0.28 0.29 0.34 0.25 0.34 0.28 0.29 0.34 0.48 0.28 0.29 0.44 0.55 0.34 0.28 0.29 0.45 0.28 0.29 0.34 0.28 0.29 0.42 0.48 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.32 0.32 0.32 0.32 0.17 0.15 0.27 0.15 0.28 0.32 0.17 0.15 0.27 0.15 0.27 0.28 0.32 0.17 0.15 0.27 0.27 0.27 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.27 0.15 0.27 0.15 0.27 0.27 0.27 0.22 0.27 0.22 0.27 0.22 0.27 0.22 0.27 0.22 0.27 0.22 0.27 0.22 0.22 0.27 0.22 0							
Group 5	Anthracene Benzo(a)Anthracene Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 3,3-Dichlorobenzene Diethyl Phthalate Dimethyl Phthalate Dimethyl Phthalate	<u>ру</u> L <u>ру</u> L		0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.48 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.34 0.25 0.34 0.28 0.29 0.31 0.25 0.34 0.28 0.29 0.31 0.25 0.34 0.28 0.29 0.34 0.25 0.34 0.28 0.29 0.34 0.25 0.34 0.28 0.29 0.34 0.25 0.34 0.28 0.29 0.34 0.25 0.34 0.28 0.29 0.34 0.28 0.29 0.34 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.32 0.17 0.15 0.27 0.27 0.28 0.32 0.17 0.15 0.27 0.27 0.27 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.27 0.15 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.23 0.27 0.23 0.27 0.23 0.27 0.23 0.27 0.23 0.27 0.23 0.27 0.23 0.27 0.23 0.27 0.23 0.27 0.23 0.27 0.23 0.27 0.23 0.25 0							
Group 5	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Chloroisopropyl)Ether Chloroisopropyl)Ether Chloroisopropyl)Ether Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate	<u>ру</u> L <u>ру</u> L	v v	0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.48 0.28 0.29 0.45 0.27 0.28 0.29 0.45 0.29 0.45 0.27 0.23 0.27 0.23 0.29 0.23 0.27 0.23 0.29 0							
Group 5	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzene Diethyl Phthalate Dimethyl Phthalate Din-Butyl Phthalate 2,4-Dinitrotoluene	<u>ру</u> L <u>ру</u> L	v v	0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.48 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.29 0.77 0.23 0.27 0.23 0.27 0.23 0.27 0.23 0.29 0.77 0							
Group 5	Anthracene Benzidine Benzo(a)Anthracene Benzo(a)Pyrene 3,4-Benzofluoranthene Benzo(ghi)Perylene Benzo(k)Fluoranthene Bis(2-Chloroethoxy)Methane Bis(2-Chloroethoxy)Methane Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 3,3-Dichlorobenzene Diethyl Phthalate Dimethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L		0.22 0.16 0.35 0.28 0.29 0.31 0.32 0.4 0.15 0.25 0.34 0.83 0.19 0.48 0.28 0.29 0.45 0.28 0.29 0.45 0.28 0.32 0.17 0.15 0.13 0.27 0.23 0.29 0.77 0.32							

							_		 		
	1,2-Diphenylhydrazine	µg/L	<	0.2							
	Fluoranthene	µg/L	<	0.35			_				
	Fluorene	µg/L	<	0.25			_				
	Hexachlorobenzene	µg/L	<	0.25							
	Hexachlorobutadiene	µg/L	٨	0.27			-				
	Hexachlorocyclopentadiene	µg/L	>	0.22			_				
	Hexachloroethane	µg/L	<	0.26			_				
	Indeno(1,2,3-cd)Pyrene	ug/L	<	0.25			-				
	Isophorone	ua/L	<	0.23			_				
	Nanhthalene	uo/l	<	0.25		H	-				
	Nitrobenzene	ugl	<	0.26		H	_				
	n Nitrosodimethylamine	ug/	-	0.4		⊢	-	<u> </u>			
	n-Nitrosodi ne Decederciae	Pg/L		0.91							
	n-ivitrosodi-n-Propylamine	µg/L	-	0.31		H	_				
	n-Nitrosodiphenylamine	µg/L	<	0.27			_				
	Phenanthrene	µg/L	<	0.21			_			 	
	Pyrene	µg/L		0.25							
	1,2,4-Trichlorobenzene	µg/L	<	0.17						 	
	Aldrin	µg/L	<								
	alpha-BHC	µg/L	<								
	beta-BHC	µg/L	۸								
	gamma-BHC	µg/L	<								
	delta BHC	µg/L	<								
	Chlordane	µg/L	<		Ť.	Ē					
	4.4-DDT	ua/L	<		r -	Ħ					
	4 4-DDF	ug/l	<		r -	Ħ					
	44.000	ual	1		H-	H					
	Dialdria	µg/L	-		H=	H					
	oleka Federalfer	pg/L	1		H=	Ħ		<u> </u>			
	aipna-Endosuitan	µg/L	<		H=	H	_	<u> </u>			
60	beta-Endosultan	µg/L	<		#=	Ħ					
8	Endosultan Sultate	µg/L	<		=	H	_				
ğ	Endrin	µg/L	<			Ħ	_				
Ō	Endrin Aldehyde	µg/L	<			H	_			 	
	Heptachlor	µg/L	<								
	Heptachlor Epoxide	µg/L	<				_				
	PCB-1016	µg/L	<				-				
	PCB-1221	µg/L	<				-				
	PCB-1232	µg/L	٨				-				
	PCB-1242	µg/L	>				_				
	PCB-1248	ua/L	<				-				
	PCB-1254	ua/L	<		H	Ħ	-				
	PCB-1260	ug/l	<		=	Ħ	-				
	PCBs Total	ug/l	<		=	Ħ	-				
	Toyanhene	ugl	<		=	╞╡	-	<u> </u>			
	2 3 7 8-TCDD	ng/l	-		+	╞╡	-				
	Gross Alpha	- Ci/l			+	⊢					
	Total Data	POIL - OUL	-		<u> </u>	H	_	<u> </u>			 ++++
7	Total Beta	POIL OUL	~		<u> </u>	H					
Ĭ.	Radium 220/228	PCI/L	<			H	_				
Ĕ.	Total Strontium	µg/L	<		Ļ_	ĻĻ	_			 	 + $+$ $+$ $+$
Ŭ	Total Uranium	µg/L	<								
	Osmotic Pressure	mOs/kg				Ц				 	
							_				
						E					
						I I					

nstructions Discharge Stream

Receiving Surface V	ater Name: Litt	le Conemau	gh River			No. Reaches to Mod	el: <u>1</u>
Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	045815	11.28	1447	159			Yes
End of Reach 1	045815	9.9	1415	162			Yes

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Q 7-10

Location	PMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	n	Analys	is
Location	T SIMI	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	рH
Point of Discharge	11.28	0.1										129	7		
End of Reach 1	9.9	0.1													

Qh

Location	DMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location	PSIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	11.28														
End of Reach 1	9.9														

Hydrodynamics

✓ Wasteload Allocations

AFC CC	T (min): 1	15	PMF:	0.425	Ana	lysis Hardne	ss (mg/l):	122.25 Analysis pH: 7.04
Pollutants	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (ua/L)	Comments
	Conc	CV	(µg/L)	Coef	(µg/L)	(µg/L)		
Total Aluminum	0	0		0	750	750	3,479	
Total Antimony	0	0		0	1,100	1,100	5,103	
Total Arsenic	0	0		0	340	340	1,577	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	97,412	
Total Boron	0	0		0	8,100	8,100	37,573	
Total Cadmium	0	0		0	2.448	2.62	12.1	Chem Translator of 0.936 applied
Hexavalent Chromium	0	0		0	16	16.3	75.6	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	441	
Total Copper	0	0		0	16.240	16.9	78.5	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	22	22.0	102	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	80.317	105	489	Chem Translator of 0.762 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	7.64	Chem Translator of 0.85 applied
Total Nickel	0	0		0	554.989	556	2,580	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	4.545	5.35	24.8	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	302	
Total Zinc	0	0		0	138.928	142	659	Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	13.9	
Acrylonitrile	0	0		0	650	650	3,015	
Benzene	0	0		0	640	640	2,969	
Bromoform	0	0		0	1,800	1,800	8,350	
Carbon Tetrachloride	0	0		0	2,800	2,800	12,988	
Chlorobenzene	0	0		0	1,200	1,200	5,566	

Model Results

8/2/2023

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0216941

Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	18,000	18,000	83,496	
Chloroform	0	0		0	1,900	1,900	8,814	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	15,000	15,000	69,580	
1,1-Dichloroethylene	0	0		0	7,500	7,500	34,790	
1,2-Dichloropropane	0	0		0	11,000	11,000	51,026	
1,3-Dichloropropylene	0	0		0	310	310	1,438	
Ethylbenzene	0	0		0	2,900	2,900	13,452	
Methyl Bromide	0	0		0	550	550	2,551	
Methyl Chloride	0	0		0	28,000	28,000	129,883	
Methylene Chloride	0	0		0	12,000	12,000	55,664	
1,1,2,2-Tetrachloroethane	0	0		0	1,000	1,000	4,639	
Tetrachloroethylene	0	0		0	700	700	3,247	
Toluene	0	0		0	1,700	1,700	7,886	
1,2-trans-Dichloroethylene	0	0		0	6,800	6,800	31,543	
1,1,1-Trichloroethane	0	0		0	3,000	3,000	13,916	
1,1,2-Trichloroethane	0	0		0	3,400	3,400	15,772	
Trichloroethylene	0	0		0	2,300	2,300	10,669	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	560	560	2,598	
2,4-Dichlorophenol	0	0		0	1,700	1,700	7,886	
2,4-Dimethylphenol	0	0		0	660	660	3,062	
4,6-Dinitro-o-Cresol	0	0		0	80	80.0	371	
2,4-Dinitrophenol	0	0		0	660	660	3,062	
2-Nitrophenol	0	0		0	8,000	8,000	37,109	
4-Nitrophenol	0	0		0	2,300	2,300	10,669	
p-Chloro-m-Cresol	0	0		0	160	160	742	
Pentachlorophenol	0	0		0	9.080	9.08	42.1	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	460	460	2,134	
Acenaphthene	0	0		0	83	83.0	385	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	300	300	1,392	
Benzo(a)Anthracene	0	0		0	0.5	0.5	2.32	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	30,000	30,000	139,161	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	4,500	4,500	20,874	
4-Bromophenyl Phenyl Ether	0	0		0	270	270	1,252	
Butyl Benzyl Phthalate	0	0		0	140	140	649	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	820	820	3,804	
1,3-Dichlorobenzene	0	0	+	0	350	350	1,624	

Model Results

8/2/2023

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0216941

1,4-Dichlorobenzene	0	0			0	730	730	3,386	
3,3-Dichlorobenzidine	0	0			0	N/A	N/A	N/A	
Diethyl Phthalate	0	0			0	4,000	4,000	18,555	
Dimethyl Phthalate	0	0			0	2,500	2,500	11,597	
Di-n-Butyl Phthalate	0	0			0	110	110	510	
2.4-Dinitrotoluene	0	0			0	1,600	1,600	7,422	
2.6-Dinitrotoluene	0	0			0	990	990	4,592	
1.2-Diphenylhydrazine	0	0			0	15	15.0	69.6	
Fluoranthene	0	0			0	200	200	928	
Fluorene	0	0			0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		++	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	╞┼═┼	++	ō	10	10.0	46.4	
Hexachlorocyclopentadiene	0	0	╞╪╤╡	++	0	5	50	23.2	
Hexachloroethane	0	0	╞┼═┼	++	ō	60	60.0	278	
Indeno(1.2.3-cd)Pyrene	0	0	╞┼╤┼	++	0	N/A	N/A	N/A	
Isophorope	0	0	┝┼─┼		n n	10,000	10,000	46 387	
Naphthalene	0	0		++	0	140	140	649	
Nitrobenzene	0	0			0	4 000	4,000	18 555	
n-Nitrosodimethylamine	0	0		++	ň	17,000	17,000	78,858	
n-Nitrosodi-n-Pronvlamine	0	ő	┝┼─┼	++	ň	N/A	N/A	N/A	
n Nitrocodinhonylamine	0	0	╞┼╤┼	++	0	200	200	1 202	
Phonophenylamine	0	- U	╞╪╤		0	500	500	1,002	
Prienandriene	0	v v		++		J.	0.0	23.2	
Pyrene 1.0.4 Trickland	0	U				N/A	N/A	N/A 800	
1,2,4-Inchiorobenzene							1.014		
					-	100	100	000	
☑ CFC cc	T (min): 83.	110	F	PMF:	1	Ana	alysis Hardne	ess (mg/l):	125.73 Analysis pH: 7.02
	T (min): 83.	110 Stream	F	PMF:	1 Fate	Ana	alysis Hardne	ess (mg/l):	125.73 Analysis pH: 7.02
CFC CC Pollutants	T (min): 83. Sueam Conc	110 Stream CV	F Trib (µ	PMF: Conc	1 Fate Coef	Ana WQC (µg/L)	WQ Obj	ess (mg/l): WLA (μg/L)	125.73 Analysis pH: 7.02 Comments
CFC CC Pollutants Total Aluminum	T (min): 83. Sueann Conc (un/L) 0	110 Stream CV 0	F Trib (µ	PMF: Conc ig/L)	1 Fate Coef	WQC (µg/L) N/A	alysis Hardne WQ Obj (µg/L) N/A	ess (mg/l): WLA (μg/L) N/A	125.73 Analysis pH: 7.02 Comments
CFC CCT Pollutants Total Aluminum Total Antimony	T (min): 83. Sueam Conc (un/L) 0	110 Stream CV 0	F Trib (µ	PMF: Conc Ig/L)	1 Fate Coef 0	Αna WQC (μg/L) N/A 220	WQ Obj (µg/L) N/A 220	WLA (µg/L) N/A 2,104	125.73 Analysis pH: 7.02 Comments
CFC CCT Pollutants Total Aluminum Total Antimony Total Arsenic	T (min): 83. Stream Conc (ug/l) 0 0	Stream CV 0 0	F Trib (µ	PMF: Conc ig/L)	1 Fate Coef 0 0	Ana WQC (μg/L) N/A 220 150	WQ Obj (µg/L) N/A 220 150	WLA (µg/L) N/A 2,104 1,435	125.73 Analysis pH: 7.02 Comments Chem Translator of 1 applied
CFC CCT Pollutants Total Aluminum Total Antimony Total Arsenic Total Barium	T (min): 83. Stream Conc (un/l) 0 0 0 0 0	110 Stream CV 0 0 0 0	F Trib (µ	PMF: Conc Ig/L)	1 Fate Coef 0 0 0	Ana WQC (µg/L) N/A 220 150 4,100	WQ Obj (µg/L) N/A 220 150 4,100	WLA (µg/L) N/A 2,104 1,435 39,216	125.73 Analysis pH: 7.02 Comments Chem Translator of 1 applied
CFC CCT Pollutants Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron	T (min): 83. Stream Conc (unil) 0 0 0 0 0 0	110 Stream CV 0 0 0 0 0	F Trib (µ	PMF: Conc ig/L)	1 Fate Coef 0 0 0 0	Ana WQC (µg/L) N/A 220 150 4,100 1,600	WQ Obj (µg/L) N/A 220 150 4,100 1,600	WLA (μg/L) N/A 2,104 1,435 39,216 15,304	125.73 Analysis pH: 7.02 Comments Chem Translator of 1 applied
CFC CCT Pollutants Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium	T (min): 83. Sueam Conc (und) 0 0 0 0 0 0 0 0	110 Stream CV 0 0 0 0 0 0	F Trib (µ	PMF: Conc ig/L)	1 Fate Coef 0 0 0 0 0 0	Ana WQC (µg/L) N/A 220 150 4,100 1,600 0.288	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.32	WLA (μg/L) N/A 2,104 1,435 39,216 15,304 3.07	125.73 Analysis pH: 7.02 Comments Chem Translator of 1 applied Chem Translator of 0.899 applied
CFC CCT Pollutants Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Hexavalent Chromium	T (min): 83. Surearn Conc (und) 0 0 0 0 0 0 0 0 0 0 0	110 Stream CV 0 0 0 0 0 0 0	F Trib (µ	PMF: Conc ig/L)	1 Fate Coef 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A 220 150 4,100 1,600 0.288 10	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.32 10.4	WLA (μg/L) N/A 2,104 1,435 39,216 15,304 3.07 99.4	125.73 Analysis pH: 7.02 Comments Chem Translator of 1 applied Chem Translator of 0.899 applied Chem Translator of 0.992 applied
CFC CCT Pollutants Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Cobalt	T (min): 83. Stream Conc (und) 0 0 0 0 0 0 0 0 0 0 0 0	110 Stream CV 0 0 0 0 0 0 0 0	F Trib (µ	PMF: Conc ig/L)	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A 220 150 4,100 1,600 0.288 10 19	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.32 10.4 19.0	WLA (μg/L) N/A 2,104 1,435 39,216 15,304 3.07 99.4 182	125.73 Analysis pH: 7.02 Comments Chem Translator of 1 applied Chem Translator of 0.899 applied Chem Translator of 0.962 applied
CFC CCT Pollutants Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Copper Total Copper	T (min): 83. Stream Conc (unit) 0 0 0 0 0 0 0 0 0 0 0 0 0	110 Stream CV 0 0 0 0 0 0 0 0 0		PMF:	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A 220 150 4,100 1,600 0.288 10 19 10,891	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.32 10.4 19.0 11.3	WLA (μg/L) N/A 2,104 1,435 39,216 15,304 3,07 99,4 182 109	125.73 Analysis pH: 7.02 Comments Chem Translator of 1 applied Chem Translator of 0.899 applied Chem Translator of 0.962 applied Chem Translator of 0.96 applied
CFC CCT Pollutants Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Copper Eree Cvanide	T (min): 83. Stream Conc (und) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	110 Stream CV 0 0 0 0 0 0 0 0 0 0 0		PMF:	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0	Anz WQC (µg/L) N/A 220 150 4,100 1,600 0.228 10 19 10.891 5,2	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.32 10.4 19.0 11.3 5.2	WLA (μg/L) N/A 2,104 1,435 30,216 15,304 3.07 90.4 182 109 49.7	125.73 Analysis pH: 7.02 Comments Chem Translator of 1 applied Chem Translator of 0.899 applied Chem Translator of 0.982 applied Chem Translator of 0.962 applied Chem Translator of 0.963 applied
CFC CCT Pollutants Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Copper Free Cyanide Dissolved Ipon	T (min): 83. Stream Conc (und) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	110 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0		PMF: (Conc g/L)	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	Anz WQC (µg/L) N/A 220 150 4,100 1,600 0.288 10 19 10.891 5.2 N/A	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.32 10.4 19.0 11.3 5.2 N/A	WLA (μg/L) N/A 2,104 1,435 39,216 15,304 3,07 99,4 182 109 49,7 Ν/Α	125.73 Analysis pH: 7.02 Comments Chem Translator of 1 applied Chem Translator of 0.899 applied Chem Translator of 0.902 applied Chem Translator of 0.902 applied Chem Translator of 0.903 applied
CFC CC Pollutants Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Barium Total Cadmium Hexavalent Chromium Total Cobalt Total Copper Free Cyanide Dissolved Iron Total Iron	T (min): 83. Stream Conc (und) 0 0 0 0 0 0 0 0 0 0 0 0 0	110 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	F	PMF:	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A 220 150 4,100 1,800 0.288 10 19 10.891 5.2 N/A 1,500	WQ Obj (μg/L) N/A 220 150 4,100 1,600 0.32 10.4 19.0 11.3 5.2 N/A 1500	WLA (μg/L) N/A 2,104 1,435 39,216 15,304 3.07 99.4 182 109 49.7 N/A 14,347	125.73 Analysis pH: 7.02 Comments Chem Translator of 1 applied Chem Translator of 0.899 applied Chem Translator of 0.962 applied Chem Translator of 0.962 applied Chem Translator of 0.963 applied Chem Translator of 0.963 applied WOC = 30 day average: PME = 1
CFC CCT Pollutants Total Aluminum Total Antimony Total Ansenic Total Barium Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Free Cyanide Dissolved Iron Total Iron Total Iron Total Iron Total Iron Total Iron	T (min): 83. Stream Conc (und) 0 0 0 0 0 0 0 0 0 0 0 0 0	110 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	F Trib	PMF:	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A 220 150 4,100 1,600 0.288 10 19 10.891 5.2 N/A 1,500 2,232	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.32 10.4 19.0 11.3 5.2 N/A 1,500	WLA (μg/L) N/A 2,104 1,435 39,216 15,304 3.07 99.4 182 109 49.7 N/A 14,347 107	125.73 Analysis pH: 7.02 Comments Chem Translator of 1 applied Chem Translator of 0.899 applied Chem Translator of 0.962 applied Chem Translator of 0.96 applied WQC = 30 day average; PMF = 1 Chem Translator of 0.96 applied
CFC CCT Pollutants Total Aluminum Total Antimony Total Arsenic Total Barron Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Copper Free Cyanide Dissolved Iron Total Iron Total Icad Total Lead Total Lead	T (min): 83. Stream Conc (und) 0 0 0 0 0 0 0 0 0 0 0 0 0	110 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		PMF:	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Anz WQC (µg/L) N/A 220 150 4,100 1,600 0.288 10 19 10.891 5.2 N/A 1,500 3.226	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.32 10.4 19.0 11.3 5.2 N/A 1,600 4,28	WLA (μg/L) N/A 2,104 1,435 39,216 15,304 3.07 99.4 182 109 49.7 N/A 14,347 40.7 N/A	125.73 Analysis pH: 7.02 Comments Chem Translator of 1 applied Chem Translator of 0.899 applied Chem Translator of 0.899 applied Chem Translator of 0.962 applied Chem Translator of 0.962 applied WQC = 30 day average; PMF = 1 Chem Translator of 0.768 applied
CFC CCT Pollutants Total Aluminum Total Antimony Total Ansenic Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Copper Free Cyanide Dissolved Iron Total Iron Total Icad Total Manganese Total M	T (min): 83. Stream Conc (und) V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	110 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		PMF:	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Anz WQC (µg/L) N/A 220 150 4,100 1,600 0.288 10 19 10.891 5.2 N/A 1,500 3.226 N/A 0.320	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.32 10.4 19.0 11.3 5.2 N/A 1,500 4.28 N/A	WLA (μg/L) WLA (μg/L) N/A 2,104 1,435 39,216 15,304 30,7 99,4 182 109 49,7 N/A 14,347 40,7 N/A 0,20	125.73 Analysis pH: 7.02 Comments Chem Translator of 1 applied Chem Translator of 0.899 applied Chem Translator of 0.962 applied Chem Translator of 0.962 applied Chem Translator of 0.962 applied WQC = 30 day average; PMF = 1 Chem Translator of 0.758 applied
CFC CCT Pollutants Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Copper Free Cyanide Dissolved Iron Total Iron Total Lead Total Manganese Total Manganese Total Mercury	T (min): 83. Stream Conc (und) 0 0 0 0 0 0 0 0 0 0 0 0 0	110 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	F (µ	PMF: Conc g/L)	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A 220 150 4,100 1,800 0.288 10 19 10.891 5.2 N/A 1,500 3.226 N/A 0.770 0.770	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.32 10.4 19.0 11.3 5.2 N/A 1,500 4.28 N/A 0.91	WLA (μg/L) N/A 2,104 1,435 39,216 15,304 30,7 99,4 182 109 49,7 N/A 14,347 40.7 N/A 8,806	125.73 Analysis pH: 7.02 Comments Chem Translator of 1 applied Chem Translator of 0.899 applied Chem Translator of 0.962 applied Chem Translator of 0.962 applied Chem Translator of 0.963 applied WQC = 30 day average; PMF = 1 Chem Translator of 0.758 applied Chem Translator of 0.758 applied
CFC CCT Pollutants Total Aluminum Total Antimony Total Antimony Total Ansenic Total Barium Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Free Cyanide Dissolved Iron Total Lead Total Lead Total Manganese Total Manganese Total Mercury Total Nickel	T (min): 83. Stream Cone (und) 0 0 0 0 0 0 0 0 0 0 0 0 0	110 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A 220 150 4,100 1,600 0.288 10 10 10.891 5.2 N/A 1,500 3.226 N/A 0.770 63,121	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.32 10.4 19.0 11.3 5.2 N/A 1,500 4.26 N/A 0.91 63.3	WLA (µg/L) N/A 2,104 1,435 39,216 15,304 3.07 99.4 182 109 49.7 N/A 14,347 40.7 N/A 8.66 606	125.73 Analysis pH: 7.02 Comments Chem Translator of 1 applied Chem Translator of 0.899 applied Chem Translator of 0.892 applied Chem Translator of 0.962 applied Chem Translator of 0.96 applied WQC = 30 day average; PMF = 1 Chem Translator of 0.758 applied Chem Translator of 0.85 applied Chem Translator of 0.85 applied
CFC CCT Pollutants Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Free Cyanide Dissolved Iron Total Iron Total Iron Total Lead Total Manganese Total Mercury Total Nickel Total Phenols (Phenolics) (PWS)	T (min): 83. Stream Conc (trail) 0 0 0 0 0 0 0 0 0 0 0 0 0	110 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		PMF: Conc (g/L)	1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ana WQC (µg/L) N/A 220 150 4,100 1,600 0.288 10 1,600 0.288 10 19 10.891 5.2 N/A 1,500 3.226 N/A 0.770 63.121 N/A	WQ Obj (µg/L) N/A 220 150 4,100 1,600 0.32 10.4 19.0 11.3 5.2 N/A 1,500 4.26 N/A 0.91 63.3 N/A	WLA (μg/L) N/A 2,104 1,435 39,216 15,304 3.07 99.4 182 109 49.7 N/A 14,347 N/A 14,347 N/A 8.66 608 N/A	125.73 Analysis pH: 7.02 Comments Chem Translator of 1 applied Chem Translator of 0.899 applied Chem Translator of 0.899 applied Chem Translator of 0.962 applied Chem Translator of 0.96 applied WQC = 30 day average; PMF = 1 Chem Translator of 0.758 applied Chem Translator of 0.85 applied Chem Translator of 0.897 applied

Model Results

8/2/2023

Page 7

Chem Translator of 0.922 applied

Total Silver	0	0			0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0			0	13	13.0	124	
Total Zinc	0	0			0	143.430	145	1,391	Chem Translator of 0.986 applied
Acrolein	0	0			0	3	3.0	28.7	
Acrylonitrile	0	0			0	130	130	1,243	
Benzene	0	0	H		0	130	130	1.243	
Bromoform	0	0	H		0	370	370	3,539	
Carbon Tetrachloride	0	0	H		0	560	560	5,356	
Chlorobenzene	0	0	H		0	240	240	2.296	
Chlorodibromomethane	0	0			0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0			0	3.500	3.500	33,477	
Chloroform	0	0	H-	i i i	0	390	390	3,730	
Dichlorobromomethane	0	0	H-		0	N/A	N/A	N/A	
1.2-Dichloroethane	0	0			0	3,100	3,100	29.651	
1.1-Dichloroethylene	0	0			0	1.500	1.500	14.347	
1.2-Dichloropropane	0	0			0	2.200	2.200	21.043	
1.3-Dichloropropylene	0	0			0	61	61.0	583	
Ethylbenzene	0	0			0	580	580	5,548	
Methyl Bromide	0	0	=		0	110	110	1.052	
Methyl Chloride	0	0	H=		0	5.500	5.500	52.607	
Methylene Chloride	0	0	H		0	2,400	2 400	22,956	
1.1.2.2-Tetrachloroethane	0	0			0	210	210	2.009	
Tetrachloroethylene	0	0			0	140	140	1.339	
Toluene	0	0	<u> </u>		0	330	330	3,156	
1,2-trans-Dichloroethylene	0	0			0	1,400	1,400	13,391	
1,1,1-Trichloroethane	0	0			0	610	610	5,835	
1,1,2-Trichloroethane	0	0			0	680	680	6,504	
Trichloroethylene	0	0			0	450	450	4,304	
Vinyl Chloride	0	0			0	N/A	N/A	N/A	
2-Chlorophenol	0	0			0	110	110	1,052	
2,4-Dichlorophenol	0	0			0	340	340	3,252	
2,4-Dimethylphenol	0	0	i –		0	130	130	1,243	
4,6-Dinitro-o-Cresol	0	0			0	16	16.0	153	
2,4-Dinitrophenol	0	0			0	130	130	1,243	
2-Nitrophenol	0	0			0	1,600	1,600	15,304	
4-Nitrophenol	0	0			0	470	470	4,496	
p-Chloro-m-Cresol	0	0			0	500	500	4,782	
Pentachlorophenol	0	0			0	6.966	6.97	66.6	
Phenol	0	0			0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0			0	91	91.0	870	
Acenaphthene	0	0			0	17	17.0	163	
Anthracene	0	0			0	N/A	N/A	N/A	
Benzidine	0	0			0	59	59.0	564	
Benzo(a)Anthracene	0	0			0	0.1	0.1	0.96	
Benzo(a)Pyrene	0	0			0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0			0	N/A	N/A	N/A	

Model Results

8/2/2023

Benzo(k)Fluoranthene	0	0			0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0			0	6,000	6,000	57,390	
Bis(2-Chloroisopropyl)Ether	0	0			0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0			0	910	910	8,704	
4-Bromophenyl Phenyl Ether	0	0			0	54	54.0	517	
Butyl Benzyl Phthalate	0	0			0	35	35.0	335	
2-Chloronaphthalene	0	0			0	N/A	N/A	N/A	
Chrysene	0	0			0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0			0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0			0	160	160	1,530	
1,3-Dichlorobenzene	0	0			0	69	69.0	660	
1,4-Dichlorobenzene	0	0			0	150	150	1,435	
3,3-Dichlorobenzidine	0	0			0	N/A	N/A	N/A	
Diethyl Phthalate	0	0			0	800	800	7,652	
Dimethyl Phthalate	0	0			0	500	500	4,782	
Di-n-Butyl Phthalate	0	0			0	21	21.0	201	
2,4-Dinitrotoluene	0	0			0	320	320	3,061	
2,6-Dinitrotoluene	0	0			0	200	200	1,913	
1,2-Diphenylhydrazine	0	0		++	0	3	3.0	28.7	
Fluoranthene	0	0			0	40	40.0	383	
Fluorene	0	0			0	N/A	N/A	N/A	
Hexachlorobenzene	0	0			0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0			0	2	2.0	19.1	
Hexachlorocyclopentadiene	0	0			0	1	1.0	9.56	
Hexachloroethane	0	0			0	12	12.0	115	
Indeno(1,2,3-cd)Pyrene	0	0			0	N/A	N/A	N/A	
Isophorone	0	0			0	2,100	2,100	20,086	
Naphthalene	0	0			0	43	43.0	411	
Nitrobenzene	0	0			0	810	810	7,748	
n-Nitrosodimethylamine	0	0			0	3,400	3,400	32,521	
n-Nitrosodi-n-Propylamine	0	0			0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0			0	59	59.0	564	
Phenanthrene	0	0			0	1	1.0	9.56	
Pyrene	0	0			0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0			0	26	26.0	249	
<i>⊡ тнн</i> сст	F (min): 83.	.110	F	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (uo/L)	Stream CV	Trib (µ	Conc g/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0			0	N/A	N/A	N/A	
Total Antimony	0	0			0	5.6	5.6	53.6	
Total Arsenic	0	0			0	10	10.0	95.6	

Model Results

Total Barium

Total Boron

Total Cadmium

0

0

0

0

0

0

8/2/2023

2,400

3,100

N/A

22,956

29,651

N/A

2,400

3,100

N/A

0

0

0

Hexavalent Chromium	0	0			0	N/A	NI/A	N/A	
Total Cobalt	0	0			1 n	N/A	N/A	N/A	
Total Copper	0	0			1 n	N/A	N/A	N/A	
Free Cyanide	0	0			0	4	4.0	38.3	
Dissolved Iron	0	0			- ŭ	300	300	2,869	
Total Iron	0	0		++	0	N/A	NVA	2,000	
Total Lead	0	0		++	0	N/A	N/A	N/A	
Total Managanasa		0			0	1.000	1 000	0.585	
Total Mangarlese		0			0	0.050	1,000	9,505	
Total Niekol	0	0	++			0.000	0.00	0.40	
Total Nickel	0	0	++		0	610	610	0,830	
Total Frienois (Frienolics) (FWS)	0	0			0	5	5.0	N/A	
Total Selenium	0	0			0	N/A	N/A	N/A	
Total Silver	0	0		++	0	N/A	N/A	N/A	
Total Thallium	0	0		++	0	0.24	0.24	2.3	
I otal Zinc	0	0			0	N/A	N/A	N/A	
Acrolein	0	0			0	3	3.0	28.7	
Acrylonitrile	0	0			0	N/A	N/A	N/A	
Benzene	0	0			0	N/A	N/A	N/A	
Bromoform	0	0			0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0			0	N/A	N/A	N/A	
Chlorobenzene	0	0			0	100	100.0	956	
Chlorodibromomethane	0	0			0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0			0	N/A	N/A	N/A	
Chloroform	0	0			0	5.7	5.7	54.5	
Dichlorobromomethane	0	0			0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0			0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0			0	33	33.0	316	
1,2-Dichloropropane	0	0			0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0			0	N/A	N/A	N/A	
Ethylbenzene	0	0			0	68	68.0	650	
Methyl Bromide	0	0			0	100	100.0	956	
Methyl Chloride	0	0			0	N/A	N/A	N/A	
Methylene Chloride	0	0			0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0			0	N/A	N/A	N/A	
Tetrachloroethylene	0	0			0	N/A	N/A	N/A	
Toluene	0	0			0	57	57.0	545	
1,2-trans-Dichloroethylene	0	0			0	100	100.0	956	
1,1,1-Trichloroethane	0	0			0	10,000	10,000	95,650	
1,1,2-Trichloroethane	0	0			0	N/A	N/A	N/A	
Trichloroethylene	0	0			0	N/A	N/A	N/A	
Vinyl Chloride	0	0			0	N/A	N/A	N/A	
2-Chlorophenol	0	0			0	30	30.0	287	
2.4-Dichlorophenol	0	0			0	10	10.0	95.6	
2.4-Dimethylphenol	0	0			0	100	100.0	956	
4.6-Dinitro-o-Cresol	0	0			0	2	2.0	19.1	
2 4-Dinitrophenol	0	ő			ő	10	10.0	95.6	
2,4-onne opnenor	2	2			•	19	10.0	00.0	

Model Results

8/2/2023

0 Million hand		0			ALC A	ALCA.	A LUA	
2-Nitrophenol	0	0		0	N/A	N/A	N/A	
4-Nitrophenoi	0	0			N/A	N/A	N/A	
p-Chioro-m-Cresol	0	0		<u> </u>	N/A	N/A	N/A	
Pentachiorophenol	0	0		0	N/A	N/A	N/A	
Phenol	U	0		0	4,000	4,000	38,260	
2,4,6-Trichlorophenol	0	0		0	N/A	N/A	N/A	
Acenaphthene	0	0		0	70	70.0	670	
Anthracene	0	0		0	300	300	2,869	
Benzidine	0	0		0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0		0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0		0	200	200	1,913	
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	0.1	0.1	0.96	
2-Chloronaphthalene	0	0		0	800	800	7,652	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	+	0	N/A	N/A	N/A	
1.2-Dichlorobenzene	0	0		0	1.000	1.000	9.565	
1.3-Dichlorobenzene	0	0		0	7	7.0	67.0	
1.4-Dichlorobenzene	0	0		0	300	300	2,869	
3.3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	600	600	5,739	
Dimethyl Phthalate	0	0		0	2,000	2,000	19,130	
Di-n-Butyl Phthalate	0	0		0	20	20.0	191	
2.4-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
2.6-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
1.2-Diphenvlhydrazine	0	0		0	N/A	N/A	N/A	
Fluoranthene	0	0		0	20	20.0	191	
Fluorene	ő	0		0	50	50.0	478	
Hevechlorobenzene	0	0		0	N/A	N/A	N/A	
Hevachlorobutadiene	0	0		ŏ	N/A	N/A	N/A	
Hexachloroguelenentadione	0	0		- ŭ	4	4.0	20.2	
Hexachloroethane	0	0		- -		4.0 N/A	30.3 N/A	
Indeped 1.2.2 ed/Purene				- v	NIA	NIA	NIA	
Indeno(1,2,3-cd)Fyrene	0	0		-	24	24.0	225	
Naphthalana	0	0		-	54	34.U	320	
Nitrahanana	0	0		-	10	10.0	DE R	
Nitropenzene	0	0			10	10.0	80.0	
n-Nitrosodimetnyiamine	U	0		0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	U	0		0	N/A	N/A	N/A	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	20	20.0	191	

Model Results

8/2/2023

1,2,4-Trichlorobenzene	0	0		0	0.07	0.07	0.67	
CRL CC	T (min): 35.	224	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	0.06	0.06	2.75	
Benzene	0	0		0	0.58	0.58	26.6	
Bromoform	0	0		0	7	7.0	321	
Carbon Tetrachloride	0	0		0	0.4	0.4	18.4	
Chlorobenzene	0	0		0	N/A	N/A	N/A	
Chlorodibromomethane	0	0		0	0.8	0.8	36.7	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	0.95	0.95	43.6	
1,2-Dichloroethane	0	0		0	9.9	9.9	455	
1,1-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0		0	0.9	0.9	41.3	
1,3-Dichloropropylene	0	0		0	0.27	0.27	12.4	
Ethylbenzene	0	0		0	N/A	N/A	N/A	
Methyl Bromide	0	0		0	N/A	N/A	N/A	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	20	20.0	918	
1,1,2,2-Tetrachloroethane	0	0		0	0.2	0.2	9.18	

Model Results

8/2/2023

Tetrachloroethylene	0	0	0	10	10.0	459	
Toluene	0	0	0	N/A	N/A	N/A	
1 2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1 1 1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1 1 2-Trichloroethane	0	0	0	0.55	0.55	25.3	
Trichlomethylene	0	0	0	0.6	0.6	27.5	
Vinyl Chloride	0	0	0	0.02	0.02	0.92	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2.4.Dichlorophenol	0	0	0	N/A	N/A	N/A	
2.4-Dimethylohenol	0	0	0	N/A	N/A	N/A	
4 8-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2.4-Dinitronhanol	0	0	0	N/A	N/A	N/A	
2.Nitronhanol	0	0	0	N/A	N/A	N/A	
4 Nitrophenol	0	0	0	NIA	NUA	NIA	
- Chloro-m-Crosol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	1.29	
Phonel		0	0	0.000	0.00	N/A	
2.4.8 Trichlerenhenel		0	0	1.5	1.5	89.0	
2,4,0-Trichlorophenoi	0			1.0	1.0	00.8	
Acenaphthene	0	0	0	NVA	N/A	N/A	
Anthradene	0	0	0	NVA	N/A	IN/A	
Benzidine	0	0	0	0.0001	0.0001	0.005	
Benzo(a)Anthracene		0	0	0.001	0.001	0.046	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.005	
3,4-Benzofiuorantnene	0	0	0	0.001	0.001	0.046	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.46	
Bis(2-Chloroethyi)Ether	0	0	0	0.03	0.03	1.38	
Bis(2-Chioroisopropyi)Ether	0	0	0	NVA	N/A	NVA	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	14./	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	5.51	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.005	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	2.3	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	2.3	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	2.3	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	1.38	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.004	

Model Results

8/2/2023

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0216941

Hexachlorobutadiene	0	0		0	0.01	0.01	0.46	
Hexachlorocyclopentadiene	0	0		0	N/A	N/A	N/A	
Hexachloroethane	0	0		0	0.1	0.1	4.59	
Indeno(1,2,3-cd)Pyrene	0	0		- 0	0.001	0.001	0.046	
Isophorone	0	0		0	N/A	N/A	N/A	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0		0	0.0007	0.0007	0.032	
n-Nitrosodi-n-Propylamine	0	0		0	0.005	0.005	0.23	
n-Nitrosodiphenylamine	0	0		0	3.3	3.3	152	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

L (no RP)
L (no RP)
EL (RP)
EL (RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Aluminum	2,230	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	22,956	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	15,304	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	N/A	N/A	Discharge Conc < TQL
Hexavalent Chromium	N/A	N/A	Discharge Conc < TQL
Total Cobalt	182	µg/L	Discharge Conc < TQL
Free Cyanide	38.3	µg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS

Model Results

8/2/2023

Dissolved Iron	2,869	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	14,347	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	40.7	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	9,565	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.48	µg/L	Discharge Conc < TQL
Total Nickel	606	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	Discharge Conc < TQL
Total Selenium	47.7	µg/L	Discharge Conc < TQL
Total Silver	15.9	µg/L	Discharge Conc < TQL
Total Thallium	2.3	µg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	8.92	µg/L	Discharge Conc < TQL
Acrylonitrile	2.75	µg/L	Discharge Conc < TQL
Benzene	26.6	µg/L	Discharge Conc < TQL
Bromoform	321	µg/L	Discharge Conc < TQL
Carbon Tetrachloride	18.4	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorobenzene	956	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	36.7	µg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	33,477	µg/L	Discharge Conc < TQL
Chloroform	54.5	µg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	43.6	µg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	455	µg/L	Discharge Conc < TQL
1,1-Dichloroethylene	316	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	41.3	µg/L	Discharge Conc < TQL
1,3-Dichloropropylene	12.4	µg/L	Discharge Conc ≤ 25% WQBEL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	650	µg/L	Discharge Conc < TQL
Methyl Bromide	956	µg/L	Discharge Conc < TQL
Methyl Chloride	52,607	µg/L	Discharge Conc < TQL
Methylene Chloride	918	µg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	9.18	µg/L	Discharge Conc < TQL
Tetrachloroethylene	459	µg/L	Discharge Conc < TQL
Toluene	545	µg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	956	µg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	5,835	µg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	25.3	µg/L	Discharge Conc < TQL
Trichloroethylene	27.5	µg/L	Discharge Conc < TQL
Vinyl Chloride	0.92	µg/L	Discharge Conc < TQL
2-Chlorophenol	287	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	95.6	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	956	µg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	19.1	µg/L	Discharge Conc < TQL
2,4-Dinitrophenol	95.6	µg/L	Discharge Conc < TQL
2-Nitrophenol	15,304	µg/L	Discharge Conc < TQL
-			-

Model Results

8/2/2023

4-Nitrophenol	4,496	µg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	476	µg/L	Discharge Conc < TQL
Pentachlorophenol	1.38	µg/L	Discharge Conc < TQL
Phenol	38,260	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	68.9	µg/L	Discharge Conc < TQL
Acenaphthene	163	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	2,869	µg/L	Discharge Conc ≤ 25% WQBEL
Benzidine	0.005	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.005	µg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.046	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.46	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	1.38	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	1,913	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	14.7	µg/L	Discharge Conc ≤ 25% WQBEL
4-Bromophenyl Phenyl Ether	517	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	7,652	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	5.51	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.005	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	1,530	µg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	67.0	µg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	1,435	µg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	2.3	µg/L	Discharge Conc < TQL
Diethyl Phthalate	5,739	µg/L	Discharge Conc < TQL
Dimethyl Phthalate	4,782	µg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	191	µg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	2.3	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	2.3	µg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	1.38	µg/L	Discharge Conc < TQL
Fluoranthene	191	µg/L	Discharge Conc < TQL
Fluorene	478	µg/L	Discharge Conc < TQL
Hexachlorobenzene	0.004	µg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.46	µg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	9.56	µg/L	Discharge Conc < TQL
Hexachloroethane	4.59	µg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.046	µg/L	Discharge Conc < TQL
Isophorone	325	µg/L	Discharge Conc < TQL
Naphthalene	411	µg/L	Discharge Conc < TQL
Nitrobenzene	95.6	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.032	µg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.23	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	152	µg/L	Discharge Conc < TQL

Model Results

8/2/2023

Phenanthrene	9.56	µg/L	Discharge Conc < TQL
Pyrene	191	µg/L	Discharge Conc ≤ 25% WQBEL
1,2,4-Trichlorobenzene	0.67	µg/L	Discharge Conc < TQL

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet Type of Test Chronic Facility Name Species Tested Ceriodaphnia S. Fork Regional WWTP Endpoint Reproduction 0.36 TIWC (decimal) No. Per Replicate Permit No. 0.75 PA0216941 TST b value TST alpha value 0.2 Test Completion Date Test Completion Date 9/3/2019 8/31/2020 Replicate Replicate No. Control TIWC No. Control TIWC Mean 29.500 26.600 Mean 30.300 32.900 5.358 Std Dev. 5.874 Std Dev. 2.452 1.969 # Replicates # Replicates 2.0401 11.9425 T-Test Result T-Test Result Deg. of Freedom Deg. of Freedom Critical T Value 0.8633 Critical T Value 0.8633 Pass or Fail PASS Pass or Fail PASS Test Completion Date Test Completion Date 7/26/2021 8/16/2022 Replicate Replicate No. Control TIWC No. Control TIWC 27.900 31.900 20.300 21.600 Mean Mean Std Dev. 9.927 1.524 Std Dev. 5.229 8.592 # Replicates # Replicates T-Test Result 4.5668 T-Test Result 2.1345 Deg. of Freedom Deg. of Freedom Critical T Value 0.8702 Critical T Value 0.8681 Pass or Fail PASS Pass or Fail PASS

Whole Effluent Toxicity (WET) Analysis Spreadsheet

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet							
Type of Test Species Test	ed Pim	onic ephales		Facility Name			
Endpoint	-IN D DR	rival	S.	S. Fork Regional WWTP			
No. Per Repli	icate 10	,		Permit No.			
TST b value	0.75)		PA021694	1		
TST alpha va	lue 0.25	5					
Test Completion Date				Test Completion Date			
Replicate	S/3/.	2019 TIMC	Replicate	Control	2020 TIWC		
1	1	1	1 1	0.6	0.6		
2	0.9	0.8	2	0.8	1		
3	1	0.8	3	0.9	1		
4	0.9	0.7	4	1	0.9		
5			5				
6			6				
7			7				
8			8				
9			9				
10			10				
11			11				
12			12				
13			13				
14			14				
15			15				
Mean	0.950	0.825	Mean	0.825	0.875		
Std Dev.	0.058	0.126	Std Dev.	0.171	0.189		
# Replicates	4	4	# Replicates	4	4		
T-Test Result 4.7124 Deg. of Freedom 4			T-Test Result 3.8197 Deg. of Freedom 5				
T-Test Result Deg. of Freed	4.7 om 4	124 4	T-Test Result Deg. of Freed	3.8 om !	197 5		
T-Test Result Deg. of Freed Critical T Valu	4.7 om 4 ie 0.7	124 4 407	T-Test Result Deg. of Freed Critical T Valu Page of Fail	3.8 om 9 e 0.7	197 5 267		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail	4.7 om 4 ie 0.7 PA	124 4 407 ASS	T-Test Result Deg. of Freed Critical T Valu Pass or Fail	3.8 om : e 0.7 PA	197 5 267 \SS		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail	4.7 om 2 ie 0.7 PA Test Comp	124 4 407 ASS Diletion Date	T-Test Result Deg. of Freed Critical T Valu Pass or Fail	3.8 e 0.7 PA Test Comp	197 5 267 ISS		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate	4.7 om 4 ie 0.7 PA Test Comp 7/27/	124 4 407 ISS Iletion Date /2021	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Reolicate	3.8 e 0.7 PA Test Comp 8/16	197 5 287 SS Jetion Date (2022		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No.	4.7 om 4.7 le 0.7 PA Test Comp 7/27/ Control	124 4 407 ISS Jetion Date /2021 TIWC	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No.	3.8 e 0.7 PA Test Comp 8/16 Control	197 5 267 ASS eletion Date /2022 TIWC		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	4.7 om 4.7 ie 0.7 PA Test Comp 7/27/ Control 0.9	124 4 407 ASS Dietion Date /2021 TIWC 0.9	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	3.8 om 9 e 0.7 PA Test Comp 8/16 Control 1	197 5 267 ISS Jetion Date 2022 TIWC 0.8		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2	4.7 om 4 e 0.7 PA Test Comp 7/27/ Control 0.9 0.9	124 4 407 ISS 2021 TIWC 0.9 1	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2	3.8 om 9 e 0.7 PA Test Comp 8/16 Control 1 0.9	197 5 267 ISS 2022 7IWC 0.8 0.9		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	4.7 om 4 e 0.7 PA Test Comp 7/27/ Control 0.9 0.9 0.9	124 4 407 ISS 2021 TIWC 0.9 1 1	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	3.8 om 9 e 0.7 PA Test Comp 8/16 Control 1 0.9 1	197 5 267 ISS 2022 7IWC 0.8 0.9 1		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	4.7 om 4 re 0.7 PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.9 0.8	124 4 407 ISS 2021 TIWC 0.9 1 1 1	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	3.8 om 9 e 0.7 PA Test Comp 8/16 Control 1 0.9 1 1	197 5 267 ISS 2022 7IWC 0.8 0.9 1 1		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	4.7 om PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.9 0.9	124 4 407 ISS 2021 TIWC 0.9 1 1 1	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	3.8 om 9 e 0.7 PA Test Comp 8/16 Control 1 0.9 1 1	197 5 267 ISS 2022 7IWC 0.8 0.9 1 1		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6	4.7 om 7 PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.9	124 4 407 ISS 2021 TIWC 0.9 1 1 1	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6	3.8 om 9 e 0.7 PA Test Comp 8/16 Control 1 0.9 1 1	197 5 267 ISS Vetion Date /2022 TIWC 0.8 0.9 1 1 1		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	4.7 om 7 PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9	124 4 407 .SS 	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	3.8 om 9 e 0.7 PA Test Comp 8/16 Control 1 0.9 1 1	197 5 267 ISS 2022 7IWC 0.8 0.9 1 1		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	4.7 om 7 PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.9	124 4 407 ISS 2021 TIWC 0.9 1 1 1 1	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	3.8 om 9 e 0.7 PA Test Comp 8/16 Control 1 0.9 1 1	197 5 287 ISS 0letion Date (2022 TIWC 0.8 0.9 1 1 1		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	4.7 om 7 PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.8	124 4 407 ISS 2021 TIWC 0.9 1 1 1 1	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	3.8 om e 0.7 PA Test Comp 8/16 Control 1 0.9 1 1	197 5 267 ISS 0letion Date /2022 TIWC 0.8 0.9 1 1 1		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	4.7 om 7 PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.8	124 4 407 ISS 2021 TIWC 0.9 1 1 1 1	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	3.8 om 9 e 0.7 PA Test Comp 8/16 Control 1 0.9 1 1 1	197 5 267 ISS 0letion Date /2022 TIWC 0.8 0.9 1 1 1		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	4.7 om 7 PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.8	124 4 4 407 ISS Detion Date 2021 TIWC 0.9 1 1 1 1	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	3.8 om e 0.7 PA Test Comp 8/16 Control 1 0.9 1 1 1	197 5 267 ISS 0letion Date /2022 TIWC 0.8 0.9 1 1 1		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 11 12	4.7 om 7 PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.8	124 4 4 407 ISS Detion Date 2021 TIWC 0.9 1 1 1 1	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 11 12	3.8 om e 0.7 PA Test Comp 8/16 Control 1 0.9 1 1 1	197 5 267 ISS 0.etion Date /2022 TIWC 0.8 0.9 1 1 1		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 11 12 13	4.7 om 7 PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.9 0.8	124 4 4 407 SS Detion Date 2021 TIWC 0.9 1 1 1 1	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 11 12 13	3.8 om 9 e 0.7 PA Test Comp 8/16 Control 1 0.9 1 1	197 5 267 ISS 267 ISS 2022 TIWC 0.8 0.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	4.7 om 7 PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.9 0.8	124 4 4 407 ISS Detion Date 2021 1 0.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	3.8 om e 0.7 PA Test Comp 8/16 Control 1 0.9 1 1 1	197 5 267 ISS 12022 TIWC 0.8 0.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	4.7 om 7 PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.9 0.8	124 4 4 407 ISS Detion Date 2021 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3.8 om	197 5 267 ISS 12022 TIWC 0.8 0.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	4.7 om 7 PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.8	124 4 4 407 ISS Detion Date 2021 TIWC 0.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3.8 om	197 5 267 ISS Idetion Date 2022 TIWC 0.8 0.9 1 1 1		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Deau	4.7 om 7 PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 7 0.875 0.50	124 4 4 407 ISS Detion Date 2021 TIWC 0.9 1 1 1 1 0.9 0.975 0.975 0.975	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Day	3.8 om e 0.7 PA Test Comp 8/16 Control 1 0.9 1 1 1 0.9 0.975 0.050	197 5 267 ISS Idetion Date 2022 TIWC 0.8 0.9 1 1 1 0.9 1 0.9 1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	4.7 om 7 PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.875 0.050 4	124 4 407 ISS INVC 0.9 1 1 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	3.8 om	197 5 267 ISS Idetion Date (2022 TIWC 0.8 0.9 1 1 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	4.7 om PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.875 0.050 4	124 4 407 ISS INVC 0.9 1 1 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	3.8 om	197 5 267 ISS Idetion Date (2022 TIWC 0.8 0.9 1 1 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 4		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	4.7 om 4 PA Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	124 4 407 ISS INVC 0.9 1 1 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 1 0.9 1 1 0.9 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	3.8 om e 0.7 PA Test Comp 8/16 Control 1 0.9 1 1 1 1 0.9 1 0.9 5 0.050 4 7 R	197 5 267 ISS Idetion Date (2022 TIWC 0.8 0.9 1 1 1 0.9 1 0.9 1 0.9 4 920		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	4.7 om e 0.7 Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	124 4 407 ISS INVC 0.9 1 1 1 1 0.9 1 0.9 1 0.9 1 0.9 1 0.9 1 1 0.9 1 1 0.9 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	3.8 om	197 5 267 ISS Idetion Date (2022 TIWC 0.8 0.9 1 1 1 0.9 1 0.9 1 1 0.9 4 920 4		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed Critical T Valu	4.7 om e 0.7 Test Comp 7/27/ Control 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	124 4 407 ISS 2021 TIWC 0.9 1 1 1 1 0.9 1 0.9 1 1 0.9 1 1 0.9 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed Critical T Valu	3.8 om 9 e 0.7 PA Test Comp 8/16 Control 1 0.9 1 1 1 1 0.9 1 1 0.9 1 1 0.9 1 4 7.8 0.050 4 7.8 om 9 7.8 0.050 0 4	197 5 267 ISS Iletion Date (2022 TIWC 0.8 0.9 1 1 1 0.9 1 1 0.9 1 1 0.9 4 920 4 407		
T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail	4.7 om	124 4 407 ISS INVC 0.9 1 1 1 1 1 0.975 0.975 0.050 4 0005 5 287 ISS	T-Test Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed Critical T Valu Pass or Fail	3.8 om 9 e 0.7 PA Test Comp 8/16 Control 1 1 1 1 1 1 1 1 0.9 1 1 1 1 0.9 1 1 1 0.9 1 1 0.9 1 1 0.9 1 1 0.9 1 1 0.9 1 1 0.9 1 1 0.9 1 1 0.9 1 1 0.9 1 0 0 7 8 //6 0 7 8 //6 0 7 8 //6 0 7 8 //6 0 7 8 //6 0 7 8 //6 0 7 8 //6 0 7 8 //6 0 7 8 //6 0 7 8 //6 0 7 8 //6 0 7 8 //6 0 7 8 //6 1 8 //6 1 9 1 1 0 9 1 1 1 0 9 1 1 1 1 1 1 1 1 1	197 5 267 ISS Idetion Date (2022 TIWC 0.8 0.9 1 1 1 0.9 1 1 0.9 1 1 0.9 4 0.9 1 1 0.9 1 1 0.9 1 1 0.9 1 1 0.9 1 1 0.9 1 1 0.9 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0		

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet										
Tunn of Test	Cher		_	Condition Mar						
Type of Test	ed Dim	nic	_	Facility Na	me					
Endnoint	Gro	with		S. Fork Regional WWTP						
TIWC (decim	al) 0.38			r on regional						
No. Per Repli	cate 10		_	Permit No.						
TST b value 0.75				PA0216941						
TST alpha value 0.25										
• • • • • • • • • • • • • • • • • • • •										
Test Completion Date				Test Comp	eletion Date					
Replicate	9/3/2019		Replicate	9/1/	2020					
No.	Control	TIWC	No	Control	TIWC					
1	0 340	0.312	1	0.22	0.241					
2	0.34	0.380	2	0.228	0.320					
2	0.04	0.452	2	0.200	0.026					
	0.91	0.405	3	0.027	0.001					
4	0.237	0.49	4	0.303	0.319					
5			5							
6			6							
7			7							
8			8							
9			9							
10			10							
11			11							
12			12							
13			13							
14			14							
14			14							
15			10							
Mean	0.334	0.411	Mean	0.285	0.310					
Std Dev.	0.072	0.078	Std Dev.	0.065	0.048					
# Replicates	4	4	# Replicates	4	4					
T Test Perult 2 2050 T Test Perult 2 9102										
Deg of Engelow 5		800	1-Test Result	2.8	193					
Deg. of Freed	om .5	500 5	Deg. of Freed	2.8 om	193 5					
Deg. of Freed	om { e 07	5 287	Deg. of Freed	om :	193 5 287					
Deg. of Freed Critical T Valu Pass or Fail	om 8 ie 0.72	5 267	Deg. of Freed Critical T Valu Pass or Fail	2.8 om ! e 0.7 P4	267					
Deg. of Freed Critical T Valu Pass or Fail	om 8 ie 0.7 PA	5 267 .SS	Deg. of Freed Critical T Valu Pass or Fail	2.8 om : PA	5 267 ISS					
Deg. of Freed Critical T Valu Pass or Fail	om 8 ie 0.7 PA	5 267 SS	Deg. of Freed Critical T Valu Pass or Fail	2.8 om : PA	193 5 267 ISS					
Deg. of Freed Critical T Valu Pass or Fail	om 8 ie 0.7 PA Test Comp	5 267 SS	Deg. of Freed Critical T Valu Pass or Fail	2.8 om 9 ie 0.7 PA Test Comp	5 267 ISS					
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate	om (e 0.7; PA Test Comp 7/27/	5 267 SS letion Date 2021	Peg. of Freed Critical T Valu Pass or Fail	2.8 om 9.7 PA Test Comp 8/16	193 5 287 ASS Jetion Date (2022					
Press result Deg. of Freed Critical T Valu Pass or Fail Replicate No.	om 8 le 0.7 PA Test Comp 7/27/ Control	5 267 SS letion Date 2021 TIWC	Peg. of Freed Critical T Valu Pass or Fail Replicate No.	2.8 om	193 5 287 ISS Jetion Date (2022 TIWC					
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	om 5.3 ie 0.7: PA Test Comp 7/27/ Control 0.352	sou 5 267 SS letion Date 2021 TIWC 0.317	Pless Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	2.8 om 9 e 0.7 PA Test Comp 8/16 Control 0.34	193 5 267 ISS 2010 Date 2022 TIWC 0.3089					
Critical T Valu Pass or Fail Replicate No. 1	om { ie 0.7; PA Test Comp 7/27/ Control 0.352 0.328	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Replicate No. 2	2.8 om 9 e 0.7 PA Test Comp 8/16 Control 0.34 0.315	193 5 267 (SS 2022 2022 TIWC 0.3089 0.349					
Priest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	om { e 0.7; PA Test Comp 7/27/ Control 0.352 0.328 0.331	5 5 287 SS 2021 2021 TIWC 0.317 0.383 0.342	Replicate No. 1 2 3	2.8 om : ie 0.7 Test Comp 8/16 Control 0.34 0.315 0.345	193 5 267 ISS 2022 7IWC 0.3089 0.349 0.333					
Priest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	om { e 0.7; PA Test Comp 7/27/ Control 0.352 0.328 0.331 0.309	5 5 67 (SS 207 (SS 2021 TIWC 0.317 0.383 0.342 0.369	Replicate No. 1 2 3 4	2.8 om ie 0.7 PA Test Comp 8/16 Control 0.34 0.315 0.345 0.335	193 5 267 ISS 227 TIWC 0.3089 0.349 0.333 0.364					
Priest Result Deg. of Freed Critical T Valu Pass or Fail No. 1 2 3 4 5	om { ie 0.7; PA Test Comp 7/27/ Control 0.352 0.328 0.331 0.309	5 5 5 8 8 8 8 8 8 8 8 8 8 9 7 1 8 7 1 8 7 8 7 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9	Replicate No. 1 2 3 4 5	2.8 om ie 0.7 PA Test Comp 8/16 Control 0.34 0.315 0.345 0.335	193 5 267 ISS /2022 TIWC 0.3089 0.349 0.333 0.364					
Priest Result Deg. of Freed Critical T Valu Pass or Fail No. 1 2 3 4 5 6	om 8 ie 0.7; PA Test Comp 7/27/ Control 0.352 0.328 0.331 0.309	5 5 5 8 8 8 9 2021 TIWC 0.317 0.383 0.342 0.369	Replicate No. 1 2 3 4 5 6	2.8 om ie 0.7 PA Test Comp 8/16 Control 0.34 0.345 0.345 0.335	193 5 267 ISS 0/2022 TIWC 0.3089 0.349 0.333 0.364					
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om { e 0.7; PA Test Comp 7/27/ Control 0.352 0.328 0.331 0.309	5 5 5 8 8 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	Replicate No. 1 2 3 4 5 6 7	2.8 om e 0.7 PA Test Comp 8/16 Control 0.34 0.315 0.345 0.335	193 5 267 ISS Jetion Date (2022 TIWC 0.3089 0.349 0.333 0.364					
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	om { e 0.7; PA Test Comp 7/27/ Control 0.352 0.328 0.331 0.309	500 5267 SS 2021 TIWC 0.317 0.383 0.342 0.369	Replicate No. 1 2 3 4 5 6 7 8	2.8 om : e 0.7 PA Test Comp 8/16 Control 0.34 0.315 0.345 0.335	193 5 267 ISS 2022 TIWC 0.3089 0.349 0.333 0.364					
Preserves reserves Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 0	om { e 0.7; PA Test Comp 7/27/ Control 0.352 0.328 0.331 0.309	500 5267 SS 2021 TIWC 0.317 0.383 0.342 0.369	Replicate No. 1 2 3 4 5 6 7 8 9	2.8 om : e 0.7 PA Test Comp 8/16 Control 0.34 0.315 0.345 0.345	193 5 267 (SS) 2022 TIWC 0.3089 0.349 0.333 0.364					
Preserves in Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	om { e 0.7; PA Test Comp 7/27/ Control 0.352 0.328 0.331 0.309	5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Replicate No. 1 2 3 4 5 6 7 8 9	2.8 om : e 0.7 PA Test Comp 8/16 Control 0.34 0.315 0.345 0.335	193 5 267 (SS 2022 TIWC 0.3089 0.349 0.333 0.364					
Preserves in Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	om { e 0.7; PA Test Comp 7/27/ Control 0.352 0.328 0.331 0.309	5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Replicate No. 1 2 3 4 5 6 7 8 9 10	2.8 om : e 0.7 Test Comp 8/16 Control 0.34 0.315 0.345 0.335	193 5 267 (SS 2022 TIWC 0.3089 0.349 0.333 0.364					
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	om { e 0.7; PA Test Comp 7/27/ Control 0.352 0.328 0.331 0.309	500 5287 588 1etion Date 2021 TIWC 0.317 0.383 0.342 0.369	Replicate No. 1 2 3 4 5 6 7 8 9 10 11	2.8 om ie 0.7 PA Test Comp 8/16 Control 0.34 0.315 0.345 0.345	193 5 267 ISS /2022 TIWC 0.3089 0.349 0.364					
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	om (e 0.7) PA Test Comp 7/27/ Control 0.352 0.328 0.331 0.309	5 5 5 8 8 8 8 8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	2.8 om ie 0.7 PA Test Comp 8/16 Control 0.34 0.315 0.345 0.335	193 5 267 ISS Idetion Date 2022 TIWC 0.3089 0.349 0.364					
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om { e 0.7; PA Test Comp 7/27/ Control 0.352 0.328 0.331 0.309	500 5267 SS 2021 TIWC 0.317 0.383 0.342 0.369	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	2.8 om : e 0.7 PA Test Comp 8/16 Control 0.34 0.315 0.345 0.335	193 5 267 ISS 2022 TIWC 0.3089 0.349 0.333 0.364					
Preserves reserves Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	om { e 0.7; PA Test Comp 7/27/ Control 0.352 0.328 0.331 0.309	500 5287 538 1etion Date 2021 TIWC 0.317 0.383 0.342 0.389	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	2.8 om : e 0.7 PA Test Comp 8/16 Control 0.34 0.315 0.345 0.345	193 5 267 ISS 2022 TIWC 0.3089 0.349 0.333 0.364					
Press result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	om { e 0.7; PA Test Comp 7/27/ Control 0.352 0.328 0.331 0.309	500 5267 SS 2021 TIWC 0.317 0.383 0.342 0.369	Prest Result Deg. of Freed Critical T Valu Pass or Fail No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2.8 om : e 0.7 PA Test Comp 8/18 Control 0.34 0.315 0.345 0.335	193 5 267 (SS) 2022 TIWC 0.3089 0.349 0.333 0.364					
Prese Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	om { e 0.7; PA Test Comp 7/27/ Control 0.352 0.328 0.331 0.309	5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Prest Result Deg. of Freed Critical T Valu Pass or Fail No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2.8 om : e 0.7 PA Test Comp 8/16 Control 0.34 0.315 0.345 0.335	193 5 267 ISS 2022 TIWC 0.3089 0.349 0.333 0.364					
Preserves in Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	0.330	5 5 5 5 5 5 5 5 5 5 6 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	Prest Result Deg. of Freed Critical T Valu Pass or Fail No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	2.8 om : e 0.7 PA Test Comp 8/16 Control 0.34 0.315 0.345 0.335	193 5 267 ISS 227 TIWC 0.3089 0.349 0.333 0.364 0.364					
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0.330 0.330 0.318	600 5 287 SS 1etion Date 2021 TIWC 0.317 0.383 0.342 0.369 0.369 0.369 0.353 0.029	Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	2.8 om : e 0.7 PA Test Comp 8/16 Control 0.34 0.315 0.345 0.345 0.335	193 5 267 ISS Idetion Date (2022 TIWC 0.3089 0.349 0.333 0.364					
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Berlinates	0.330 0.330 0.018 0.331 0.309	500 5267 5287 538 2021 TIWC 0.317 0.383 0.342 0.369 0.369 0.353 0.029 4	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	2.8 om : e 0.7 PA Test Comp 0.34 0.315 0.345 0.345 0.335	0.339 0.024 4					
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.330 0.330 0.330 0.331 0.309	0.353 0.297 0.353 0.353 0.299 4	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	2.8 om : e 0.7 PA Test Comp 0.34 0.315 0.345 0.345 0.335 0.335 0.335	0.339 0.239 0.339 0.339 0.349 0.349 0.349 0.349 0.349 0.349 0.349 0.349 0.349 0.338 0.364					
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.330 0.330 0.331 0.309	0.353 0.353 0.353 0.353 0.329 0.353 0.29 4	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	2.8 om : e 0.7 PA Test Comp 8/16 Control 0.34 0.315 0.345 0.345 0.335 0.335	0.339 0.239 0.239 0.349 0.349 0.349 0.349 0.349 0.349 0.349 0.349 0.349 0.349 0.344 0.334 0.364					
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.330 0.0318 0.330 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.00800000000	0.353 0.353 0.353 0.353 0.353 0.29 4	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	2.8 om : e 0.7 PA Test Comp 8/18 Control 0.34 0.315 0.345 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.334 0.013 4 0.013	0.339 0.339 0.339 0.324 4					
Prest Result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed Critest T Valu	0.330 0.352 0.352 0.328 0.331 0.309 0.309 0.330 0.018 4 0.330 0.018 4 0.330 0.018 4	0.353 0.353 0.353 0.353 0.353 0.29 4	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	2.8 om : e 0.7 PA Test Comp 8/16 Control 0.34 0.315 0.345 0.335 0.335 0.335 0.335 0.335 0.335 0.334 0.013 4 0.013 4	0.339 0.339 0.324 0.339 0.324					
Press result Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed Critical T Valu	0.330 0.352 0.352 0.328 0.331 0.309 0.309 0.330 0.018 4 6.5 0.330 0.018 4	0.353 0.297 0.317 0.383 0.342 0.369 0.353 0.029 4 527 4 407 0.2	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed Critical T Valu	2.8 om e 0.7 PA Test Comp 8/16 Control 0.34 0.315 0.345 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.334 0.013 4 0.013 4	0.339 0.339 0.324 0.339 0.324 0.339 0.324 0.339 0.024 4 2064 407					

WET Summary and Evaluation								
Facility Name	S. Fork Regional WWTP							
Permit No.	PA0216941							
Design Flow (MGD)	1.2							
Q ₇₋₁₀ Flow (cfs)	16.2							
PMFa	0.425							
PMFc	1							
			Test Result	s (Pass/Fail)				
		Test Date	Test Date	Test Date	Test Date			
Species	Endpoint	9/3/19	8/31/20	7/26/21	8/16/22			
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS			
			Test Result	s (Pass/Fail)				
		Test Date	Test Date	Test Date	Test Date			
Species	Endpoint	9/3/19	8/31/20	7/26/21	8/16/22			
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS			
		Test	Test Result	s (Pass/Fail)	Test Data			
		Test Date	I est Date	Test Date	Test Date			
Species	Endpoint	9/3/19	9/1/20	1121121	0/16/22			
Pimephaies	Survival	PASS	PASS	PASS	PASS			
	Test Dessife (Dess/Esil)							
		Teet Date	Test Result	S (Pass/Fall)	Teet Date			
Species	Endpoint	9/3/19	9/1/20	7/27/21	8/16/22			
Pimenhales	Growth	PASS	PASS	PASS	PASS			
Printephales Growth PASS PASS PASS PASS								
Reasonable Potential? NO								
Permit Recommendations								
Test Type Chronic								
TIWC	TIWC 10 % Effluent							
Dilution Series	5, 10,	30, 60, 10	0 % Effluent					
Permit Limit	Permit Limit None							
Permit Limit Species								