

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Major

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0217093

 APS ID
 778593

 Authorization ID
 923446

Applicant and Facility Information

Applicant Name	Johnstown Wire Technologies, Inc.	Facility Name	Johnstown Plant
Applicant Address	124 Laurel Avenue	Facility Address	124 Laurel Avenue
	Johnstown, PA 15906-2246		Johnstown, PA 15906-2246
Applicant Contact	Nick Teeter	Facility Contact	Nick Teeter
Applicant Phone	814-532-5640	Facility Phone	814-532-5640
Client ID	87458	Site ID	263666
SIC Code	3315	Municipality	Johnstown City
SIC Description	Manufacturing - Steel Wire and Related Products	County	Cambria
Date Application Receiv	vedMarch 20, 2012	EPA Waived?	No
Date Application Accep	tedApril 17, 2012	If No, Reason	Major Facility
Purpose of Application	Renewal NPDES permit coverage	for Industrial wastewate	er discharge

Summary of Review

Johnstown Wire Technologies, Inc. is involved in rod and wire finishing that includes acid cleaning, wire drawing, zinc plating, aluminum hot dip and heat treating. Wastewater generated and discharged from this facility includes treated process wastewater, non-contact cooling water, stormwater and groundwater. Operations at the plant are classified under standard industrial classification code 3315, Steel Wire and Related Products.

The site has 8 outfalls, Outfall 601, 602, 603, 604, 605, 606, 607, and 608. All of the site's Outfalls discharge to the Conemaugh River, designated in 25 PA Code Chapter 93 as Warm Water Fishery. The site also has 6 internal monitoring points, IMP 613, 623, 614, 615, 625, and 617,

Outfall 603 discharges treat process wastewater, non-contact cooling water, stormwater, and groundwater. Outfalls 604, 605, and 607 discharge non-contact cooling water, storm water, and groundwater. Outfalls 601, 602, and 606 discharge stormwater and groundwater. Outfall 608 is new to the permit and is the intake strainer cleaning backwash wastewater.

The treated process wastewater discharges through Outfall 603 but is limited and monitored at internal monitoring point IMP 613 prior to mixing with any other waste streams. Wastewater from Bethanize Line, Aluminize Line and Cleaning House Operations is treated in the onsite wastewater treatment plant before discharging to the Conemaugh River via Outfall 603. The treatment plant utilized neutralization with lime, aeration and mixing, chemical precipitation, flocculation, and sedimentation. The effluent from the treatment plant is monitored at IMP 613 prior to comingling with other wastewater and discharging via Outfall 603.

The wastewater from the Bethanize Line, Aluminize Line and Cleaning House Operations are subject to Federal Effluent Limitation Guidelines. The Aluminize Line is subject to ELGs from 40 CFR 420 Iron and Steel Manufacturing Subpart I, Acid Pickling Subcategory, and Subpart L, Hot Coating Subcategory. The Bethanize Line is subject to ELGs from 40 CFR 433

Approve	Deny	Signatures	Date
х		ahon	
		Adam Olesnanik / Project Manager	1/26/2022
х		Miden F. Fifet	
		Michael E. Fifth, P.E. / Environmental Engineer Manager	1/28/2022

Summary of Review

Metal Finishing Point Source Category. The Cleaning House Operation is subject to ELGs from 40 CFR 420 Iron and Steel Manufacturing Subpart I, Acid Pickling Subcategory, Subpart K, Alkaline Cleaning, and 40 CFR 433 Metal Finishing Point Source Category.

The Bethanize line consists of heat-treating (annealing), HCL acid pickling, anodic cleaning using sulfuric acid, zinc electroplating and burnishing. Bethanizing, or zinc electroplating, done on this line consists of preparatory and burnishing processes. First, the wire is heat treated, the wire is drawn through molten lead, charring the drawing lubricant, then treating the wire by patent annealing, regular annealing, or stress relieving. Next, the wire is then cleaned, HCL is used to remove the charred drawing lubricant. Then, the wire is processes through electrochemical machining, the wire is charged as an anode in an electrolytic cell to repel surface particles such as contaminates and base metal into the electrolyte. The wire is then put through the zinc electroplating process. Finally, the wire is put through the burnishing processes where long springs are wrapped around the wire to polish its surface. Electro-galvanized wire is zinc coated steel wire used in a variety of high-strength, corrosion resistant applications. Applications include automotive, agricultural, power generation such as utility pole guy wires and guy grips, as well as construction nails and staples. In the process, strands of wire are electrically charged as they pass through a plating solution and between oppositely charged anodes making a circuit. The end result is the permanent deposition of zinc onto the steel surface.

The Aluminize line consists of heat-treating (annealing), HCL acid pickling, anodic cleaning using sulfuric acid, and flux bath followed by aluminum hot dip coating. The Aluminize line is similar to the Bethanize line. First, the wire is heat treated, the wire is drawn through molten lead, charring the drawing lubricant, then treating the wire by patent annealing, regular annealing, or stress relieving. Next, the wire is then cleaned, HCL is used to remove the charred drawing lubricant. Then, the wire is processes through electrochemical machining, the wire is charged as an anode in an electrolytic cell to repel surface particles such as contaminates and base metal into the electrolyte. The wire is then put through the zinc electroplating process. The wire is then processed through aluminum hot dip coating. Aluminized wire is an extremely corrosion resistant hot dip coated product. It is produced by cleaning and fluxing the strands of wire, then immersing them in molten aluminum. It is used in a variety of outdoor, high strength products such as power distribution and data transmission support wires, and premium chain link fencing.

The Cleaning House consists of HCL acid pickling, alkaline cleaning, zinc phosphate coating and HCL fume scrubber waste. The Cleaning House operations consist of putting the steel in HCL and then alkaline cleaning to remove oxides and scale, and to clean the steal prior to zinc phosphate coating. Rod pickling and coating can be done in either of the two automated cleaning lines. Hot rolled rod is typically cleaned and coated in the Automated Cleaning House #1, where the process is run completely by programmable controls, providing a consistently high-quality product. Both Cleaning Houses exclusively use hydrochloric acid to provide the cleanest, smoothest surface. Caustic permanganate is available for any hard-to-clean jobs. All rod sizes up to 1.125" diameter and 52" coil OD can be cleaned and coated. Coil weights up to 6000 pounds can be processed.

IMP 623 is the emergency overflow from the plating operations wastewater pumping station and IMP 615 is the emergency overflow from the acid rinse water pumping station.

IMPs 614, 625, and 617 are internal monitoring points to monitor the non-contact cooling waters that discharge to the respective outfalls, Outfalls 604, 605, and 607, before comingling with other wastewaters.

Clean Water Act § 316(b) – Cooling Water Intake Structures

On August 15, 2014, EPA promulgated Clean Water Act Section 316(b) regulations applicable to cooling water intake structures. The regulations established best technology available ("BTA") standards to reduce impingement mortality and entrainment of all life stages of fish and shellfish at existing power generating and manufacturing facilities. The Final Rule took effect on October 14, 2014. Regulations implementing the 2014 Final Rule (and the previously promulgated Phase I Rule) are provided in 40 CFR Part 125, Subparts I and J for new facilities and existing facilities, respectively. Associated NPDES permit application requirements for facilities with cooling water intake structures are provided in 40 CFR Part 122, Subpart B – Permit Application and Special NPDES Program Requirements (§ 122.21(r)).

Johnstown Wire Technologies is supplied with water for cooling by the Cambria Somerset Authority ("CSA"). CSA owns and operates five dams and associated reservoirs located in Cambria and Somerset Counties as well as the associated piping and appurtenances necessary for providing raw water from the dams to various users in the region. Johnstown Wire Technologies may variously receive raw water from at least three of CSA's five reservoirs including the Quemahoning Reservoir, the

Summary of Review

Hinckston Run Reservoir, and the Border Dam Reservoir. CSA's primary water supply source for its customers is the Quemahoning Reservoir with Hinckston Run and Border as backups.

Johnstown Wire Technologies is an "existing facility" as defined in 40 CFR § 125.92(k). As an existing facility, Johnstown Wire Technologies is subject to 40 CFR Part 125, Subpart J – Requirements Applicable to Cooling Water Intake Structures for Existing Facilities Under Section 316(b) of the Clean Water Act (§§ 125.90 – 125.99) if the facility meets the rule's applicability criteria. Pursuant to the applicability criteria given by § 125.91(a), Johnstown Wire Technologies is subject to the requirements of §§ 125.94 – 125.99 if:

- (1) The facility is a point source;
- (2) The facility uses or proposes to use one or more cooling water intake structures with a cumulative design intake flow (DIF) of greater than 2 million gallons per day (mgd) to withdraw water from waters of the United States; and
- (3) Twenty-five percent or more of the water the facility withdraws on an actual intake flow basis is used exclusively for cooling purposes.

Johnstown Wire Technologies is a point source as defined in 40 CFR § 122.2. Johnstown Wire Technologies appears to use one or more cooling water intake structures (Quemahoning, Hinckston Run, or Border through Johnstown Wire Technologies' water supply arrangement with CSA) with a cumulative Design Intake Flow greater than 2 MGD (the Quemahoning intake alone can withdraw 71 MGD). And Johnstown Wire Technologies uses more than 25% of water it withdraws (via CSA) for cooling purposes, which exceeds the applicability threshold. Johnstown Wire Technologies appears to meet these initial applicability criteria. However, §§ 125.91(b) and (c) further state that:

(b) Use of a cooling water intake structure includes obtaining cooling water by any sort of contract or arrangement with one or more independent suppliers of cooling water if the independent supplier withdraws water from waters of the United States but is not itself a new or existing facility as defined in subparts I or J of this part, except as provided in paragraphs (c) and (d) of this section. An owner or operator of an existing facility may not circumvent these requirements by creating arrangements to receive cooling water from an entity that is not itself a facility subject to subparts I or J of this part.

(c) Obtaining cooling water from a public water system, using reclaimed water from wastewater treatment facilities or desalination plants, or recycling treated process wastewater effluent as cooling water does not constitute use of a cooling water intake structure for purposes of this subpart.

U.S. EPA Region 3 clarified the applicability of §§ 125.91(b) and (c) to CSA in a June 19, 2019 email as follows:

Two intake structures at the Quemahoning and Wilmore Reservoirs that are owned and operated by CSA are subject to 316(b). Section 316(b) requires the use of the Best Technology Available to minimize adverse environmental impact at cooling water intake structures for power-generating and manufacturing facilities. While CSA is not a power-generating or manufacturing facility, the co-permittee, CPV Fairview, LLC, a power-generating facility, will directly use the water supplied by CSA for cooling purposes.

- 1) CSA meets the definition of an independent supplier.
- 2) CSA is not a public water system (they do not supply finished or potable water) so the public water system exemption doesn't apply to the facility.
- In the case where CSA is a co-permittee, both CSA and CPV Fairview LLC are subject to the requirements of 316(b).

Section 125.92(p) defines "independent supplier" as "an entity, other than the regulated facility, that owns and operates its own cooling water intake structure and directly withdraws water from waters of the United States. The supplier provides the cooling water to other facilities for their use, but may itself also use a portion of the water. An entity that provides potable water to residential populations (e.g., public water system) is not a supplier for purposes of this subpart."

In an independent supplier scenario where the independent supplier is not an existing facility subject to 316(b) requirements, the facility that uses water supplied by the independent supplier for cooling purposes (i.e., Johnstown Wire Technologies) is subject to 316(b) requirements and the independent supplier (i.e., CSA) is not. As EPA stated in its June 19, 2019 email, even though CSA is an independent supplier, it is subject to 316(b) requirements because it is a co-permittee with CPV Fairview

Summary of Review

(NPDES PA0253359). Also, even though § 125.91(b) only states that the independent supplier must be an existing facility for the § 125.91(b) exemption to apply to facilities like Johnstown Wire Technologies, the preamble to the 2014 Existing Facilities rule (79 FR 48305) clarifies that the independent supplier must be an existing facility that is subject to 316(b) requirements for the facilities served by the independent supplier to be exempt as 'not using a cooling water intake structure'. The relevant portion of the preamble states:

C. General Applicability

This rule applies to owners and operators of existing facilities that meet all following criteria:

• The facility is a point source that uses or, in the case of new units at an existing facility, proposes to use cooling water from one or more cooling water intake structures, including a cooling water intake structure operated by an independent supplier not otherwise subject to 316(b) requirements that withdraws water from waters of the United States and provides cooling water to the facility by any sort of contract or other arrangement; [...]

In summary, if the independent supplier is an existing facility subject to 316(b) requirements, then the facilities that use water supplied by that independent supplier for cooling purposes are not considered to be using a cooling water intake structure. Consequently, the independent supplier's customers who are served by the independent suppliers' cooling water intake structures do not satisfy the § 125.91(a)(2) applicability criterion. That is, Johnstown Wire Technologies does not use one or more cooling water intake structures with a design intake flow greater than 2 MGD because Johnstown Wire Technologies' water supply arrangement with CSA does not qualify (for Johnstown Wire Technologies) as "use of a cooling water intake structure". Since Johnstown Wire Technologies does not meet one of the three applicability criteria in § 125.91(a), Johnstown Wire Technologies is not subject to the requirements of §§ 125.94 – 125.99.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receivi	ng Waters and Water Supply Info	rmation	
Outfall No. 601	1	Design Flow (MGD)	0.0
Latitude 40°	⁹ 21' 15"	Longitude	-78º 56' 23"
Quad Name J	lohnstown	Quad Code	1614
Wastewater Desc	cription: Stormwater and Groundv	vater	
Receiving Waters	Conemaugh River (WWF)	Stream Code	43832
NHD Com ID	123720447	RMI	50.3
Drainage Area	686	Yield (cfs/mi ²)	0.097
Q ₇₋₁₀ Flow (cfs)	66.3	Q ₇₋₁₀ Basis	USGS Stream Stats
Elevation (ft)	1124	Slope (ft/ft)	0.0001
Watershed No.	18-D	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use	e	Exceptions to Criteria	
Assessment Statu	us Not Assessed		
Cause(s) of Impa	irment		
Source(s) of Impa	airment		
TMDL Status	Final	Kiskiminetas Name Watersheds	s-Conemaugh River TMDL
	eam Public Water Supply Intake	Saltsburg Municipal Waterwor	
PWS Waters	Conemaugh River	Flow at Intake (cfs)	124
PWS RMI	0.5	Distance from Outfall (mi)	49.9

Γ

vischarge, Receiving Waters and Water Supply Information				
Outfall No. 602	Design Flow (MGD)	0		
Latitude40° 21' 13"	Longitude	-78º 56' 23"		
Quad Name Johnstown	Quad Code	1614		
Wastewater Description: Stormwater and Groundwa	ater			
Receiving Waters Conemaugh River (WWF)	Stream Code	43832		
NHD Com ID 123720447	RMI	50.32		
Drainage Area 686	Yield (cfs/mi ²)	0.097		
Q ₇₋₁₀ Flow (cfs) 66.3	Q ₇₋₁₀ Basis	USGS Stream Stats		
Elevation (ft) 1124	Slope (ft/ft)	0.0001		
Watershed No. 18-D	Chapter 93 Class.	WWF		
Existing Use	Existing Use Qualifier			
Exceptions to Use	Exceptions to Criteria			
Assessment Status Not Assessed				
Cause(s) of Impairment				
Source(s) of Impairment				
TMDL Status Final	Kiskiminetas Name Watersheds	s-Conemaugh River		
Nearest Downstream Public Water Supply Intake	Saltsburg Municipal Waterwo	rks		
PWS Waters	Flow at Intake (cfs)			
PWS RMI	Distance from Outfall (mi)			

Discharge, Receiv	ing Waters	s and Water Supply Info	rmation	
Outfall No. 60	3 (IMP 613	and 623)	Design Flow (MGD)	2.27
Latitude 40	° 21' 07"	<i>L</i>	Longitude	-78º 56' 23"
Quad Name	Johnstown		Quad Code	1614
Wastewater Des	cription:	IW Process Effluent with Groundwater	ELG, Noncontact Cooling Water	(NCCW), Stormwater, and
Receiving Waters	s <u>Coner</u>	naugh River (WWF)	Stream Code	43832
NHD Com ID	12372	0447	RMI	50.4
Drainage Area	686		Yield (cfs/mi ²)	0.097
Q ₇₋₁₀ Flow (cfs)	66.3		Q ₇₋₁₀ Basis	USGS Stream Stats
Elevation (ft)	1124		Slope (ft/ft)	0.0001
Watershed No.	18-D		Chapter 93 Class.	WWF
Existing Use			Existing Use Qualifier	
Exceptions to Us	e		Exceptions to Criteria	
Assessment Stat	tus	Not Assessed		
Cause(s) of Impa	airment			
Source(s) of Imp	airment			
TMDL Status		Final	Kiskiminetas Name Watersheds	-Conemaugh River TMDL
Nearest Downstr	eam Public	c Water Supply Intake	Saltsburg Municipal Waterwor	ks
PWS Waters	Conema	ugh River	Flow at Intake (cfs)	124
PWS RMI	0.5		Distance from Outfall (mi)	49.9

scharge, Receiving	Waters and Water Supply Informa	tion	
Outfall No. 604 (IMP 614)		Design Flow (MGD)	0.398
Latitude 40° 2	21' 06"	Longitude	-78º 56' 32"
Quad Name Jo	hnstown	Quad Code	1614
Wastewater Descri	ption: Noncontact Cooling Water	· (NCCW), Stormwater, and Gro	undwater
Receiving Waters	Conemaugh River (WWF)	Stream Code	43832
NHD Com ID	123720447	RMI	50.46
Drainage Area	686	Yield (cfs/mi ²)	0.097
Q ₇₋₁₀ Flow (cfs)	66.3	Q ₇₋₁₀ Basis	USGS Stream Stats
Elevation (ft)	1124	Slope (ft/ft)	0.0001
Watershed No.	_18-D	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Not Assessed		
Cause(s) of Impair	ment		
Source(s) of Impair	rment		
			-Conemaugh River
TMDL Status	Final	Name Watersheds	IMDL
	am Public Water Supply Intake	Saltsburg Municipal Waterwor	
_	Conemaugh River	Flow at Intake (cfs)	124
PWS RMI	0.5	Distance from Outfall (mi)	49.9

Discharge, Receiv	ing Waters	and Water Supply Inform	nation	
Outfall No. 60	5 (IMP 615 a	and 625)	Design Flow (MGD)	0.24
Latitude 40	° 21' 05"		Longitude	-78º 56' 32"
Quad Name	Johnstown		Quad Code	1614
Wastewater Des		Emergency Overflow, Non Groundwater	contact Cooling Water (NCCW)	, Stormwater, and
Receiving Waters	s <u>Conema</u>	augh River (WWF)	Stream Code	43832
NHD Com ID	1237204	147	RMI	50.47
Drainage Area	686		Yield (cfs/mi ²)	0.097
Q ₇₋₁₀ Flow (cfs)	66.3		Q ₇₋₁₀ Basis	USGS Stream Stats
Elevation (ft)	1124		Slope (ft/ft)	0.0001
Watershed No.	18-D		Chapter 93 Class.	WWF
Existing Use			Existing Use Qualifier	
Exceptions to Us	e		Exceptions to Criteria	
Assessment Stat	tus I	Not Assessed		
Cause(s) of Impa	airment			
Source(s) of Imp	airment			
TMDL Status	<u> </u>	Final	Kiskiminetas Name Watersheds	-Conemaugh River TMDL
Nearest Downstr	eam Public \	Nater Supply Intake	Saltsburg Municipal Waterwor	ks
PWS Waters	Conemaug	gh River	Flow at Intake (cfs)	124
PWS RMI	0.5		Distance from Outfall (mi)	49.9

ischarge, Receiv	ving Waters and Water Supply Inf	formation	
Outfall No. 60	06	Design Flow (MGD)	0
Latitude 40	0° 21' 00"	Longitude	-78º 56' 25"
Quad Name	Johnstown	Quad Code	1614
Wastewater Des	scription: Stormwater and Groun	dwater	
Receiving Wate	rs Conemaugh River (WWF)	Stream Code	43832
NHD Com ID	123720447	RMI	50.56
Drainage Area	686	Yield (cfs/mi ²)	0.097
Q ₇₋₁₀ Flow (cfs)	66.3	Q ₇₋₁₀ Basis	USGS Stream Stats
Elevation (ft)	1124	Slope (ft/ft)	0.0001
Watershed No.	18-D	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to U	se	Exceptions to Criteria	
Assessment Sta	Not Assessed		
Cause(s) of Imp	airment		
Source(s) of Imp	pairment		
TMDL Status	Final	Kiskiminetas Name Watersheds	s-Conemaugh River TMDL
Nearest Downst	ream Public Water Supply Intake	Saltsburg Municipal Waterwoo	rks
PWS Waters	Conemaugh River	Flow at Intake (cfs)	124
PWS RMI	0.5	Distance from Outfall (mi)	49.9

Jischarge, Receiv	ving Waters and Water Supply Inf	ormation	
Outfall No. 60	07 (IMP 617)	Design Flow (MGD)	0
Latitude 40	0° 21' 00"	Longitude	-78º 56' 25"
Quad Name	Johnstown	Quad Code	1614
Wastewater Des		ener Backwash Water, Noncontact (ndwater	Cooling Water (NCCW),
Receiving Water	rs Conemaugh River (WWF)	Stream Code	43832
NHD Com ID	123720447	RMI	50.56
Drainage Area	686	Yield (cfs/mi ²)	0.097
Q ₇₋₁₀ Flow (cfs)	66.3	Q ₇₋₁₀ Basis	USGS Stream Stats
Elevation (ft)	1124	Slope (ft/ft)	0.0001
Watershed No.	18-D	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Us	se	Exceptions to Criteria	
Assessment Sta	tus Not Assessed		
Cause(s) of Imp	airment		
Source(s) of Imp	pairment		
TMDL Status	Final	Kiskiminetas Name Watersheds	-Conemaugh River TMDL
Nearest Downst	ream Public Water Supply Intake	_Saltsburg Municipal Waterwor	ks
PWS Waters	Conemaugh River	Flow at Intake (cfs)	124
PWS RMI	0.5	Distance from Outfall (mi)	49.9

ischarge, Receiv	ing Waters and Water Supply Info	ormation		
Outfall No. 60	8	Design Flow (MGD)	0.0001	
Latitude 40	° 21' 03.4"	_ Longitude	-78º 56' 24"	
Quad Name	Johnstown	Quad Code	1614	
Wastewater Des	cription: Intake strainer backwas	h water		
Receiving Water	s Conemaugh River (WWF)	Stream Code	43832	
NHD Com ID	123720447	RMI	50.56	
Drainage Area	686	Yield (cfs/mi ²)	0.097	
Q ₇₋₁₀ Flow (cfs)	66.3	Q ₇₋₁₀ Basis	USGS Stream Stats	
Elevation (ft)	1124	Slope (ft/ft)	0.0001	
Watershed No.	18-D	Chapter 93 Class.	WWF	
Existing Use		Existing Use Qualifier	Existing Use Qualifier	
Exceptions to Us	se	Exceptions to Criteria		
Assessment Stat	tus Not Assessed			
Cause(s) of Impa	airment			
Source(s) of Imp	airment			
TMDL Status	Final	Kiskiminetas Name Watersheds	s-Conemaugh River TMDL	
Nearest Downstr	eam Public Water Supply Intake	Saltsburg Municipal Waterwor	rks	
PWS Waters	Conemaugh River	Flow at Intake (cfs)	124	
PWS RMI	0.5	Distance from Outfall (mi)	49.9	

Outfall No. 60 ⁴	1	Design Flow (MGD)	0
Latitude 40°	21' 15"	Longitude	-78º 56' 23"
Wastewater Desci	ription: Stormwater and Groundwater		

Stormwater Technology Limits

Outfall 601 will be subject to PAG-03 General Stormwater Permit conditions as a minimum requirement because the outfall receives stormwater. The SIC code for the site is 3315 and the corresponding appendix of the PAG-03 that would apply to the facility is Appendix B. The reporting requirements applicable to stormwater discharges are shown in Table 1 below.

Parameter	Max Daily Concentration	Measurement Frequency	Sample Type
Total Suspended Solids (TSS)	Monitor and Report	1/6 Months	Grab
Total Aluminum	Monitor and Report	1/6 Months	Grab
Total Zinc	Monitor and Report	1/6 Months	Grab
Total Copper	Monitor and Report	1/6 Months	Grab
Total Iron	Monitor and Report	1/6 Months	Grab
Total Lead	Monitor and Report	1/6 Months	Grab

Table 1: PAG-03 Appendix (B) Monitoring Requirements

Water Quality-Based Limitations

Stormwater WQBELs

Water quality analyses are typically performed under low-flow (Q7-10) conditions. Stormwater discharges occur at variable rates and frequencies but not however during Q7-10 conditions. Since the discharges from Outfall 601 are composed entirely of stormwater, a formal water quality analysis cannot be accurately conducted. Accordingly, water quality-based effluent limitations based on water quality analyses are not proposed.

Total Maximum Daily Loads

Wastewater discharges from Johnstown Wire Tech are located within the Kiskiminetas-Conemaugh Watershed for which the Department has developed a TMDL. The TMDL was finalized on January 29, 2010 and establishes waste load allocations for the discharge of aluminum, iron and manganese within the Kiskiminetas-Conemaugh Watershed. The site's NPDES permit (PA0217093) is listed in the Appendix G of the Kiskiminetas-Conemaugh Watershed TMDL, requiring load allocations. Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 of the Code of Federal Regulations Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding the water guality criteria for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources in order to restore and maintain the guality of the state's water resources (USEPA 1991a). Stream reaches within the Kiskiminetas-Conemaugh Watershed are included in the state's 2008 Section 303(d) list because of various impairments, including metals, pH and sediment. The TMDL includes consideration for each river and tributary within the target watershed and its impairment sources. Stream data is then used to calculate minimum pollutant reductions that are necessary to attain water quality criteria levels. Target concentrations published in the TMDL were based on established water quality criteria of 0.750 mg/L total recoverable aluminum, 1.5 mg/L total recoverable iron based on a 30-day average and 1.0 mg/L total recoverable manganese. The reduction needed to meet the minimum water guality standards is then divided between each known point and non-point pollutant source in the form of a watershed allocation. TMDLs prescribe allocations that minimally achieve water quality criteria (i.e., 100 percent use of a stream's assimilative capacity). However, the discharges from Outfall 601 are groundwater and stormwater and based on the sampling data provided in the permit application, these discharges do not contribute to the impairment of the Watershed. Therefore, TMDL load allocations and concentrationbased limitations will not be imposed, but monitoring for total iron, total manganese, and total aluminum will be imposed.

Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I). The previous limitations for Outfalls 601 are displayed below in Table 2. Along with the monitoring requirements, the current permit had discharge goals for the stormwater, Zinc goal of 0.117 mg/L and Nitrate-Nitrite Nitrogen goal of 0.68 m/L. These goals are going to be removed from the proposed permit because these goals are not required for the most recent PAG-03 general permit. The permit also required the sampling to be conducted during a storm event. This is due to the continual contribution of waste streams other than stormwater runoff to the outfall.

Table 2: Effluent Limitations in the Current Permit for Outfall 601

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type
Total Zinc	XXX	XXX	Report	Report	XXX	1/month	Grab
Nitrate-Nitrite Nitrogen	XXX	XXX	Report	Report	XXX	1/month	Grab

Proposed Effluent Limitations and Monitoring Requirements

The proposed effluent monitoring requirements for Outfall 601 are displayed in Table 3 below, they are the most stringent values from the above effluent limitation development. The monitoring frequency for the existing monitoring requirements has been changed from 1/month to semi-annually to reflect the monitoring frequency in the PAG-03 general permit. The Draft Permit requires a Corrective Action Plan when there are two consecutive exceedances of the benchmark values, which are also included in the Part C condition. The benchmark values are displayed below in Table 3. These values are not effluent limitations, an exceedance of the benchmark value is not a violation. As described above, if there are two consecutive exceedances of the benchmark value, a corrective action plan must be conducted to evaluate site stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility's controls may not be sufficiently controlling pollutants in stormwater.

Table 3: Proposed Effluent Monitoring Requirements – Outfall 601

Parameter	Max Daily Concentration	Benchmark Values (mg/L)	Measurement Frequency	Sample Type
Total Suspended Solids (TSS)	Report	100	1/6 Months	Grab
Total Aluminum	Report	XXX	1/6 Months	Grab
Total Zinc	Report	XXX	1/6 Months	Grab
Total Copper	Report	XXX	1/6 Months	Grab
Total Iron	Report	XXX	1/6 Months	Grab
Total Lead	Report	XXX	1/6 Months	Grab
Nitrate-Nitrite Nitrogen	Report	XXX	1/6 Months	Grab
Total Manganese	Report	XXX	1/6 Months	Grab

Develo	pment of	Effluent	Limitations
		LIIIGOIL	Linnuurons

Outfall No.	602		Design Flow (MGD)	0
Latitude	40º 21' 13"		Longitude	-78º 56' 23"
Wastewater De	escription:	Stormwater and Groundwater		
		Stormwater and Groundwater	Longitude	-78º 56' 23"

Stormwater Technology Limits

Outfall 602 will be subject to PAG-03 General Stormwater Permit conditions as a minimum requirement because the outfall receives stormwater. The SIC code for the site is 3315 and the corresponding appendix of the PAG-03 that would apply to the facility is Appendix B. The reporting requirements applicable to stormwater discharges are shown in Table 4 below.

Parameter	Max Daily Concentration	Measurement Frequency	Sample Type
Total Suspended Solids (TSS)	Monitor and Report	1/6 Months	Grab
Total Aluminum	Monitor and Report	1/6 Months	Grab
Total Zinc	Monitor and Report	1/6 Months	Grab
Total Copper	Monitor and Report	1/6 Months	Grab
Total Iron	Monitor and Report	1/6 Months	Grab
Total Lead	Monitor and Report	1/6 Months	Grab

Table 4: PAG-03 Appendix (B) Monitoring Requirements

Water Quality-Based Limitations

Stormwater WQBELs

Water quality analyses are typically performed under low-flow (Q7-10) conditions. Stormwater discharges occur at variable rates and frequencies but not however during Q7-10 conditions. Since the discharges from Outfall 602 are composed entirely of stormwater, a formal water quality analysis cannot be accurately conducted. Accordingly, water quality-based effluent limitations based on water quality analyses are not proposed.

Total Maximum Daily Loads

Wastewater discharges from Johnstown Wire Tech are located within the Kiskiminetas-Conemaugh Watershed for which the Department has developed a TMDL. The TMDL was finalized on January 29, 2010 and establishes waste load allocations for the discharge of aluminum, iron and manganese within the Kiskiminetas-Conemaugh Watershed. The site's NPDES permit (PA0217093) is listed in the Appendix G of the Kiskiminetas-Conemaugh Watershed TMDL, requiring load allocations. Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 of the Code of Federal Regulations Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding the water guality criteria for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources in order to restore and maintain the guality of the state's water resources (USEPA 1991a). Stream reaches within the Kiskiminetas-Conemaugh Watershed are included in the state's 2008 Section 303(d) list because of various impairments, including metals, pH and sediment. The TMDL includes consideration for each river and tributary within the target watershed and its impairment sources. Stream data is then used to calculate minimum pollutant reductions that are necessary to attain water quality criteria levels. Target concentrations published in the TMDL were based on established water quality criteria of 0.750 mg/L total recoverable aluminum, 1.5 mg/L total recoverable iron based on a 30-day average and 1.0 mg/L total recoverable manganese. The reduction needed to meet the minimum water guality standards is then divided between each known point and non-point pollutant source in the form of a watershed allocation. TMDLs prescribe allocations that minimally achieve water quality criteria (i.e., 100 percent use of a stream's assimilative capacity). However, the discharges from Outfall 602 are groundwater and stormwater and based on the sampling data provided in the permit application, these discharges do not contribute to the impairment of the Watershed. Therefore, TMDL load allocations and concentrationbased limitations will not be imposed, but monitoring for total iron, total manganese, and total aluminum will be imposed.

Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I). The previous limitations for Outfalls 602 are displayed below in Table 5. Along with the monitoring requirements, the current permit had discharge goals for the stormwater, Zinc goal of 0.117 mg/L and Nitrate-Nitrite Nitrogen goal of 0.68 m/L. These goals are going to be removed from the proposed permit because these goals are not required for the most recent PAG-03 general permit. The permit also required the sampling to be conducted during a storm event. This is due to the continual contribution of waste streams other than stormwater runoff to the outfall.

Table 5: Effluent Limitations in the Current Permit for Outfall 602

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type
Total Zinc*	XXX	XXX	Report**	Report**	XXX	1/month	Grab
Nitrate-Nitrite Nitrogen *	XXX	XXX	Report**	Report**	XXX	1/month	Grab

Proposed Effluent Limitations and Monitoring Requirements

The proposed effluent monitoring requirements for Outfall 602 are displayed in Table 6 below, they are the most stringent values from the above effluent limitation development. The monitoring frequency for the existing monitoring requirements has been changed from 1/month to semi-annually to reflect that monitoring frequency in the PAG-03 general permit. The Draft Permit requires a Corrective Action Plan when there are two consecutive exceedances of the benchmark values, which are also included in the Part C condition. The benchmark values are displayed below in Table 6. These values are not effluent limitations, an exceedance of the benchmark value is not a violation. As described above, if there are two consecutive exceedances of the benchmark value, a corrective action plan must be conducted to evaluate site stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility's controls may not be sufficiently controlling pollutants in stormwater.

Table 6: Proposed Effluent Monitoring Requirements – Outfall 602

Parameter	Max Daily Concentration	Benchmark Values (mg/L)	Measurement Frequency	Sample Type
Total Suspended Solids (TSS)	Report	100	1/6 Months	Grab
Total Aluminum	Report	XXX	1/6 Months	Grab
Total Zinc	Report	XXX	1/6 Months	Grab
Total Copper	Report	XXX	1/6 Months	Grab
Total Iron	Report	XXX	1/6 Months	Grab
Total Lead	Report	XXX	1/6 Months	Grab
Nitrate-Nitrite Nitrogen	Report	XXX	1/6 Months	Grab
Total Manganese	Report	XXX	1/6 Months	Grab

Development of Effluent Limitations

Outfall No.	603	Design Flow (MGD)	1.46
Latitude	40º 21' 07"	Longitude	-78º 56' 23"
Wastewater De	escription:	IW Process Effluent with ELG, Noncontact Cooling Water Groundwater	(NCCW), Stormwater, and

Technology-Based Limitations

Federal Effluent Limitation Guidelines (ELGs)

The ELG monitoring requirements and limitations will be imposed at Internal Monitoring Point 623.

Regulatory Effluent Standards and Monitoring Requirements

25 PA Code Chapter 92 requires pH requirements to be a minimum of 6.0 and a maximum of 9.0 S.U. for all industrial waste process and non-process discharges.

Flow Reporting requirements is in accordance with the 25 PA Code Chapter 92 regulations.

As oil-bearing wastewaters, discharges from Outfall 603 are subject to effluent standards for oil and grease from 25 Pa. Code § 95.2(2)

Temperature limits will be imposed per the Department's "*Implementation Guidance for Temperature Criteria*." As a policy, DEP normally imposes a maximum temperature limit of 110°F on discharges that contain residual heat. The limit is intended as a safety measure to protect sampling personnel or anyone who may come into contact with the heated discharge where it enters the receiving water.

Table 7: Regulatory Effluent Standards and Monitoring Requirements for Outfall 603

Parameter	Monthly Average	Daily Maximum	Instantaneous Maximum	Units
Flow	Monitor	and Report	-	MGD
Oil and Grease	15.0	30.0		mg/L
Temperature	-	-	110	°F
рН		Between 6.0 and 9.0		S.U.

Stormwater Technology Limits

Outfall 603 will be subject to PAG-03 General Stormwater Permit conditions as a minimum requirement because the outfall receives stormwater. The SIC code for the site is 3315 and the corresponding appendix of the PAG-03 that would apply to the facility is Appendix B. The reporting requirements applicable to stormwater discharges are shown in Table 8 below.

Table 8: PAG-03 Appendix (B) Monitoring Requirements

Parameter	Max Daily Concentration	Measurement Frequency	Sample Type
Total Suspended Solids (TSS)	Monitor and Report	1/6 Months	Grab
Total Aluminum	Monitor and Report	1/6 Months	Grab
Total Zinc	Monitor and Report	1/6 Months	Grab
Total Copper	Monitor and Report	1/6 Months	Grab
Total Iron	Monitor and Report	1/6 Months	Grab
Total Lead	Monitor and Report	1/6 Months	Grab

Water Quality-Based Limitations

Toxics Management Spread Sheet

The Department of Environmental Protection (DEP) has developed the DEP Toxics Management Spreadsheet ("TMS") to facilitate calculations necessary for completing a reasonable potential (RP) analysis and determining water quality-based effluent limitations for discharges of toxic pollutants. The Toxics Management Spreadsheet is a macro-enabled Excel

binary file that combines the functions of the PENTOXSD model and the Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water quality standards and to determine WQBELs. The Toxics Management Spread Sheet is a single discharge, mass-balance water quality calculation spread sheet that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number, discharge flow rate and the discharge concentrations for parameters in the permit application or in DMRs, which are entered into the spread sheet to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Discharge concentrations for the parameters are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). The spread sheet then evaluates each parameter by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, the Toxics Management Spread sheet recommends average monthly and maximum daily WQBELs.

Reasonable Potential Analysis and WQBEL Development for Outfall 603

Discharges from Outfall 603 are evaluated based on concentrations reported on the application and on DMRs; data from those sources are entered into the Toxics Management Spread Sheet. The maximum reported value of the parameters from the application form or from previous DMRs is used as the input concentration in the Toxics Management Spread Sheet. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion are considered to be pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. The Toxics Management Spread Sheet is run with the discharge and receiving stream characteristics shown in Table 9. For IW discharges, the design flow used in modeling is the average flow during production or operation taken from the permit application. Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis. All the parameters are evaluated using the model to determine the water quality-based effluent limits applicable to the discharge and the receiving stream. The spreadsheet then compares the reported discharge concentrations to the calculated water qualitybased effluent limitations to determine if a reasonable potential exists to exceed the calculated WQBELs. Effluent limitations are established in the draft permit where a pollutant's maximum reported discharge concentration equals or exceeds 50% of the WQBEL. For non-conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 25% - 50% of the WQBEL. For conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 10% - 50% of the WQBEL. The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are displayed in the Toxics Management Spread Sheet in Attachment B of this Fact Sheet. The water guality-based effluent limitations and monitoring requirements that are recommended by the Toxics Management Spread Sheet are displayed below in Table 10. Acrylamide received WQBELs even though it was nondetect; however, if it is believed that Acrylamide is not present in the discharge and the permittee doesn't use chemical additives containing Acrylamide, then the limitation and monitoring requirement for Acrylamide can be removed. If Johnstown Wire Tech certifies that chemical additives used in the processes that discharge via Outfall 603 during the 30day comment period, then the limitations for Acrylamide may be removed from the Final Permit.

Table 9: TMS Inputs for Outfall 603			
Parameter	Value		
River Mile Index	50.4		
Discharge Flow (MGD)	1.46		
Basin/Stream Characteris	stics		
Parameter	Value		
Area in Square Miles	686		
Q ₇₋₁₀ (cfs)	66.3		
Low-flow yield (cfs/mi ²)	0.097		
Elevation (ft)	1124		
Slope	0.0001		

Table 10: Water Quality Based EffluentLimitations at Outfall 603

Parameters	Average Monthly (µg/L)	Daily Maximum (µg/L)		
Total Lead	Report	Report		
Total Zinc	1,634	2,550		
Acrylamide	9.07	14.2		

Thermal WQBELs for Heated Discharges

Thermal WQBELs are evaluated using DEP's "Thermal Discharge Limit Calculation Spreadsheet" created with Microsoft Excel for Windows. The program calculates temperature WLAs through the application of a heat transfer equation, which takes two forms in the program depending on the source of the facility's cooling water. In Case 1, intake water to a facility is from the receiving stream. In Case 2, intake water is from a source other than the receiving stream (e.g., municipal water supply). The determination of which case applies to a given discharge is determined by the input data which include the receiving stream flow rate (Q₇₋₁₀ or the minimum regulated flow for large rivers), the stream intake flow rate, external source intake flow rates, consumptive flow rates and site-specific ambient stream temperatures. Case 1 limits are generally expressed as heat rejection rates while Case 2 limits are usually expressed as temperatures.

Since the temperature criteria from 25 Pa. Code Chapter 93.7(a) are expressed on monthly and semi-monthly bases for three different aquatic life-uses—cold water fishes, warm water fishes and trout stocking—the program generates monthly and semi-monthly limits for each use. DEP selects the output that corresponds to the aquatic life-use of the receiving stream and consequently which limits apply to the discharge. Temperature WLAs are bounded by an upper limit of 110°F for the safety of sampling personnel and anyone who may come into contact with the heated discharge where it enters the receiving water. If no WLAs below 110°F are calculated, an instantaneous maximum limit of 110°F is recommended by the program.

Due to the nature of the discharges and their relative locations on the receiving stream, all heated discharges will be evaluated as one discharge to ensure the temperature criteria is met instream from all of the heated discharges and a combined flow of 1.525 MGD was used in the model. Discharges from the site are classified under Case 2 because water is obtained from municipal water supply. The results of the thermal analysis, included in Attachment C, indicate that no WQBELs for temperature are required at Outfall 603. Therefore, the 110°F daily maximum temperature limit will be imposed at Outfall 603.

Total Maximum Daily Loads for Outfall 603

The Johnstown Wire Techs Johnstown Plant is within the watershed area covered by the Kiskiminetas-Conemaugh Watershed TMDL, approved as final by EPA in 2010. This TMDL addresses certain impairments of water quality standards associated with elevated instream concentrations of iron, aluminum, and manganese. A pH impairment is addressed through a surrogate relationship with these metals. This TMDL establishes wasteload allocations for these metals for point sources, and load allocations for these metals for nonpoint sources in the watershed. DEP must assure that any effluent limitations assigned to point sources are consistent with the assumptions and requirements of any available wasteload allocation for the discharge pursuant to 40 CFR 130.7 (i.e., a final TMDL). The Site's permit PA0217093 is listed in the Appendix G of the Kiskiminetas-Conemaugh River Watershed TMDL, requiring load allocations. Wasteload allocations were delegated for Outfall 603. These wasteload allocations are equivalent to the listed concentration limits under various flow scenarios. In this case, the concentration limits are prosed rather than the load limits to simplify compliance assessments. The effluent limits from the TMDL are displayed below in Table 11.

The specific water quality criterion for aluminum is expressed as an acute or maximum daily in 25 Pa. Code Chapter 93. Discharges of aluminum may only be authorized to the extent that they will not cause or contribute to any violation of the water quality standards. Therefore, the water quality criterion for aluminum (0.75 mg/L) is imposed as a maximum daily effluent limit (MDL). Whenever the most stringent criterion is selected for the MDL, the Department should also impose an average monthly limit (AML) and instantaneous maximum limit (IMAX) if applicable. The imposition of an AML that is more stringent than the MDL is typically not appropriate because the water quality concerns have already been fully addressed by setting the MDL equal to the most stringent applicable criterion. Therefore, where the MDL is set at the value of the most stringent applicable criterion, the AML should be set equal to the MDL.

The specific water quality criterion for iron is expressed as a 30-day average of 1.5 ^{mg/L} in 25 Pa. Code § 93.7(a). The criterion is based on the protection of aquatic life and is associated with chronic exposure. There are no other criteria for total iron. Since the duration of the total iron criterion coincides with the 30-day duration of the AML, the 30-day average criterion for total iron is set equal to the AML. In addition, because the total iron criterion is associated with chronic exposure, the MDL (representing acute exposure) and the IMAX may be made less stringent according to established procedures described in Section III.C.3.h on Page 13 of the Water Quality Toxics Management Strategy (Doc. # 361-0100-003). These procedures state that a MDL and IMAX may be set at 2 times and 2.5 times the AML, respectively, or there is the option to use multipliers from EPA's Technical Support Document for Water Quality-based Toxics Control, if data are available to support the use of alternative multipliers.

The specific water quality criterion for manganese is expressed as an acute or maximum daily of 1.0 mg/L in 25 Pa. Code § 93.7(a). The criterion is based on the protection of human health and is associated with chronic exposure associated

with a potable water supply (PWS). Since no duration is given in Chapter 93 for the manganese criterion, a duration of 30 days is used based on the water quality criteria duration for Threshold Human Health (THH) criteria given in Section III.C.3.a., Table 1 on Page 10 of DEP's Water Quality Toxics Management Strategy. The 30-day duration for THH criteria coincides with the 30-day duration of an AML, which is why the manganese criterion is set equal to the AML for a "permitting at criteria" scenario. Because the manganese criterion is interpreted as having chronic exposure, the manganese MDL and IMAX may be made less stringent according to procedures established in Section III.C.2.h. of the Water Quality Toxics Management Strategy (AML multipliers of 2.0 and 2.5 for the MDL and IMAX respectively).

Devementer	TMDL Li	L In:to		
Parameter	Average Monthly	Maximum Daily	Units	
Aluminum, total	0.75	0.75	mg/L	
Iron, total	1.5	3.0	mg/L	
Manganese, total	1.0	2.0	mg/L	

Table 11 – TMDL Limits for Outfall 603

Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I). The previous limitations for Outfall 603 are displayed below in Table 12. The stormwater parameters, Nitrate-Nitrite Nitrogen, was required to be sampled during a storm event. Along with the monitoring requirements, the current permit had discharge goals for the stormwater, Nitrate-Nitrite Nitrogen goal of 0.68 m/L. These goals are going to be removed from the proposed permit because these goals are not required for the most recent PAG-03 general permit.

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	2/month	Measures
Temperature	XXX	XXX	XXX	110	XXX	2/month	I-S
Oil and Grease	XXX	XXX	15	XXX	30	2/month	Grab
Total Zinc	XXX	XXX	0.95	1.9	XXX	2/month	Grab
Nitrate-Nitrite Nitrogen	XXX	XXX	Report	Report	XXX	1/month	Grab
pH (S.U.)		Not less than	2/month	Grab			

Table 12: Effluent Limitations in the Current Permit for Outfall 603

Proposed Effluent Limitations

The proposed effluent limitations for Outfall 603 are displayed in Table 13 below, they are the most stringent values from the above effluent limitation development. Because the TMDL limitations for Aluminum, Iron and Manganese and the water quality based effluent limitations for Acrylamide are new to the Outfall 603, Outfall 603 will receive monitor and report interim limitations for the first three years of the permit cycle to ensure that the site can meet the final effluent limitations. A foot note will be included in Part A of the permit requiring the stormwater parameters to be sampled prior to mixing with other wastewaters. The monitoring frequency for the existing stormwater monitoring requirements has been changed from 1/month to semi-annually to reflect that monitoring frequency in the PAG-03 general permit. The Draft Permit will also require a Corrective Action Plan when there are two consecutive exceedances of the benchmark values, which are also included in the Part C condition. The benchmark values are displayed below in Table 14. These values are not effluent limitations, an exceedance of the benchmark value is not a violation. As described above, if there are two consecutive exceedances of the benchmark value, a corrective action plan must be conducted to evaluate site stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility's controls may not be sufficiently controlling pollutants in stormwater.

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Instant. Minimum (mg/L)	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	2/month	Measures
Temperature	XXX	XXX	XXX	XXX	110	XXX	2/month	I-S
Oil and Grease	XXX	XXX	XXX	15.0	30.0	XXX	2/month	Grab
Total Zinc	XXX	XXX	XXX	0.95	1.9	XXX	2/month	Grab
Total Lead	XXX	XXX	XXX	Report	Report	XXX	2/month	Grab
Acrylamide (µg/L)	XXX	XXX	XXX	9.07	14.2	XXX	2/month	Grab
Total Aluminum	XXX	XXX	XXX	0.75	0.75	XXX	2/month	Grab
Total Iron	XXX	XXX	XXX	1.5	3.0	XXX	2/month	Grab
Total Manganese	XXX	XXX	XXX	1.0	2.0	XXX	2/month	Grab
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	2/month	Grab
Total Suspended Solids *	xxx	XXX	xxx	XXX	Report	XXX	1/6months	Grab
Total Copper *	XXX	XXX	XXX	XXX	Report	XXX	1/6months	Grab
Nitrate-Nitrite Nitrogen *	XXX	XXX	XXX	XXX	Report	XXX	1/6months	Grab

Table 13: Propose Effluent Limitations for Outfall 603

Table 14: Stormwater Benchmark Values

Parameters	Benchmark Values (mg/L)
Total Suspended Solids	100

Development of Effluent Limitations

IMP No.	613	Design Flow (MGD)	1.44
Latitude	40º 21' 07"	Longitude	-78º 56' 32"
Wastewater	Description:	IW Process Effluent with ELG (Various wastewater from rod and	wire operations)

Technology-Based Limitations

Federal Effluent Limitation Guidelines (ELGs)

IMP 316 is subject to Federal Effluent Limitation Guidelines (ELGs) under 40 CFR 420 Iron and Steel Manufacturing and 40 CFR 433 Metal Finishing.

The Aluminize line is subject to 420.92 (a) (1), (Iron and Steel Manufacturing Subpart I- Sulfuric Acid Pickling, Rod, Wire, and Coil subcategory), 420.92 (b) (1) (Iron and Steel Manufacturing Subpart I- Hydrochloric acid pickling, Rod, Wire, and Coil subcategory, and 420.122 (b) (1) Galvanizing and Other Coatings, Wire Products and Fasteners.

The Bethanize line is subject to 433.13(a) (Metal Finishing Subcategory).

The Cleaning House Operations is subject to 420.92 (b) (1) (Iron and Steel Manufacturing Subpart I- Hydrochloric acid pickling, Rod, Wire, and Coil subcategory, 420.92 (b) (4) (Iron and Steel Manufacturing Subpart I- Hydrochloric acid pickling, Fume Scrubber subcategory, 420.112(a) (Iron and Steel Manufacturing Subpart K - Alkaline Cleaning – Batch Subcategory), and 433.13(a) (Metal Finishing Subcategory).

Each subcategory of each production line is broken down in detail in Attachment D. The average daily production rate from the past five years was used to calculate the production. The limitations from the ELGs are displayed below in Table 15. The limits are the summation of all of the above subparts for each of the production lines. The limitations from 40 CFR 420 are mass based and the effluent limitations from 40 CFR 433 are concentration based. Additionally, it should be noted that the Oil and Grease limitations from 420.92(a)(1), 420.92(b)(1), and 420.92(b)(4), on the Aluminize line and Cleaning line are not applicable because cold rolling wastewaters are not treated with the acid pickling wastewaters. Also, it should be noted that Hexavalent Chromium from 420.122(b)(1) on the Aluminize line is not applicable because the galvanizing operation does not discharge wastewaters from a chromate rinse step.

The metal finishing ELG limits the following parameters on a concentration basis: cadmium, copper, cyanide, chromium, lead, zinc, nickel, silver, Total Toxic Organics (TTO), oil and grease, and total suspended solids (TSS).

The iron and steel manufacturing ELG limits the following parameters based on production: lead, zinc, TSS, and Oil and Grease. Because the in 40 CFR 433 are concentration based, for parameters that are also covered under 40 CFR 420 (lead, zinc, TSS, and Oil and Grease), concentration limits will be converted to mass limitations using the average wastewater flow for each applicable process coved by 40 CFR 433. For parameters included in 40 CFR 433 that are not included in 40 CFR 420 (cadmium, copper, cyanide, chromium, nickel, TTO and silver), the limitations are expressed only as concentrations consistent with the ELG.

In accordance with 40 CFR 433.12(a), a part C condition in the permit will be added to provide the permittee the opportunity to make a certification statement in lieu of required monitoring for the Total Toxic Organics (TTO). 40 CFR 433.12 states:

a) In lieu of requiring monitoring for TTO, the permitting authority (or, in the case of indirect dischargers, the control authority) may allow dischargers to make the following certification statement: "Based on my inquiry of the person or persons directly responsible for managing compliance with the permit limitation [or pretreatment standard] for total toxic organics (TTO), I certify that, to the best of my knowledge and belief, no dumping of concentrated toxic organics into the wastewaters has occurred since filing of the last discharge monitoring report. I further certify that this facility is implementing the toxic organic management plan submitted to the permitting [or control] authority." For direct dischargers, this statement is to be included as a "comment" on the Discharge Monitoring Report required by 40 CFR 122.44(i), formerly 40 CFR 122.62(i). For indirect dischargers, the statement is to be included as a comment to the periodic reports required by 40 CFR 403.12(e). If monitoring is necessary to measure compliance with the TTO standard, the industrial discharger need analyze for only those pollutants which would reasonably be expected to be present.

b) In requesting the certification alternative, a discharger shall submit a solvent management plan that specifies to the satisfaction of the permitting authority (or, in the case of indirect dischargers, the control authority) the toxic organic compounds used; the method of disposal used instead of dumping, such as reclamation, contract hauling, or incineration; and procedures for ensuring that toxic organics do not routinely spill or leak into the wastewater. For direct dischargers, the permitting authority shall incorporate the plan as a provision of the permit.

Table 15: ELG Limitations

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Average Monthly (mg/L)	Daily Maximum (mg/L)
Total Suspended Solids	203.388	412.366	31.0	60.0
Oil and Grease	136.772	279.209	26.0	52.0
Total Cadmium	XXX	XXX	0.26	0.69
Total Chromium	XXX	XXX	1.71	2.77
Total Copper	XXX	XXX	2.07	3.38
Total Lead	2.346	4.74	0.43	0.69
Total Nickel	XXX	XXX	2.38	3.98
Total Silver	XXX	XXX	0.24	0.43
Total Zinc	7.700	13.872	1.48	2.61
Total Cyanide	XXX	XXX	0.65	1.20
Total Toxic Organics	XXX	XXX	XX	2.13
pH (S.U.)		Not less than 6.0	nor greater than 9.0	

Water Quality-Based Limitations

Water quality based effluent limitations will be evaluated and imposed at the receiving outfall, Outfall 603.

Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I). The previous limitations for IMP 613 are displayed below in Table 16. Along with the effluent limitations, the pervious permit had multiple footnotes and requirements for the discharges from IMP 613. These footnotes are described below and will be included in the Draft permit. The Mass-Based limitations will be replaced with new limits based on the current production and operation.

Table 16: Effluent Limitations in the Current Permit for IMP 613

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	1/week	Measures
Total Suspended Solids	375.27	808.07	31.0	60.0	75*	1/week	24-hr composite
Oil and Grease	275.97	361.62	26.0	52.0	XXX	1/week	Grab
Total Cadmium	XXX	XXX	0.021	0.042	0.053*	1/week	24-hr composite
Total Chromium	XXX	XXX	1.71	2.77	3.46*	1/week	24-hr composite
Total Copper	XXX	XXX	0.13	0.26	0.33*	1/week	24-hr composite
Total Lead	3.08	5.96	0.34	0.68	0.85*	1/week	24-hr composite
Total Nickel	XXX	XXX	2.38	3.98	4.98*	1/week	24-hr composite
Total Silver	XXX	XXX	0.062	0.12	0.16*	1/week	24-hr composite
Total Zinc	10.56	17.20	1.05	2.10	2.63*	1/week	24-hr composite
Total Cyanide	XXX	XXX	0.65	1.20	1.50*	1/week	24-hr composite
Total Toxic Organics**	XXX	XXX	XX	2.13	XXX	1/week	24-hr composite
Total Iron	XXX	XXX	3.5	7.0	8.75*	1/week	24-hr composite
pH (S.U.)		Not less than	6.0 nor grea	ter than 10.0		1/week	Grab

*Instantaneous maximum limitations are imposed to allow for a grab sample to be collected by the appropriate regulatory agency to determine compliance. The permittee is not required to monitor for the instantaneous maximum limitations. However, if grab samples are collected by the permittee, the results must be reported.

**As provided by 40 CFR 433.12(a), in lieu of requiring monitoring for TTO, the Department may allow the discharger to make the following certification statement:

"Based on my inquiry of the person or persons directly responsible for managing compliance with the permit limitation for total toxic organics (TTO), I certify that, to the best of my knowledge and belief, no dumping of concentrated toxic organics into the wastewater has occurred since filing of the last discharge monitoring report. I further certify that the facility is implementing the Toxic Organic Management Plan submitted to the permitting authority."

This statement is to be included as a "comment" on or attached to the Discharge Monitoring Report. If monitoring is necessary to measure compliance with the TTO standard, analyzed for only those pollutants which would reasonably be expected to be present.

Proposed Effluent Limitations

The proposed effluent limitations for IMP 613 are displayed in Table 17 below, they are the most stringent values from the above effluent limitation development.

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	1/week	Measures
Total Suspended Solids	203	412	31.0	60.0	75*	1/week	24-hr composite
Oil and Grease	137	279	26.0	52.0	XXX	1/week	Grab
Total Cadmium	XXX	XXX	0.021	0.042	0.053*	1/week	24-hr composite
Total Chromium	XXX	XXX	1.71	2.77	3.46*	1/week	24-hr composite
Total Copper	XXX	XXX	0.13	0.26	0.33*	1/week	24-hr composite
Total Lead	2.35	4.74	0.34	0.68	0.85*	1/week	24-composite
Total Nickel	XXX	XXX	2.38	3.98	4.98*	1/week	24-hr composite
Total Silver	XXX	XXX	0.062	0.12	0.16*	1/week	24-hr composite
Total Zinc	7.70	13.9	1.05	2.10	2.63*	1/week	24-hr composite
Total Cyanide	XXX	XXX	0.65	1.20	1.50*	1/week	24-hr composite
Total Toxic Organics**	XXX	XXX	XX	2.13	XXX	1/week	24-hr composite
Total Iron	XXX	XXX	3.5	7.0	8.75*	1/week	24-hr composite
pH (S.U.)		Not less than	6.0 nor grea	ater than 9.0		1/week	Grab

Table 17: Proposed Effluent Limitations for IMP 613

*Instantaneous maximum limitations are imposed to allow for a grab sample to be collected by the appropriate regulatory agency to determine compliance. The permittee is not required to monitor for the instantaneous maximum limitations. However, if grab samples are collected by the permittee, the results must be reported.

**As provided by 40 CFR 433.12(a), in lieu of requiring monitoring for TTO, the Department may allow the discharger to make the following certification statement:

"Based on my inquiry of the person or persons directly responsible for managing compliance with the permit limitation for total toxic organics (TTO), I certify that, to the best of my knowledge and belief, no dumping of concentrated toxic organics into the wastewater has occurred since filing of the last discharge monitoring report. I further certify that the facility is implementing the Toxic Organic Management Plan submitted to the permitting authority."

This statement is to be included as a "comment" on or attached to the Discharge Monitoring Report. If monitoring is necessary to measure compliance with the TTO standard, analyzed for only those pollutants which would reasonably be expected to be present.

IMP No.	623		Design Flow (MGD)	0.0	
Latitude	40º 21' 02"		Longitude	-78º 56' 24"	
Wastewater F	escription.	Emergency overflow from	n the plating operations wastewater pur	ning station	

Proposed Effluent Limitations

The proposed effluent limitations for IMP 623 are displayed in Table 18 below. IMP 623 is the emergency overflow from the plating operations wastewater pumping station. This discharge is considered categorical wastes subject to the limitations contained in the ELG, therefore, during an emergency overflow discharge, the limits for IMP 623 will be the same as IMP 613. The previous permit imposed the same limitations on IMP 623 as IMP 613 for the same reason as discussed above. The previous permit also contained a part C condition requiring the total combined mass loading discharged from IMP 613, IMP 623, and IMP 615 to not exceed the mass loading limitations for IMP 613. This part C condition will be included in the renewal permit.

Parameter	Average Monthly (lbs/day) **	Daily Maximum (Ibs/day) **	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	2/discharge	Measures
Total Suspended Solids	203	412	31.0	60.0	XXX	2/discharge	Grab
Oil and Grease	137	279	26.0	52.0	XXX	2/discharge	Grab
Total Cadmium	XXX	XXX	0.021	0.042	XXX	2/discharge	Grab
Total Chromium	XXX	XXX	1.71	2.77	XXX	2/discharge	Grab
Total Copper	XXX	XXX	0.13	0.26	XXX	2/discharge	Grab
Total Lead	2.35	4.74	0.34	0.68	XXX	2/discharge	Grab
Total Nickel	XXX	XXX	2.38	3.98	XXX	2/discharge	Grab
Total Silver	XXX	XXX	0.062	0.12	XXX	2/discharge	Grab
Total Zinc	7.70	13.9	1.05	2.10	XXX	2/discharge	Grab
Total Cyanide	XXX	XXX	0.65	1.20	XXX	2/discharge	Grab
Total Toxic Organics*	XXX	XXX	XX	2.13	XXX	2/discharge	Grab
Total Iron	XXX	XXX	3.5	7.0	XXX	2/discharge	Grab
pH (S.U.)		Not less than	6.0 nor grea	ater than 9.0		2/discharge	Grab

Table 18: Proposed Effluent Limitations for IMP 623

*As provided by 40 CFR 433.12(a), in lieu of requiring monitoring for TTO, the Department may allow the discharger to make the following certification statement:

"Based on my inquiry of the person or persons directly responsible for managing compliance with the permit limitation for total toxic organics (TTO), I certify that, to the best of my knowledge and belief, no dumping of concentrated toxic organics into the wastewater has occurred since filing of the last discharge monitoring report. I further certify that the facility is implementing the Toxic Organic Management Plan submitted to the permitting authority."

This statement is to be included as a "comment" or attached to the Discharge Monitoring Report. If monitoring is necessary to measure compliance with the TTO standard, analyzed for only those pollutants which would reasonably be expected to be present.

** The total combined mass loading discharged from IMP 613, IMP 623, and IMP 615 shall not exceed the mass loading limitations for IMP 613 as listed in Part A of the Permit.

Development of Effluent Limitations

Outfall No.	604	Design Flow (MGD)	0.398	
Latitude	40º 21' 06"	Longitude	-78º 56' 32"	
Wastewater Description:		Noncontact Cooling Water (NCCW), Stormwater, and Groundwater		

Noncontact cooling water that discharges via Outfall 604 is monitored at IMP 614.

Stormwater Technology Limits

Outfall 604 will be subject to PAG-03 General Stormwater Permit conditions as a minimum requirement because the outfall discharges stormwater associated with industrial activity. The SIC code for the site is 3315 and the corresponding appendix of the PAG-03 that would apply to the facility is Appendix B. The reporting requirements applicable to stormwater discharges are shown in Table 19 below.

Table 19: PAG-03 Appendix (B) Monitoring Requirements					
Parameter	Max Daily	Measure			

Parameter	Max Daily Concentration	Measurement Frequency	Sample Type
Total Suspended Solids (TSS)	Monitor and Report	1/6 Months	Grab
Total Aluminum	Monitor and Report	1/6 Months	Grab
Total Zinc	Monitor and Report	1/6 Months	Grab
Total Copper	Monitor and Report	1/6 Months	Grab
Total Iron	Monitor and Report	1/6 Months	Grab
Total Lead	Monitor and Report	1/6 Months	Grab

Water Quality-Based Limitations

Stormwater WQBELs

Water quality analyses are typically performed under low-flow (Q7-10) conditions. Stormwater discharges occur at variable rates and frequencies but not however during Q7-10 conditions. Since the discharges from Outfall 604 are composed entirely of stormwater, a formal water quality analysis cannot be accurately conducted. Accordingly, water quality-based effluent limitations are not proposed.

Total Maximum Daily Loads for Outfall 604

The Johnstown Wire Techs Johnstown Plant is located within the watershed area covered by the Kiskiminetas-Conemaugh Watershed TMDL, approved as final by the EPA in 2010. This TMDL addresses certain impairments of water quality standards associated with elevated instream concentrations of iron, aluminum, and manganese. A pH impairment is addressed through a surrogate relationship with these metals. This TMDL establishes wasteload allocations for these metals for point sources, and load allocations for these metals for nonpoint sources in the watershed. DEP must assure that any effluent limitations assigned to point sources are consistent with the assumptions and requirements of any available wasteload allocation for the discharge pursuant to 40 CFR 130.7 (i.e., a final TMDL). The Site's permit PA0217093 is listed in the Appendix G of the Kiskiminetas-Conemaugh River Watershed TMDL, requiring load allocations. Wasteload allocations were delegated for Outfall 604. These wasteload allocations are equivalent to the listed concentration limits under various flow scenarios. In this case, the concentration limits are proposed rather than the load limits to simplify compliance assessments. The effluent limits from the TMDL are displayed below in Table 20.

The specific water quality criterion for aluminum is expressed as an acute or maximum daily in 25 Pa. Code Chapter 93. Discharges of aluminum may only be authorized to the extent that they will not cause or contribute to any violation of the water quality standards. Therefore, the water quality criterion for aluminum (0.75 mg/L) is imposed as a maximum daily effluent limit (MDL). Whenever the most stringent criterion is selected for the MDL, the Department should also impose an average monthly limit (AML) and instantaneous maximum limit (IMAX) if applicable. The imposition of an AML that is more stringent than the MDL is typically not appropriate because the water quality concerns have already been fully addressed by setting the MDL equal to the most stringent applicable criterion. Therefore, where the MDL is set at the value of the most stringent applicable criterion, the AML should be set equal to the MDL.

The specific water quality criterion for iron is expressed as a 30-day average of 1.5 ^{mg}/_L in 25 Pa. Code § 93.7(a). The criterion is based on the protection of aquatic life and is associated with chronic exposure. There are no other criteria for total iron. Since the duration of the total iron criterion coincides with the 30-day duration of the AML, the 30-day average criterion for total iron is set equal to the AML. In addition, because the total iron criterion is associated with chronic exposure, the MDL (representing acute exposure) and the IMAX may be made less stringent according to established procedures described in Section III.C.3.h on Page 13 of the Water Quality Toxics Management Strategy (Doc. # 361-0100-003). These procedures state that a MDL and IMAX may be set at 2 times and 2.5 times the AML, respectively, or there is the option to use multipliers from EPA's Technical Support Document for Water Quality-based Toxics Control, if data are available to support the use of alternative multipliers.

The specific water quality criterion for manganese is expressed as an acute or maximum daily of 1.0 mg/L in 25 Pa. Code § 93.7(a). The criterion is based on the protection of human health and is associated with chronic exposure associated with a potable water supply (PWS). Since no duration is given in Chapter 93 for the manganese criterion, a duration of 30 days is used based on the water quality criteria duration for Threshold Human Health (THH) criteria given in Section III.C.3.a., Table 1 on Page 10 of DEP's Water Quality Toxics Management Strategy. The 30-day duration for THH criteria coincides with the 30-day duration of an AML, which is why the manganese criterion is set equal to the AML for a "permitting at criteria" scenario. Because the manganese criterion is interpreted as having chronic exposure, the manganese MDL and IMAX may be made less stringent according to procedures established in Section III.C.2.h. of the Water Quality Toxics Management Strategy (AML multipliers of 2.0 and 2.5 for the MDL and IMAX respectively).

Deremeter	TMDL Li	L Inita		
Parameter	Average Monthly Maximum Dai		Units	
Aluminum, total	0.75	0.75	mg/L	
Iron, total	1.5	3.0	mg/L	
Manganese, total	1.0	2.0	mg/L	

Table 20 – TMDL Limits for Outfall 604

Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I). The previous limitations for Outfalls 604 are displayed below in Table 21. Along with the monitoring requirements, the current permit had discharge goals for the stormwater, Zinc goal of 0.117 mg/L and Nitrate-Nitrite Nitrogen goal of 0.68 m/L. These goals are going to be removed from the proposed permit because these goals are not required for the most recent PAG-03 general permit. The permit also required the sampling to be conducted during a storm event. This is due to the continual contribution of waste streams other than stormwater runoff to the outfall.

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type	
Total Zinc	XXX	XXX	Report**	Report**	XXX	1/month	Grab	
Nitrate-Nitrite Nitrogen	XXX	XXX	Report**	Report**	XXX	1/month	Grab	

Table 21: Effluent Limitations in the Current Permit for Outfall 604

Proposed Effluent Limitations and Monitoring Requirements

The proposed effluent monitoring requirements for Outfall 604 are displayed in Table 22 below, they are the most stringent values from the above effluent limitation development. The monitoring frequency for the existing monitoring requirements has been changed from 1/quarter to semi-annually to reflect that monitoring frequency in the PAG-03 general permit. The Draft Permit requires a Corrective Action Plan when there are two consecutive exceedances of the benchmark values, which are also included in the Part C condition. The benchmark values are displayed below in Table 23. These values are not effluent limitations, an exceedance of the benchmark value is not a violation. As described above, if there are two consecutive exceedances of the benchmark value, a corrective action plan must be conducted to evaluate site stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility's controls may not be sufficiently controlling pollutants in stormwater.

Table 22: Proposed Effluent Limitation for Outfall 604

Parameters	Mass	(lb/day)	y) Concentration (mg/L)				Monitoring Requirements	
Farameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type
Total Aluminum	XXX	XXX	XXX	0.75	0.75	XXX	2/Month	Grab
Total Iron	XXX	XXX	XXX	1.5	3.0	XXX	2/Month	Grab
Total Manganese	XXX	XXX	XXX	1.0	2.0	XXX	2/Month	Grab
Total Suspended Solids (TSS)*	XXX	XXX	XXX	XXX	Monitor	XXX	1/6Month	Grab
Total Zinc*	XXX	XXX	XXX	XXX	Monitor	XXX	1/6Month	Grab
Total Copper*	XXX	XXX	XXX	XXX	Monitor	XXX	1/6Month	Grab
Total Lead*	XXX	XXX	XXX	XXX	Monitor	XXX	1/6Month	Grab
Nitrate-Nitrite Nitrogen*	XXX	XXX	XXX	XXX	Monitor	XXX	1/6Month	Grab

* stormwater parameters, the parameters shall be sampled during a storm event.

Table 23: Part C Stormwater Benchmark Values
--

Parameters	Discharge Goals (mg/L)
Total Suspended Solids (TSS)	100
Total Zinc	XXX
Total Copper	XXX
Total Lead	XXX
Nitrate-Nitrite Nitrogen	XXX

Development of Effluent Limitations

IMP No.	614		Design Flow (MGD)	0.04
Latitude	40º 21' 06"		Longitude	-78º 56' 21"
Wastewater D	escription:	Noncontact Cooling Water (NCCW)		

Technology Based Limitations

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Temperature limits will be imposed per the Department's "*Implementation Guidance for Temperature Criteria*." As a policy, DEP normally imposes a maximum temperature limit of 110°F on discharges that contain residual heat. The limit is intended as a safety measure to protect sampling personnel or anyone who may come into contact with the heated discharge where it enters the receiving water.

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code § 95.2(1) as indicated in Table 24.

Table 24: Regulatory Effluent Standards and Monitoring Requirements for IMP 614

Parameter	Monthly Average	Monthly Average Daily Maximum		Units			
Flow	Monitor	and Report	XXX	MGD			
Temperature	XXX	XXX	110	°F			
pH	Not le	Not less than 6.0 nor greater than 9.0					

Water Quality-Based Limitations

Toxic Pollutants Water Quality Analysis

The discharges from IMP 614 consist of non-contact cooling water and are non-process discharges, therefore a toxic pollutant water quality analysis was not conducted for the discharge.

Thermal WQBELs for Heated Discharges

Thermal WQBELs are evaluated using a DEP program called "Thermal Discharge Limit Calculation Spreadsheet" created with Microsoft Excel for Windows. The program calculates temperature WLAs through the application of a heat transfer equation, which takes two forms in the program depending on the source of the facility's cooling water. In Case 1, intake water to a facility is from the receiving stream. In Case 2, intake water is from a source other than the receiving stream (e.g., municipal water supply). The determination of which case applies to a given discharge is determined by the input data which include the receiving stream flow rate (Q₇₋₁₀ or the minimum regulated flow for large rivers), the stream intake flow rate, external source intake flow rates, consumptive flow rates and site-specific ambient stream temperatures. Case 1 limits are generally expressed as heat rejection rates while Case 2 limits are usually expressed as temperatures.

Since the temperature criteria from 25 Pa. Code Chapter 93.7(a) are expressed on monthly and semi-monthly bases for three different aquatic life-uses—cold water fishes, warm water fishes and trout stocking—the program generates monthly and semi-monthly limits for each use. DEP selects the output that corresponds to the aquatic life-use of the receiving stream and consequently which limits apply to the discharge. Temperature WLAs are bounded by an upper limit of 110°F for the safety of sampling personnel and anyone who may come into contact with the heated discharge where it enters the receiving water. If no WLAs below 110°F are calculated, an instantaneous maximum limit of 110°F is recommended by the program.

Due to the nature of the discharges and their relative locations on the receiving stream, all heated discharges will be evaluated as one discharge to ensure the temperature criteria is met instream from all of the heated discharges and a combined flow of 1.525 MGD was used in the model. Discharges from the site are classified under Case 2 because water is obtained from municipal water supply. The results of the thermal analysis, included in Attachment B, indicate that no WQBELs for temperature are required at IMP 614. Therefore, the 110°F daily maximum temperature limit will be imposed at IMP 614.

Anti-backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 25.

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	2/month	Measures
Temperature	XXX	XXX	XXX	110	XXX	2/month	I-S
pH (S.U.)		Not less than	2/month	Grab			

Table 25: Effluent Limitations in the Current Permit for IMP 614

Proposed Effluent Limitations for IMP 614

The proposed effluent limitations and monitoring requirements for IMP 614 are shown below in Table 26. The limits are the most stringent values from the above limitation analysis.

Table 26: Propose Effluent Limitations for IMP 614

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Instant. Minimum (mg/L)	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	2/month	Measures
Temperature	XXX	XXX	XXX	XXX	110	XXX	2/month	I-S
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	2/month	Grab

Development of Effluent Limitations

Outfall No.	605		Design Flow (MGD)	0.24
Latitude	40º 21' 05"		Longitude	-78º 56' 32"
Wastewater De	escription:	Emergency Overflow,	Noncontact Cooling Water (NCCW),	Stormwater, and Groundwater

Emergency Overflow is monitored at IMP 615.

Noncontact Cooling Water is monitored at IMP 625.

Stormwater Technology Limits

Outfall 605 will be subject to PAG-03 General Stormwater Permit conditions as a minimum requirement because the outfall discharges stormwater associated with industrial activity. The SIC code for the site is 3315 and the corresponding appendix of the PAG-03 that would apply to the facility is Appendix B. The reporting requirements applicable to stormwater discharges are shown in Table 27 below.

Parameter	Max Daily Concentration	Measurement Frequency	Sample Type
Total Suspended Solids (TSS)	Monitor and Report	1/6 Months	Grab
Total Aluminum	Monitor and Report	1/6 Months	Grab
Total Zinc	Monitor and Report	1/6 Months	Grab
Total Copper	Monitor and Report	1/6 Months	Grab
Total Iron	Monitor and Report	1/6 Months	Grab
Total Lead	Monitor and Report	1/6 Months	Grab

Table 27: PAG-03 Appendix (B) Monitoring Requirements

Water Quality-Based Limitations

Stormwater WQBELs

Water quality analyses are typically performed under low-flow (Q7-10) conditions. Stormwater discharges occur at variable rates and frequencies but not however during Q7-10 conditions. Since the discharges from Outfall 605 are composed entirely of stormwater, a formal water quality analysis cannot be accurately conducted. Accordingly, water quality-based effluent limitations based on water quality analyses are not proposed.

Total Maximum Daily Loads for Outfall 605

The Johnstown Wire Techs Johnstown Plant is located within the watershed area covered by the Kiskiminetas-Conemaugh Watershed TMDL, approved as final by the EPA in 2010. This TMDL addresses certain impairments of water quality standards associated with elevated instream concentrations of iron, aluminum, and manganese. A pH impairment is addressed through a surrogate relationship with these metals. This TMDL establishes wasteload allocations for these metals for point sources, and load allocations for these metals for nonpoint sources in the watershed. DEP must assure that any effluent limitations assigned to point sources are consistent with the assumptions and requirements of any available wasteload allocation for the discharge pursuant to 40 CFR 130.7 (i.e., a final TMDL). The Site's permit PA0217093 is listed in the Appendix G of the Kiskiminetas-Conemaugh River Watershed TMDL, requiring load allocations. Wasteload allocations were delegated for Outfall 605. These wasteload allocations are equivalent to the listed concentration limits under various flow scenarios. In this case, the concentration limits are prosed rather than the load limits to simplify compliance assessments. The effluent limits from the TMDL are displayed below in Table 28.

The specific water quality criterion for aluminum is expressed as an acute or maximum daily in 25 Pa. Code Chapter 93. Discharges of aluminum may only be authorized to the extent that they will not cause or contribute to any violation of the water quality standards. Therefore, the water quality criterion for aluminum (0.75 mg/L) is imposed as a maximum daily effluent limit (MDL). Whenever the most stringent criterion is selected for the MDL, the Department should also impose an average monthly limit (AML) and instantaneous maximum limit (IMAX) if applicable. The imposition of an AML that is more stringent than the MDL is typically not appropriate because the water quality concerns have already been fully addressed by setting the MDL equal to the most stringent applicable criterion. Therefore, where the MDL is set at the value of the most stringent applicable criterion, the AML should be set equal to the MDL.

The specific water quality criterion for iron is expressed as a 30-day average of 1.5 ^{mg/L} in 25 Pa. Code § 93.7(a). The criterion is based on the protection of aquatic life and is associated with chronic exposure. There are no other criteria for total iron. Since the duration of the total iron criterion coincides with the 30-day duration of the AML, the 30-day average criterion for total iron is set equal to the AML. In addition, because the total iron criterion is associated with chronic exposure, the MDL (representing acute exposure) and the IMAX may be made less stringent according to established procedures described in Section III.C.3.h on Page 13 of the Water Quality Toxics Management Strategy (Doc. # 361-0100-003). These procedures state that a MDL and IMAX may be set at 2 times and 2.5 times the AML, respectively, or there is the option to use multipliers from EPA's Technical Support Document for Water Quality-based Toxics Control, if data are available to support the use of alternative multipliers.

The specific water quality criterion for manganese is expressed as an acute or maximum daily of 1.0 mg/L in 25 Pa. Code § 93.7(a). The criterion is based on the protection of human health and is associated with chronic exposure associated with a potable water supply (PWS). Since no duration is given in Chapter 93 for the manganese criterion, a duration of 30 days is used based on the water quality criteria duration for Threshold Human Health (THH) criteria given in Section III.C.3.a., Table 1 on Page 10 of DEP's Water Quality Toxics Management Strategy. The 30-day duration for THH criteria coincides with the 30-day duration of an AML, which is why the manganese criterion is set equal to the AML for a "permitting at criteria" scenario. Because the manganese criterion is interpreted as having chronic exposure, the manganese MDL and IMAX may be made less stringent according to procedures established in Section III.C.2.h. of the Water Quality Toxics Management Strategy (AML multipliers of 2.0 and 2.5 for the MDL and IMAX respectively).

Deremeter	TMDL Li	Unito	
Parameter	Average Monthly	Maximum Daily	Units
Aluminum, total	0.75	0.75	mg/L
Iron, total	1.5	3.0	mg/L
Manganese, total	1.0	2.0	mg/L

Table 28 – TMDL Limits for Outfall 605

Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I). The previous limitations for Outfalls 605 are displayed below in Table 29. Along with the monitoring requirements, the current permit had discharge goals for the stormwater, Zinc goal of 0.117 mg/L and Nitrate-Nitrite Nitrogen goal of 0.68 m/L. These goals are going to be removed from the proposed permit because these goals are not required for the most recent PAG-03 general permit. The permit also required the sampling to be conducted during a storm event. This is due to the continual contribution of waste streams other than stormwater runoff to the outfall.

Table 29: Effluent Limitations in the Current Permit for Outfall 605

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type
Total Zinc*	XXX	XXX	Report**	Report**	XXX	1/month	Grab
Nitrate-Nitrite Nitrogen *	XXX	XXX	Report**	Report**	XXX	1/month	Grab

Proposed Effluent Limitations and Monitoring Requirements

The proposed effluent monitoring requirements for Outfall 605 are displayed in Table 30 below, they are the most stringent values from the above effluent limitation development. The monitoring frequency for the existing monitoring requirements has been changed from 1/Month to semi-annually to reflect that monitoring frequency in the PAG-03 general permit. The Draft Permit requires a Corrective Action Plan when there are two consecutive exceedances of the benchmark values, which are also included in the Part C condition. The benchmark values are displayed below in Table 31. These values are not effluent limitations, an exceedance of the benchmark value is not a violation. As described above, if there are two consecutive exceedances of the benchmark value, a corrective action plan must be conducted to evaluate site stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility's controls may not be sufficiently controlling pollutants in stormwater.

Table 30: Proposed Effluent Limitation for Outfall 605

Parameters	Mass (Ib/day)		Concentration (mg/L)				Monitoring Requirements	
Farameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type
Total Aluminum	XXX	XXX	XXX	0.75	0.75	XXX	2/Month	Grab
Total Iron	XXX	XXX	XXX	1.5	3.0	XXX	2/Month	Grab
Total Manganese	XXX	XXX	XXX	1.0	2.0	XXX	2/Month	Grab
Total Suspended Solids (TSS)*	XXX	XXX	XXX	XXX	Monitor	XXX	1/6Month	Grab
Total Zinc*	XXX	XXX	XXX	XXX	Monitor	XXX	1/6Month	Grab
Total Copper*	XXX	XXX	XXX	XXX	Monitor	XXX	1/6Month	Grab
Total Lead*	XXX	XXX	XXX	XXX	Monitor	XXX	1/6Month	Grab
Nitrate-Nitrite Nitrogen*	XXX	XXX	XXX	XXX	Monitor	XXX	1/6Month	Grab

* stormwater parameters, the parameters shall be sampled during a storm event.

Table 31: Part C Stormwater Benchmark Values

Parameters	Discharge Goals (mg/L)
Total Suspended Solids (TSS)	100
Total Zinc	XXX
Total Copper	XXX
Total Lead	XXX
Nitrate-Nitrite Nitrogen	XXX

IMP No.	615	Design Flow (MGD)	0.0
Latitude	40º 21' 02"	Longitude	-78º 56' 24"
Wastewater	Description:	Emergency Overflow from the acid rinse water pumping station	

Proposed Effluent Limitations

The proposed effluent limitations for IMP 615 are displayed in Table 32 below. IMP 615 is the emergency overflow from the plating operations wastewater pumping station. This discharge is considered categorical wastes subject to the limitations contained in the ELG, therefore, during an emergency overflow discharge, the limits for IMP 615 will be the same as IMP 613. The previous permit imposed the same limitations on IMP 615 as IMP 613 for the same reason as discussed above. The previous permit also contained a part C condition requiring the total combined mass loading discharged from IMP 613, IMP 623, and IMP 615 to not exceed the mass loading limitations for IMP 613. This part C condition will be included in the renewal permit.

Parameter	Average Monthly (lbs/day) **	Daily Maximum (Ibs/day) **	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	2/discharge	Measures
Total Suspended Solids	203	412	31.0	60.0	XXX	2/discharge	Grab
Oil and Grease	137	279	26.0	52.0	XXX	2/discharge	Grab
Total Cadmium	XXX	XXX	0.021	0.042	XXX	2/discharge	Grab
Total Chromium	XXX	XXX	1.71	2.77	XXX	2/discharge	Grab
Total Copper	XXX	XXX	0.13	0.26	XXX	2/discharge	Grab
Total Lead	2.35	4.74	0.34	0.68	XXX	2/discharge	Grab
Total Nickel	XXX	XXX	2.38	3.98	XXX	2/discharge	Grab
Total Silver	XXX	XXX	0.062	0.12	XXX	2/discharge	Grab
Total Zinc	7.70	13.9	1.05	2.10	XXX	2/discharge	Grab
Total Cyanide	XXX	XXX	0.65	1.20	XXX	2/discharge	Grab
Total Toxic Organics*	XXX	XXX	XX	2.13	XXX	2/discharge	Grab
Total Iron	XXX	XXX	3.5	7.0	XXX	2/discharge	Grab
pH (S.U.)		Not less than	6.0 nor grea	ater than 9.0		2/discharge	Grab

Table 32: Proposed Effluent Limitations for IMP 615

*As provided by 40 CFR 433.12(a), in lieu of requiring monitoring for TTO, the Department may allow the discharger to make the following certification statement:

"Based on my inquiry of the person or persons directly responsible for managing compliance with the permit limitation for total toxic organics (TTO), I certify that, to the best of my knowledge and belief, no dumping of concentrated toxic organics into the wastewater has occurred since filing of the last discharge monitoring report. I further certify that the facility is implementing the Toxic Organic Management Plan submitted to the permitting authority."

This statement is to be included as a "comment" on or attached to the Discharge Monitoring Report. If monitoring is necessary to measure compliance with the TTO standard, analyzed or only those pollutants which would reasonably be expected to be present.

** The total combined mass loading discharged from IMP 613, IMP 623, and IMP 615 shall not exceed the mass loading limitations for IMP 613 as listed in Part A of the Permit.

Development of Effluent Limitations

IMP No.	625		Design Flow (MGD)	0.034
Latitude	40º 21' 02"		Longitude	-78º 56' 24"
Wastewater D	escription:	Noncontact Cooling Water (NCCW)		

Technology Based Limitations

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Temperature limits will be imposed per the Department's "*Implementation Guidance for Temperature Criteria*." As a policy, DEP normally imposes a maximum temperature limit of 110°F on discharges that contain residual heat. The limit is intended as a safety measure to protect sampling personnel or anyone who may come into contact with the heated discharge where it enters the receiving water.

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code § 95.2(1) as indicated in Table 33.

Table 33: Regulatory Effluent Standards and Monitoring Requirements for IMP 625

Parameter	Monthly Average	Daily Maximum	IMAX	Units					
Flow	Monitor	and Report	XXX	MGD					
Temperature	XXX	XXX	110	°F					
рН	Not le	S.U.							

Water Quality-Based Limitations

Toxic Pollutants Water Quality Analysis

The discharges from Outfall 625 are non-contact cooling water and are non-process discharges, therefore a toxic pollutant water quality analysis was not conducted for the discharge from Outfall 625.

Thermal WQBELs for Heated Discharges

Thermal WQBELs are evaluated using a DEP program called "Thermal Discharge Limit Calculation Spreadsheet" created with Microsoft Excel for Windows. The program calculates temperature WLAs through the application of a heat transfer equation, which takes two forms in the program depending on the source of the facility's cooling water. In Case 1, intake water to a facility is from the receiving stream. In Case 2, intake water is from a source other than the receiving stream (e.g., municipal water supply). The determination of which case applies to a given discharge is determined by the input data which include the receiving stream flow rate (Q₇₋₁₀ or the minimum regulated flow for large rivers), the stream intake flow rate, external source intake flow rates, consumptive flow rates and site-specific ambient stream temperatures. Case 1 limits are generally expressed as heat rejection rates while Case 2 limits are usually expressed as temperatures.

Since the temperature criteria from 25 Pa. Code Chapter 93.7(a) are expressed on monthly and semi-monthly bases for three different aquatic life-uses—cold water fishes, warm water fishes and trout stocking—the program generates monthly and semi-monthly limits for each use. DEP selects the output that corresponds to the aquatic life-use of the receiving stream and consequently which limits apply to the discharge. Temperature WLAs are bounded by an upper limit of 110°F for the safety of sampling personnel and anyone who may come into contact with the heated discharge where it enters the receiving water. If no WLAs below 110°F are calculated, an instantaneous maximum limit of 110°F is recommended by the program.

Due to the nature of the discharges and their relative locations on the receiving stream, all heated discharges will be evaluated as one discharge to ensure the temperature criteria is met instream from all of the heated discharges and a combined flow of 1.525 MGD was used in the model. Discharges from the site are classified under Case 2 because water is obtained from municipal water supply. The results of the thermal analysis, included in Attachment B, indicate that no WQBELs for temperature are required at IMP 625. Therefore, the 110°F daily maximum temperature limit will be imposed at IMP 625.

Anti-backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 34.

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	2/month	Measures
Temperature	XXX	XXX	XXX	110	XXX	2/month	I-S
pH (S.U.)		Not less than	2/month	Grab			

 Table 34: Effluent Limitations in the Current Permit for IMP 625

Proposed Effluent Limitations for IMP 625

The proposed effluent limitations and monitoring requirements for IMP 625 are shown below in Table 35. The limits are the most stringent values from the above limitation analysis.

Table 35: Propose Effluent Limitations for IMP 625

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Instant. Minimum (mg/L)	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	2/month	Measures
Temperature	XXX	XXX	XXX	XXX	110	XXX	2/month	I-S
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	2/month	Grab

Development of Effluent Limitations							
Outfall No.	606		Design Flow (MGD)	0			
Latitude	40° 21' 00"		Longitude	-78º 56' 25"			
Wastewater D	escription:	Stormwater and Groundwater					

Stormwater Technology Limits

Outfall 606 will be subject to PAG-03 General Stormwater Permit conditions as a minimum requirement because the outfall discharges stormwater associated with industrial activity. The SIC code for the site is 3315 and the corresponding appendix of the PAG-03 that would apply to the facility is Appendix B. The reporting requirements applicable to stormwater discharges are shown in Table 36 below.

Parameter	Max Daily Concentration	Measurement Frequency	Sample Type
Total Suspended Solids (TSS)	Monitor and Report	1/6 Months	Grab
Total Aluminum	Monitor and Report	1/6 Months	Grab
Total Zinc	Monitor and Report	1/6 Months	Grab
Total Copper	Monitor and Report	1/6 Months	Grab
Total Iron	Monitor and Report	1/6 Months	Grab
Total Lead	Monitor and Report	1/6 Months	Grab

Water Quality-Based Limitations

Stormwater WQBELs

Water quality analyses are typically performed under low-flow (Q7-10) conditions. Stormwater discharges occur at variable rates and frequencies but not however during Q7-10 conditions. Since the discharges from Outfall 606 are composed entirely of stormwater, a formal water quality analysis cannot be accurately conducted. Accordingly, water quality-based effluent limitations based on water quality analyses are not proposed.

Total Maximum Daily Loads

Wastewater discharges from Johnstown Wire Tech are located within the Kiskiminetas-Conemaugh Watershed for which the Department has developed a TMDL. The TMDL was finalized on January 29, 2010 and establishes waste load allocations for the discharge of aluminum, iron and manganese within the Kiskiminetas-Conemaugh Watershed. The site's NPDES permit (PA0217093) is listed in the Appendix G of the Kiskiminetas-Conemaugh Watershed TMDL, requiring load allocations. Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 of the Code of Federal Regulations Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding the water guality criteria for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources in order to restore and maintain the guality of the state's water resources (USEPA 1991a). Stream reaches within the Kiskiminetas-Conemaugh Watershed are included in the state's 2008 Section 303(d) list because of various impairments, including metals, pH and sediment. The TMDL includes consideration for each river and tributary within the target watershed and its impairment sources. Stream data is then used to calculate minimum pollutant reductions that are necessary to attain water quality criteria levels. Target concentrations published in the TMDL were based on established water quality criteria of 0.750 mg/L total recoverable aluminum, 1.5 mg/L total recoverable iron based on a 30-day average and 1.0 mg/L total recoverable manganese. The reduction needed to meet the minimum water quality standards is then divided between each known point and non-point pollutant source in the form of a watershed allocation. TMDLs prescribe allocations that minimally achieve water quality criteria (i.e., 100 percent use of a stream's assimilative capacity). However, the discharges from Outfall 601 are groundwater and stormwater and based on the sampling data provided in the permit application, these discharges do not contribute to the impairment of the Watershed. Therefore, TMDL load allocations and concentrationbased limitations will not be imposed, but monitoring for total iron, total manganese, and total aluminum will be imposed.

Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I). The previous limitations for Outfalls 606 are displayed below in Table 37. Along with the monitoring requirements, the current permit had discharge goals for the stormwater, Zinc goal of 0.117 mg/L and Nitrate-Nitrite Nitrogen goal of 0.68 m/L. These goals are going to be removed from the proposed permit because these goals are not required for the most recent PAG-03 general permit. The permit also required the sampling to be conducted during a storm event. This is due to the continual contribution of waste streams other than stormwater runoff to the outfall.

Table 37: Effluent Limitations in the Current Permit for Outfall 606

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type
Total Zinc*	XXX	XXX	Report**	Report**	XXX	1/month	Grab
Nitrate-Nitrite Nitrogen *	XXX	XXX	Report**	Report**	XXX	1/month	Grab

Proposed Effluent Limitations and Monitoring Requirements

The proposed effluent monitoring requirements for Outfall 606 are displayed in Table 38 below, they are the most stringent values from the above effluent limitation development. The monitoring frequency for the existing monitoring requirements has been changed from 1/quarter to semi-annually to reflect that monitoring frequency in the PAG-03 general permit. The Draft Permit requires a Corrective Action Plan when there are two consecutive exceedances of the benchmark values, which are also included in the Part C condition. The benchmark values are displayed below in Table 38. These values are not effluent limitations, an exceedance of the benchmark value is not a violation. As described above, if there are two consecutive exceedances of the benchmark value, a corrective action plan must be conducted to evaluate site stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility's controls may not be sufficiently controlling pollutants in stormwater.

Table38: Proposed Effluent Monitoring Requirements – Outfall 606

Parameter	Max Daily Concentration Values (mg/L		Measurement Frequency	Sample Type
Total Suspended Solids (TSS)	Report	100	1/6 Months	Grab
Total Aluminum	Report	XXX	1/6 Months	Grab
Total Zinc	Report	XXX	1/6 Months	Grab
Total Copper	Report	XXX	1/6 Months	Grab
Total Iron	Report	XXX	1/6 Months	Grab
Total Lead	Report	XXX	1/6 Months	Grab
Nitrate-Nitrite Nitrogen	Report	XXX	1/6 Months	Grab
Total Manganese	Report	XXX	1/6 Months	Grab

Development of Effluent Limitations

Outfall No.	607	Design Flow (MGD)	0.27
Latitude	40º 21' 00"	Longitude	-78º 56' 25"
		Boiler Blowdown, Softener Backwash Water, Noncontact	Cooling Water (NCCW),
Wastewater D	Description:	Stormwater, and Groundwater	,

Noncontact cooling water is monitored at IMP 617.

Stormwater Technology Limits

Outfall 607 will be subject to PAG-03 General Stormwater Permit conditions as a minimum requirement because the outfall receives stormwater. The SIC code for the site is 3315 and the corresponding appendix of the PAG-03 that would apply to the facility is Appendix B. The reporting requirements applicable to stormwater discharges are shown in Table 39 below.

Parameter	Max Daily Concentration	Measurement Frequency	Sample Type
Total Suspended Solids (TSS)	Monitor and Report	1/6 Months	Grab
Total Aluminum	Monitor and Report	1/6 Months	Grab
Total Zinc	Monitor and Report	1/6 Months	Grab
Total Copper	Monitor and Report	1/6 Months	Grab
Total Iron	Monitor and Report	1/6 Months	Grab
Total Lead	Monitor and Report	1/6 Months	Grab

Table 39: PAG-03 Appendix (B) Monitoring Requirements

Water Quality-Based Limitations

Stormwater WQBELs

Water quality analyses are typically performed under low-flow (Q7-10) conditions. Stormwater discharges occur at variable rates and frequencies but not however during Q7-10 conditions. Since the discharges from Outfall 607 are composed entirely of stormwater, a formal water quality analysis cannot be accurately conducted. Accordingly, water quality-based effluent limitations based on water quality analyses are not proposed.

Total Maximum Daily Loads for Outfall 607

The Johnstown Wire Techs Johnstown Plant is located within the watershed area covered by the Kiskiminetas-Conemaugh Watershed TMDL, approved as final by EPA in 2010. This TMDL addresses certain impairments of water quality standards associated with elevated instream concentrations of iron, aluminum, and manganese. A pH impairment is addressed through a surrogate relationship with these metals. This TMDL establishes wasteload allocations for these metals for point sources, and load allocations for these metals for nonpoint sources in the watershed. DEP must assure that any effluent limitations assigned to point sources are consistent with the assumptions and requirements of any available wasteload allocation for the discharge pursuant to 40 CFR 130.7 (i.e., a final TMDL). The Site's permit PA0217093 is listed in the Appendix G of the Kiskiminetas-Conemaugh River Watershed TMDL, requiring load allocations. Wasteload allocations were delegated for Outfall 603. These wasteload allocations are equivalent to the listed concentration limits under various flow scenarios. In this case, the concentration limits are prosed rather than the load limits to simplify compliance assessments. The effluent limits from the TMDL are displayed below in Table 40.

The specific water quality criterion for aluminum is expressed as an acute or maximum daily in 25 Pa. Code Chapter 93. Discharges of aluminum may only be authorized to the extent that they will not cause or contribute to any violation of the water quality standards. Therefore, the water quality criterion for aluminum (0.75 mg/L) is imposed as a maximum daily effluent limit (MDL). Whenever the most stringent criterion is selected for the MDL, the Department should also impose an average monthly limit (AML) and instantaneous maximum limit (IMAX) if applicable. The imposition of an AML that is more stringent than the MDL is typically not appropriate because the water quality concerns have already been fully addressed by setting the MDL equal to the most stringent applicable criterion. Therefore, where the MDL is set at the value of the most stringent applicable criterion, the AML should be set equal to the MDL.

NPDES Permit Fact Sheet Johnstown Wire Technologies

The specific water quality criterion for iron is expressed as a 30-day average of 1.5 ^{mg}/_L in 25 Pa. Code § 93.7(a). The criterion is based on the protection of aquatic life and is associated with chronic exposure. There are no other criteria for total iron. Since the duration of the total iron criterion coincides with the 30-day duration of the AML, the 30-day average criterion for total iron is set equal to the AML. In addition, because the total iron criterion is associated with chronic exposure, the MDL (representing acute exposure) and the IMAX may be made less stringent according to established procedures described in Section III.C.3.h on Page 13 of the Water Quality Toxics Management Strategy (Doc. # 361-0100-003). These procedures state that a MDL and IMAX may be set at 2 times and 2.5 times the AML, respectively, or there is the option to use multipliers from EPA's Technical Support Document for Water Quality-based Toxics Control, if data are available to support the use of alternative multipliers.

The specific water quality criterion for manganese is expressed as an acute or maximum daily of 1.0 mg/L in 25 Pa. Code § 93.7(a). The criterion is based on the protection of human health and is associated with chronic exposure associated with a potable water supply (PWS). Since no duration is given in Chapter 93 for the manganese criterion, a duration of 30 days is used based on the water quality criteria duration for Threshold Human Health (THH) criteria given in Section III.C.3.a., Table 1 on Page 10 of DEP's Water Quality Toxics Management Strategy. The 30-day duration for THH criteria coincides with the 30-day duration of an AML, which is why the manganese criterion is set equal to the AML for a "permitting at criteria" scenario. Because the manganese criterion is interpreted as having chronic exposure, the manganese MDL and IMAX may be made less stringent according to procedures established in Section III.C.2.h. of the Water Quality Toxics Management Strategy (AML multipliers of 2.0 and 2.5 for the MDL and IMAX respectively).

Devementer	TMDL Li	L lucito	
Parameter	Average Monthly	Maximum Daily	Units
Aluminum, total	0.75	0.75	mg/L
Iron, total	1.5	3.0	mg/L
Manganese, total	1.0	2.0	mg/L

Table 40 – TMDL Limits for Outfall 607

Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I). The previous limitations for Outfalls 607 are displayed below in Table 41. Along with the monitoring requirements, the current permit had discharge goals for the stormwater, Zinc goal of 0.117 mg/L and Nitrate-Nitrite Nitrogen goal of 0.68 m/L. These goals are going to be removed from the proposed permit because these goals are not required for the most recent PAG-03 general permit. The permit also required the sampling to be conducted during a storm event. This is due to the continual contribution of waste streams other than stormwater runoff to the outfall.

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type
Total Zinc*	XXX	XXX	Report**	Report**	XXX	1/month	Grab
Nitrate-Nitrite Nitrogen *	XXX	XXX	Report**	Report**	XXX	1/month	Grab

Table 41: Effluent Limitations in the Current Permit for Outfall 607

Proposed Effluent Limitations and Monitoring Requirements

The proposed effluent monitoring requirements for Outfall 607 are displayed in Table 42 below, they are the most stringent values from the above effluent limitation development. The monitoring frequency for the existing monitoring requirements has been changed from 1/quarter to semi-annually to reflect that monitoring frequency in the PAG-03 general permit. The Draft Permit requires a Corrective Action Plan when there are two consecutive exceedances of the benchmark values, which are also included in the Part C condition. The benchmark values are displayed below in Table 43. These values are not effluent limitations, an exceedance of the benchmark value is not a violation. As described above, if there are two consecutive exceedances of the benchmark value, a corrective action plan must be conducted to evaluate site stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility's controls may not be sufficiently controlling pollutants in stormwater.

NPDES Permit Fact Sheet Johnstown Wire Technologies

NPDES Permit No. PA0217093 Johnstown Plant

Table 42: Proposed Effluent Limitation for Outfall 607

Parameters	Mass (Ib/day)		Concentration (mg/L)				Monitoring Requirements	
Farameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type
Total Aluminum	XXX	XXX	XXX	0.75	0.75	XXX	2/Month	Grab
Total Iron	XXX	XXX	XXX	1.5	3.0	XXX	2/Month	Grab
Total Manganese	XXX	XXX	XXX	1.0	2.0	XXX	2/Month	Grab
Total Suspended Solids (TSS)*	XXX	XXX	XXX	XXX	Monitor	XXX	1/6Month	Grab
Total Zinc*	XXX	XXX	XXX	XXX	Monitor	XXX	1/6Month	Grab
Total Copper*	XXX	XXX	XXX	XXX	Monitor	XXX	1/6Month	Grab
Total Lead*	XXX	XXX	XXX	XXX	Monitor	XXX	1/6Month	Grab
Nitrate-Nitrite Nitrogen*	XXX	XXX	XXX	XXX	Monitor	XXX	1/6Month	Grab

* stormwater parameters, the parameters shall be sampled during a storm event.

Table 43: Part C Stormwater Benchmark Values

Parameters	Discharge Goals (mg/L)
Total Suspended Solids (TSS)	100
Total Zinc	XXX
Total Copper	XXX
Total Lead	XXX
Nitrate-Nitrite Nitrogen	XXX

Development of Effluent Limitations

IMP No.	617		Design Flow (MGD)	0.05
Latitude	40º 20' 58"		Longitude	-78º 56' 26"
Wastewater D	escription:	Noncontact Cooling Water (NCCW)		

Technology Based Limitations

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Temperature limits will be imposed per the Department's "*Implementation Guidance for Temperature Criteria*." As a policy, DEP normally imposes a maximum temperature limit of 110°F on discharges that contain residual heat. The limit is intended as a safety measure to protect sampling personnel or anyone who may come into contact with the heated discharge where it enters the receiving water.

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code § 95.2(1) as indicated in Table 44.

Table 44: Regulatory Effluent Standards and Monitoring Requirements for IMP 617

Parameter	Monthly Average	Daily Maximum	IMAX	Units
Flow	Monitor	and Report	XXX	MGD
Temperature	XXX	XXX	110	°F
pH	Not le	ess than 6.0 nor greater th	an 9.0	S.U.

Water Quality-Based Limitations

Toxic Pollutants Water Quality Analysis

The discharges from IMP 617 are non-contact cooling water and are non-process discharges, therefore a toxic pollutant water quality analysis was not conducted for the discharge.

Thermal WQBELs for Heated Discharges

Thermal WQBELs are evaluated using a DEP program called "Thermal Discharge Limit Calculation Spreadsheet" created with Microsoft Excel for Windows. The program calculates temperature WLAs through the application of a heat transfer equation, which takes two forms in the program depending on the source of the facility's cooling water. In Case 1, intake water to a facility is from the receiving stream. In Case 2, intake water is from a source other than the receiving stream (e.g., municipal water supply). The determination of which case applies to a given discharge is determined by the input data which include the receiving stream flow rate (Q₇₋₁₀ or the minimum regulated flow for large rivers), the stream intake flow rate, external source intake flow rates, consumptive flow rates and site-specific ambient stream temperatures. Case 1 limits are generally expressed as heat rejection rates while Case 2 limits are usually expressed as temperatures.

Since the temperature criteria from 25 Pa. Code Chapter 93.7(a) are expressed on monthly and semi-monthly bases for three different aquatic life-uses—cold water fishes, warm water fishes and trout stocking—the program generates monthly and semi-monthly limits for each use. DEP selects the output that corresponds to the aquatic life-use of the receiving stream and consequently which limits apply to the discharge. Temperature WLAs are bounded by an upper limit of 110°F for the safety of sampling personnel and anyone who may come into contact with the heated discharge where it enters the receiving water. If no WLAs below 110°F are calculated, an instantaneous maximum limit of 110°F is recommended by the program.

Due to the nature of the discharges and their relative locations on the receiving stream, all heated discharges will be evaluated as one discharge to ensure the temperature criteria is met instream from all of the heated discharges and a combined flow of 1.525 MGD was used in the model. Discharges from the site are classified under Case 2 because water is obtained from municipal water supply. The results of the thermal analysis, included in Attachment B, indicate that no WQBELs for temperature are required at IMP 614. Therefore, the 110°F daily maximum temperature limit will be imposed at IMP 617.

NPDES Permit Fact Sheet Johnstown Wire Technologies

Anti-backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 45.

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type					
Flow (MGD)	Report	Report	XXX	XXX	XXX	2/month	Measures					
Temperature	XXX	XXX	XXX	110	XXX	2/month	I-S					
pH (S.U.)		Not less than 6.0 nor greater than 9.0 2/month Grab										

Table 45: Effluent Limitations in the Current Permit for IMP 617

Proposed Effluent Limitations for IMP 617

The proposed effluent limitations and monitoring requirements for IMP 617 are shown below in Table 46. The limits are the most stringent values from the above limitation analysis.

Table 46: Propose Effluent Limitations for IMP 617

Parameter	Average Monthly (Ibs/day)	Daily Maximum (Ibs/day)	Instant. Minimum (mg/L)	Average Monthly (mg/L)	Daily Maximum (mg/L)	Instant. Maximum (mg/L)	Sample Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	2/month	Measures
Temperature	XXX	XXX	XXX	XXX	110	XXX	2/month	I-S
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	2/month	Grab

Development of Effluent Limitations Outfall No. 608 Design Flow (MGD) 0.0001 Latitude 40° 21' 03.4" Longitude -78° 56' 24" Wastewater Description: Intake strainer backwash water The strainer backwash water

The following statement will be included in Part A of the permit:

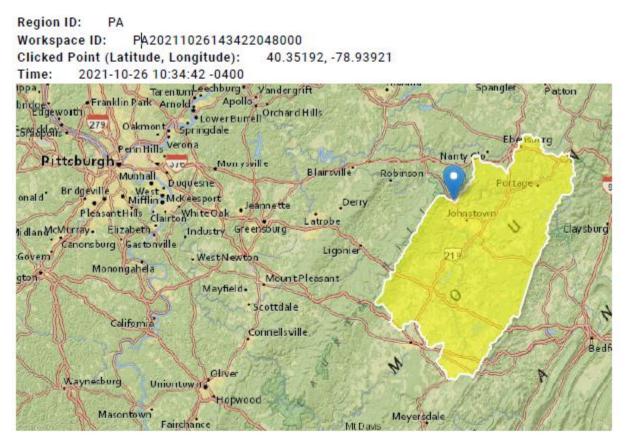
Debris collected on the intake strainer shall not be returned to the waterway.

Tools and References Used to Develop Permit
WQM for Windows Model
Toxics Management Spreadsheet (see Attachment B)
TRC Model Spreadsheet
Temperature Model Spreadsheet (see Attachment C)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

Attachments

Attachment A: StreamStats Report

Attachment B: Outfall 603 Toxics Management Spreadsheet


Attachment C: Site Thermal Discharge Evaluation

Attachment D: IMP 613 Federal Effluent Limitation Guideline Calculations

Attachment A:

StreamStats Report

StreamStats Report

Decemeter Orde	Decempter Decorintian	Value	11
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	686	square miles
ELEV	Mean Basin Elevation	2108	feet
PRECIP	Mean Annual Precipitation	45	inches

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit

NPDES Permit Fact Sheet Johnstown Wire Technologies

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	686	square miles	2.33	1720
ELEV	Mean Basin Elevation	2108	feet	898	2700
PRECIP	Mean Annual Precipitation	45	inches	38.7	47.9

Low-Flow Statistics Flow Report [99.9 Percent (685 square miles) Low Flow Region 3]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	110	ft^3/s	43	43
30 Day 2 Year Low Flow	145	ft^3/s	38	38
7 Day 10 Year Low Flow	66.3	ft^3/s	54	54
30 Day 10 Year Low Flow	79.4	ft^3/s	49	49
90 Day 10 Year Low Flow	110	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2 Attachment B:

Outfall 603 Toxics Management Spreadsheet

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Ins	tructions D	ischarge Stream													
										_					
Fac	ility: Joh	nstown Wire Tech					NPI	DES Per	mit No.:	PA0217	093		Outfall	No.: 603	1
Eva	luation Type:	Major Sewage	Industr	ial Wa	aste		Wa	stewater	Descrip	tion: IW	Process	, NCCW			
						-									
	Discharge Characteristics														
					Disone	-						Com	alata Mi		(
	esign Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	450		aru	al Mix Fa			CDI			x Times	
				_	AFC			CFC	TH	1	CRL	<u> </u>	7-10		2 _h
	1.46 100 7														
						0	0 If lef	t blank	0.5 If le	eft blank	(0 if left blan	ĸ	1 If let	t blank
					Distant	-			Della			5.4		0.11.1	Chem
	Disch	arge Pollutant	Units	Max	Discharge Conc		rib onc	Stream Conc	Daily CV	Hourly	Strea m CV	Fate Coeff	FOS	Criteri a Mod	1
					CONC		ALC:	Conc	CV.	CV.	mev	Coen		a Mod	Transi
	Total Dissolve	ed Solids (PWS)	mg/L		1430										
5	Chloride (PW	S)	mg/L		521										
Group	Bromide		mg/L	<	0.2										
5	Sulfate (PWS)	mg/L		264										
	Fluoride (PW	S)	mg/L	<	0.1										
	Total Aluminu	m	µg/L		74.8										
	Total Antimor	y	µg/L	<	1										
	Total Arsenic		µg/L	<	1										
	Total Barium		µg/L		21.2										
	Total Berylliur	n	µg/L	<	1										
	Total Boron		µg/L		645										
	Total Cadmiu	m	µg/L	<	0.2										
	Total Chromiu	um (III)	µg/L		1.7										
	Hexavalent C	hromium	µg/L	<	1										
	Total Cobalt		µg/L		1.6										
	Total Copper		µg/L		3.1			1							
p 2	Free Cyanide		µg/L												
2	Total Cyanide		µg/L	<	20										
σ	Dissolved Iror	1	µg/L	\vdash	49			1							
	Total Iron		µg/L	\vdash	2430	\vdash	\vdash						<u> </u>		
	Total Lead		µg/L	\vdash	34.9										
	Total Mangan		µg/L	\vdash	150										
	Total Mercury		µg/L	<	0.2										
	Total Nickel	(Dhanalias) (DM(C)	µg/L		5.8										
	Total Phenois Total Seleniu	(Phenolics) (PWS)	µg/L		2.5										
	Total Seleniur Total Silver	n	µg/L	<	0.2										
			µg/L	<			Ħ								
	Total Thallium Total Zinc	1	µg/L		0.2 2900										
	Total Molybde	201102	µg/L		38.9		++-								
\vdash	Acrolein	anwift.	μg/L μg/L	<	2										
	Acrolein Acrylamide		μg/L μg/L	<	10000										
	Acrylonitrile		µg/L	<	1		++								
	Benzene		μg/L μg/L	<	0.5										
	Bromoform		µg/L	<	0.5										
1	Clonicion		Part		0.0										

1	Ondere Tates dela da		-	0.5							
	Carbon Tetrachloride	µg/L	<	0.5		<u> </u>					
	Chlorobenzene	µg/L	<	0.5							
	Chlorodibromomethane	µg/L	<	0.1							
	Chloroethane	µg/L	<	0.5							
	2-Chloroethyl Vinyl Ether	µg/L	<	1							
	Chloroform	µg/L	<	0.5							
1	Dichlorobromomethane	µg/L	<	0.5							
1	1,1-Dichloroethane	µg/L	<	0.5	ĦĦ	Ħ					
	1,2-Dichloroethane	µg/L	<	0.5		H					
	1,1-Dichloroethylene	µg/L	<	0.5		Ħ					
Group	1,2-Dichloropropane		<	0.5							
5		µg/L	<	0.5	╞╧═	╞┼╴					
	1,3-Dichloropropylene	µg/L		0.5							
	1,4-Dioxane	µg/L	<			H		 		-	
	Ethylbenzene	µg/L	<	0.5							
	Methyl Bromide	µg/L	<	1							
	Methyl Chloride	µg/L	<	0.5		\square					
	Methylene Chloride	µg/L	<	0.5							
	1,1,2,2-Tetrachloroethane	µg/L	<	0.5		H					
	Tetrachloroethylene	µg/L	<	0.5		Ħ					
1	Toluene	µg/L	<	0.5							
1	1,2-trans-Dichloroethylene	µg/L	<	1							
	1,1,1-Trichloroethane	µg/L	<	0.5	╞┼═	╞┼╴					
1	1,1,2-Trichloroethane		<	1							
		µg/L		-		Ħ				-	
	Trichloroethylene	µg/L	<	0.5		i i i					
	Vinyl Chloride	µg/L	<	0.5							
	2-Chlorophenol	µg/L	<	0.5							
	2,4-Dichlorophenol	µg/L	<	0.5							
	2,4-Dimethylphenol	µg/L	<	0.5							
	4,6-Dinitro-o-Cresol	µg/L	<	2							
4	2,4-Dinitrophenol	µg/L	<	2							
Group	2-Nitrophenol	µg/L	<	1							
2	4-Nitrophenol	µg/L	<	1		╞╪				-	
0	p-Chloro-m-Cresol		<	0.5		++					
	•	µg/L	<	1	╞╞═	╞┼╴				-	
	Pentachlorophenol	µg/L									
	Phenol	µg/L	<	0.5		<u> </u>					
	2,4,6-Trichlorophenol	µg/L	<	0.5							
	Acenaphthene	µg/L	<	0.2							
	Acenaphthylene	µg/L	<	0.2							
	Anthracene	µg/L	<	0.2							
	Benzidine	µg/L	<	0.5							
	Benzo(a)Anthracene	µg/L	<	0.2							
	Benzo(a)Pyrene	µg/L	<	0.2	Ħ	Ħ					
	3.4-Benzofluoranthene	µg/L	<	0.2		\vdash		 			
	Benzo(ghi)Perylene	µg/L	<	0.2	<u>⊨</u> ⊨	H					
1			—								
	Benzo(k)Fluoranthene	µg/L	<	0.2		<u> </u>					
	Bis(2-Chloroethoxy)Methane	µg/L	<	0.2							
	Bis(2-Chloroethyl)Ether	µg/L	<	0.2							
	Bis(2-Chloroisopropyl)Ether	µg/L	<	0.2							
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	3		ΪÌ					
	4-Bromophenyl Phenyl Ether	µg/L	<	0.2							
	Butyl Benzyl Phthalate	µg/L	<	2							
	2-Chloronaphthalene	µg/L	<	0.2		H					
	4-Chlorophenyl Phenyl Ether	µg/L	<	0.2							
	Chrysene		<	0.2	<u> </u>	Ħ					
1	Dibenzo(a,h)Anthrancene	µg/L	<	0.2							
1		µg/L	—					 			
1	1,2-Dichlorobenzene	µg/L	<	0.2							
1	1,3-Dichlorobenzene	µg/L	<	0.2							
5	1,4-Dichlorobenzene	µg/L	<	0.2							
_	3,3-Dichlorobenzidine	µg/L	<	0.5							
2	Diethyl Phthalate	µg/L	<	2							
0	Dimethyl Phthalate	µg/L	<	2							
1	Di-n-Butyl Phthalate	µg/L	<	2							
1	2,4-Dinitrotoluene	µg/L	<	0.2		Ħ					
1	-	19-									

2,6-Dinitrotoluene	µg/L	<	0.2						
Di-n-Octyl Phthalate	µg/L	<	2						
1,2-Diphenylhydrazine	µg/L	<	0.2	_	-				
Fluoranthene	µg/L	<	0.2		-				
Fluorene	µg/L	<	0.2						
Hexachlorobenzene	µg/L	<	0.2		_				
Hexachlorobutadiene	µg/L	<	0.2	_	-				
Hexachlorocyclopentadiene	µg/L	<	1						
Hexachloroethane	µg/L	<	0.2						
Indeno(1,2,3-cd)Pyrene	µg/L	<	0.2	_	-				
Isophorone	µg/L	<	0.5	_					
Naphthalene	µg/L	<	0.2						
Nitrobenzene	µg/L	<	0.2	_	_				
n-Nitrosodimethylamine	µg/L	<	0.2	-	-				
n-Nitrosodi-n-Propylamine	µg/L	<	0.2						
n-Nitrosodiphenylamine	µg/L	<	0.2	_	_				
Phenanthrene	µg/L	<	0.2	_	-				
Pyrene	µg/L	<	0.2						
1,2,4-Trichlorobenzene	µg/L	<	0.2						

DEPARTMENT OF ENVIRONMENTAL

Stream / Surface Water Information

Toxics Management Spreadsheet Version 1.3, March 2021

Johnstown Wire Tech, NPDES Permit No. PA0217093, Outfall 603

Instructions Discharge Stream

Receiving Surface Water Name: Conemaugh River

043832

043832

50.4

49.4

1124

1123

No. Reaches to Model: 1

Yes

Yes

Stream Code* RMI* Elevation (ft)* DA (mi²)* Slope (ft/ft) PWS Withdrawal Apply Fish (MGD) Criteria*

686

687

Statewide Criteria

O Great Lakes Criteria

ORSANCO Criteria

0	
-	7-10

Location

Point of Discharge

End of Reach 1

Location	RMI	LFY	Flow (cfs)		W/D Width Depth Velocit		Time	Tributary		Stream		Analysis			
Location	TSWI1	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	50.4	0.1	66.3			140	15					100	7		
End of Reach 1	49.4	0.1	66.3			140	15								

Qh

Location	RMI	LFY	Flow (cfs)		W/D	Width	Depth	Velocit	Time	Tributary		Stream		Analysis	
Location	T SIMI	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(daws)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	50.4														
End of Reach 1	49.4														

DEPARTMENT OF ENVIRONMENTA PROTECTION	L							Toxics Management Spreadsheet Version 1.3, March 2021
Model Results							Johnstown V	Vire Tech, NPDES Permit No. PA0217093, Outfall 603
Instructions Results	RETURN	TO INPU	пт с	SAVE AS	PDF	PRINT	r) 🖲 A	II 🔿 Inputs 🔿 Results 🔿 Limits
Hydrodynamics								
Wasteload Allocations AFC CC	Г (min):	15	PMF:	0.691	[Ana	lysis Hardne	ss (mg/l):	100 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	15,961	
Total Antimony	0	0		0	1,100	1,100	23,409	
Total Arsenic	0	0		0	340	340	7,235	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	446,894	
Total Boron	0	0		0	8,100	8,100	172,374	
Total Cadmium	0	0		0	2.014	2.13	45.4	Chem Translator of 0.944 applied
Total Chromium (III)	0	0		0	569.763	1,803	38,370	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	347	Chem Translator of 0.982 applied
Total Cobalt Total Copper	0	0		0	95 13,439	95.0 14.0	2,022	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	13.439 N/A	14.U N/A	298 N/A	Chem Translator of 0.80 applied
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	ŏ		0	64.581	81.6	1,737	Chem Translator of 0.791 applied
Total Manganese	0	ŏ		ō	N/A	N/A	N/A	strent transition of our of apprecia
Total Mercury	0	0		0	1.400	1.65	35.1	Chem Translator of 0.85 applied
Total Nickel	0	0		0	468.236	469	9,984	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	3.217	3.78	80.5	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	1,383	
Total Zinc	0	0		0	117.180	120	2,550	Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	63.8	

Acrylamide	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	ō		0	650	650	13.832	
Benzene	0	0		0	640	640	13,620	
Bromoform	0	ō		0	1,800	1,800	38,305	
Carbon Tetrachloride	0	ō		0	2,800	2,800	59,586	
Chlorobenzene	0	ō		0	1,200	1,200	25,537	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	ŏ		0	18,000	18,000	383,052	
Chloroform	0	ŏ		0	1,900	1,900	40,433	
Dichlorobromomethane	0	ō		0	N/A	N/A	N/A	
1.2-Dichloroethane	0	ŏ		0	15.000	15.000	319,210	
1,1-Dichloroethylene	0	ŏ		0	7.500	7,500	159,605	
1,2-Dichloropropane	0	ŏ	┝┼╌┼╌┼╶╉	0	11.000	11.000	234.088	
1,3-Dichloropropylene	0	ŏ		0	310	310	6,597	
Ethylbenzene	0	ŏ		0	2,900	2,900	61,714	
Methyl Bromide	0	0		0	2,900	2,900	11,704	
	0	0		-		28.000	595.859	
Methyl Chloride		-		0	28,000			
Methylene Chloride	0	0		0	12,000	12,000	255,368	
1,1,2,2-Tetrachloroethane	0	0		0	1,000	1,000	21,281	
Tetrachloroethylene	0	0		0	700	700	14,896	
Toluene	0	0		0	1,700	1,700	36,177	
1,2-trans-Dichloroethylene	0	0		0	6,800	6,800	144,709	
1,1,1-Trichloroethane	0	0		0	3,000	3,000	63,842	
1,1,2-Trichloroethane	0	0		0	3,400	3,400	72,354	
Trichloroethylene	0	0		0	2,300	2,300	48,946	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	560	560	11,917	
2,4-Dichlorophenol	0	0		0	1,700	1,700	36,177	
2,4-Dimethylphenol	0	0		0	660	660	14,045	
4,6-Dinitro-o-Cresol	0	0		0	80	80.0	1,702	
2,4-Dinitrophenol	0	0		0	660	660	14,045	
2-Nitrophenol	0	0		0	8,000	8,000	170,245	
4-Nitrophenol	0	0		0	2,300	2,300	48,946	
p-Chloro-m-Cresol	0	0		0	160	160	3,405	
Pentachlorophenol	0	0		0	8.723	8.72	186	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	460	460	9,789	
Acenaphthene	0	0		0	83	83.0	1,766	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	300	300	6,384	
Benzo(a)Anthracene	0	0		0	0.5	0.5	10.6	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	30,000	30,000	638,421	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
		-		-		4.500	95,763	
Bis(2-Ethylhexyl)Phthalate	0	0		0	4,500	4,000	80,703	

2-Chloronaphthalene Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene 1,2-Diphenylhydrazine Fluoranthene	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				140 N/A N/A 820 350 730 N/A 4,000	140 N/A N/A 820 350 730 N/A	2,979 N/A N/A 17,450 7,448 15,535 N/A	
Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene 1,2-Diphenylhydrazine	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0	N/A N/A 820 350 730 N/A 4,000	N/A N/A 820 350 730 N/A	N/A N/A 17,450 7,448 15,535	
Dibenzo(a, h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene 1,2-Diphenylhydrazine Fluoranthene	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		0 0 0 0 0 0	N/A 820 350 730 N/A 4,000	N/A 820 350 730 N/A	N/A 17,450 7,448 15,535	
1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Din-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene 1,2-Diphenylhydrazine Fluoranthene	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0		0 0 0 0 0	820 350 730 N/A 4,000	820 350 730 N/A	17,450 7,448 15,535	
1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene 1,2-Diphenylhydrazine Fluoranthene	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0		0 0 0 0	350 730 N/A 4,000	350 730 N/A	7,448 15,535	
1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene 1,2-Diphenylhydrazine Fluoranthene	0 0 0 0 0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	730 N/A 4,000	730 N/A	15,535	
3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene 1,2-Diphenylhydrazine Fluoranthene	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	N/A 4,000	N/A		
Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene 1,2-Diphenylhydrazine Fluoranthene	0 0 0 0 0 0	0 0 0 0 0 0		0	4,000		N/A	
Dimethyl Phthalate Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene 1,2-Diphenylhydrazine Fluoranthene	0 0 0 0 0	0 0 0		0	-			
Di-n-Butyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene 1,2-Diphenylhydrazine Fluoranthene	0 0 0 0	0		_		4,000	85,123	
2,4-Dinitrotoluene 2,6-Dinitrotoluene 1,2-Diphenylhydrazine Fluoranthene	0 0 0 0 0	0			2,500	2,500	53,202	
2,8-Dinitrotoluene 1,2-Diphenylhydrazine Fluoranthene	0			0	110	110	2,341	
1,2-Diphenylhydrazine Fluoranthene	0	0		0	1,600	1,600	34,049	
Fluoranthene				0	990	990	21,068	
		0		0	15	15.0	319	
-	0	0		0	200	200	4,256	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	213	
Hexachlorocyclopentadiene	0	0		0	5	5.0	106	
Hexachloroethane	0	0		0	60	60.0	1,277	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10,000	10,000	212,807	
	0	0		0	140	140	2,979	
Nitrobenzene	0	0		0	4,000	4,000	85,123	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	361,772	
-	0	0		0	N/A	N/A	N/A	
	0	0		0	300	300	6,384	
	0	0		0	5	5.0	106	
	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	130	130	2.766	
CFC CCT (mir		424	PMF:	1	Ana	alysis Hardne	ess (mg/l):	100 Analysis pH: 7.00
Pollutants C	onc o/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
	0	0		0	N/A	N/A	N/A	
	0	0		0	N/A	N/A	N/A	
	0	0		0	220	220	6,678	
	0	0		0	150	150	4,553	Chem Translator of 1 applied
	0	0		0	4,100	4,100	124,452	enter renative of replace
	0	0		0	1.600	1,600	48,567	
	0	0		0	0.246	0.27	8.21	Charry Translates of 0 000 applied
		_						Chem Translator of 0.909 applied
() ()	0	0		0	74.115	86.2	2,616	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	316	Chem Translator of 0.962 applied

	-	-	 				
Total Cobalt	0	0	0	19	19.0	577	
Total Copper	0	0	0	8.956	9.33	283	Chem Translator of 0.96 applied
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1,500	1,500	45,531	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	2.517	3.18	96.6	Chem Translator of 0.791 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	27.5	Chem Translator of 0.85 applied
Total Nickel	0	0	0	52.007	52.2	1,583	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	151	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	395	
Total Zinc	0	0	0	118.139	120	3,637	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	91.1	
Acrylamide	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	130	130	3,946	
Benzene	0	0	0	130	130	3,946	
Bromoform	0	0	0	370	370	11,231	
Carbon Tetrachloride	0	0	0	560	560	16,998	
Chlorobenzene	0	0	0	240	240	7,285	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	106,240	
Chloroform	0	0	0	390	390	11,838	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	94,098	
1,1-Dichloroethylene	0	0	0	1,500	1,500	45,531	
1,2-Dichloropropane	0	0	0	2,200	2,200	66,779	
1,3-Dichloropropylene	0	0	0	61	61.0	1,852	
Ethylbenzene	0	0	0	580	580	17,605	
Methyl Bromide	0	0	0	110	110	3,339	
Methyl Chloride	0	0	0	5,500	5,500	166,948	
Methylene Chloride	0	0	0	2,400	2,400	72,850	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	6,374	
Tetrachloroethylene	0	0	0	140	140	4,250	
Toluene	0	0	0	330	330	10,017	
1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	42,496	
1,1,1-Trichloroethane	0	0	0	610	610	18,516	
1,1,2-Trichloroethane	0	0	0	680	680	20,641	
Trichloroethylene	0	0	0	450	450	13,659	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	3,339	
2,4-Dichlorophenol	0	0	0	340	340	10,320	
2,4-Dimethylphenol	0	0	0	130	130	3,946	
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	486	
2,4-Dinitrophenol	0	0	0	130	130	3,946	

4-Nirophenol 0 0 0 470 470 14.280 p-Chlorom-Gresol 0 0 0 6.693 6.69 203 Pentachlorophenol 0 0 0 6.693 6.69 203 Phenol 0 0 0 0 0.0 1.01 1.01 2.4.6-Trichlorophenol 0 0 0 1.01 1.01 2.762 Acenaphtheme 0 0 0 1.01 3.04 N/A Benzola/Antrasene 0 0 0 0.0 1.01 3.04 Benzola/Antrasene 0 0 0 N/A N/A N/A 3.4-Benzola/Prene 0 0 0 N/A N/A N/A Bis/2-Chloroitoprop/JEher 0 0 0 0.0 160 12125 Bis/2-Chloroitoprop/JEher 0 0 0 6.00 160 127.622 2-Chloronitoprop/JEher 0 0			-	 				
p-Chicora-nCresol 0 0 0 6.00 15.77 Pentabliorophenol 0 0 6.693 6.699 203 24.6-Trichiorophenol 0 0 0 0 10 2.722 Acenaphthene 0 0 0 11 0.10 2.782 Acenaphthene 0 0 0 17 17.0 518 Anthracene 0 0 0 17 17.0 518 Benzo(a/Anthracene 0 0 0 1.14 N/A N/A Benzo(a/Anthracene 0 0 0 1.14 N/A N/A Benzo(a/Anthracene 0 0 0 1.4 N/A N/A Benzo(a/Anthracene 0 0 0 1.4 N/A N/A Benzo(a/Anthracene 0 0 0 1.00 1.02 2.02 Bis/2-ChoroethylEther 0 0 0 1.02 1.639 1.02	2-Nitrophenol	0	0	0	1,600	1,600	48,567	
Pendel 0 <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>		-	-					
Phend 0 0 NA NA NA 24.8-Trichlorophenol 0<	F	_		-				
2.4.8-Troblorophenol 0 0 91 91.0 2.762 Acenaphthene 0 0 17 17.0 518 Anthroene 0 0 17.0 518 Benzoline 0 0 N/A N/A N/A Benzols/alphrane 0 0 0 13.04 Benzols/alphrane 0 0 0 N/A N/A N/A 3.4-Benzols/alphrane 0 0 0 N/A N/A N/A Benzols/alphrane 0 0 0 N/A N/A N/A Bitg2-Chioreshylifter 0 0 0 N/A N/A N/A Bitg2-EnsylphesylPhthalate 0 0 64 64.0 1.639 Burdyl Benzyl Phthalate 0 0 54 54.0 1.639 Burdyl BenzylPhthalate 0 0 0 N/A N/A Dibenzola, h)antranee 0 0 0 N/A N								
Acetaghthene 0 17 17.0 518 Arthrasene 0 0 0 10 10 N/A N/A Benzola, Anthrasene 0 0 0 0 59 69.0 1,701 Benzola, Anthrasene 0 0 0 0.1 0.1 3.04 Benzola, Physica 0 0 N/A N/A N/A Benzola, Physica 0 0 0 N/A N/A Bit2-Chloroshylip(Ether 0 0 0 0 10 27.622 4-Bromopheryl Phenyl Ether 0 0 0 N/A N/A N/A Bit42-Chloroshylip(Ether 0 0 0 N/A N/A N/A Buyl Benzyl Phthalat		_						
Anthracene O O N/A N/A N/A Benzolne O O 6 60 56 56.0 1.701 Benzols/Pyrene O O 0 0 0 1.1 3.44 Benzols/Pyrene O O N/A N/A N/A N/A 3.4-Benzols/Pyrene O O N/A N/A N/A N/A Bits/2-Chloroitoprop//Ether O O N/A N/A N/A N/A Bits/2-Chloroitoprop//Ether O O O N/A N/A N/A Bits/2-Chloroitoprop//Ether O O O 0.000 6.000 182.125 Bits/2-Chloroitoprop//Ether O O O 0.100 1.339 Butyl Benzyl Phthalate O O O N/A N/A Chlorobenzane O O N/A N/A N/A J.2-Olchlorobenzane O O N/A N/A	2,4,6-Trichlorophenol	0	0	0		91.0		
Benzolne 0 0 80 50 50 50 1,701 Benzo(a)Anthracene 0 0 0 0 0 1,1 3,14 Benzo(a)Pyrene 0 0 0 N/A N/A N/A Benzo(fi/Flucranthene 0 0 N/A N/A N/A Benzo(fi/Flucranthene 0 0 N/A N/A N/A Big(2-Chiorestry)[Ether 0 0 0 N/A N/A N/A Big(2-Ethylexy)[Pthalate 0 0 0 0 100 101 27.622 4-Bromopheny [Pheny] Ether 0 0 0 35.3 1.082 2-Chioronaphthalene 0 0 0 N/A N/A N/A Diberzo(a, h/Anttrancene 0 0 N/A N/A N/A 1.3-Dichiorobenzane 0 0 150 150 4.563 3.3-Dichiorobenzane 0 0 0 0 <	Acenaphthene	_		0		17.0		
Berzo(a)Antracene 0 0 0 0 N/A N/A N/A Benzo(a)Pyrene 0 0 N/A N/A N/A N/A Benzo(b)Fluoranthere 0 0 N/A N/A N/A Benzo(b)Fluoranthere 0 0 N/A N/A N/A Bit2-Chlorestry/Ether 0 0 0 N/A N/A Bit2-Chlorestry/Ether 0 0 0 0 100 27.622 4-Bromopheny/Phalate 0 0 0 100 27.622 4.87000/000 1.682 1.639 Butyl Benzyl Phthalate 0 0 0 N/A N/A N/A Dibenzolona/haftmanen 0 0 N/A N/A N/A Dibenzolona/haftmanen 0 0 160 180 4.857 1.3-Dichlorobenzene 0 0 160 160 4.857 1.3-Dichlorobenzene 0 0 500 500	Anthracene	0	0	0			N/A	
Benzo(a)Pyrene 0 0 N/A N/A N/A N/A 3.4-Benzoflucranthene 0 0 N/A N/A N/A N/A Benzo(k)Fluoranthene 0 0 0 N/A N/A N/A Bit2-Chlorestry()Ether 0 0 0 0 0.0 0.0 0.0 Bit2-Chlorestry()Ether 0 0 0 0.0 0.0 1.82.125 Bit2-Chlorestry()Ether 0 0 0 910 910 27.622 4-Bromophenyl Ether 0 0 0 94 53.50 1.082 2-Chloronaphthalene 0 0 N/A N/A N/A Dibenzo(a,h)Anthrancene 0 0 N/A N/A N/A 1.2-Oichlorobenzene 0 0 160 180 4.657 1.2-Oichlorobenzene 0 0 160 4.637 1.45104 1.4-Diobhorobenzene 0 0 150 4.533	Benzidine	0	0	0	59	59.0	1,791	
3.4-Benzofluoranthene 0 N/A N/A N/A N/A Benzo(l)Fluoranthene 0 0 N/A N/A N/A N/A Bitg2-Chlorosthyl)Ether 0 0 0 N/A N/A N/A Bitg2-Chlorosthyl)Ether 0 0 0 N/A N/A N/A Bitg2-Chlorosthyl)Ether 0 0 0 N/A N/A N/A Bitg2-Ethylhexyl)Phthalate 0 0 0 910 27,6022 4-Bromophenyl Phenyl Ether 0 0 0 35 35,0 1,062 2-Chloronaphthalene 0 0 N/A N/A N/A N/A Dibenzo(a,h)Antirancene 0 0 N/A N/A N/A N/A 1.3-Dichlorobenzene 0 0 160 160 4,857 1.3-0ichlorobenzene 0 0 160 160 4,857 1.3-Dichlorobenzene 0 0 0 160 150 <	Benzo(a)Anthracene	0	0	0	0.1	0.1	3.04	
Benzo(k)Fluoranthene 0 N/A N/A N/A N/A Bis(2-Chiorosthyl)Ether 0 0 6,000 6,000 182,125 Bis(2-Chiorosthyl)Ether 0 0 0 N/A N/A N/A Bis(2-Chiorosthyl)Ether 0 0 0 10 27,622 4-Bromophenyl Phenyl Ether 0 0 54 54,0 1,639 Butyl Benzyl Phthalate 0 0 54 54,0 1,639 2-Chioronaphthalene 0 0 N/A N/A N/A Chrysene 0 0 N/A N/A N/A 12-Oichiorobenzene 0 0 N/A N/A N/A 13-Dichiorobenzene 0 0 150 150 4,553 3.3-Dichiorobenzene 0 0 0 800 24,283 Dimetryl Phthalate 0 0 0 232 9,713 2,4-Dinitrotoluene 0 0 0 2	Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether 0 0 0 6,000 182,125 Bis(2-Chloroisopropyl)Ether 0 0 0 N/A N/A N/A Bis(2-Chloroisopropyl)Ether 0 0 0 010 27,022 4-Bromopheny Phenyl Ether 0 0 0 54 54,0 1,839 Butyl Benzyl Phthalate 0 0 0 35 35,0 1,062 2-Chloronaphthalene 0 0 N/A N/A N/A N/A Dibenzol, ni/Antrancene 0 0 N/A N/A N/A 1.2-Dichlorobenzene 0 0 N/A N/A N/A 1.3-Dichlorobenzene 0 0 160 160 4,857 1.3-Dichlorobenzene 0 0 160 800 20,044 1.4-Dichlorobenzene 0 0 160 800 24,283 Dimethyl Phthalate 0 0 0 160 801 807	3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether 0 N/A N/A N/A N/A Bis(2-Ethylhesyl)Phinalate 0 0 0 010 27.622 4-Bromophenyl Phenyl Ether 0 0 0 35 35.0 1.082 2-Chloroisophyl Ether 0 0 0 35 35.0 1.082 2-Chloroisophyl Ether 0 0 N/A N/A N/A N/A Chrysene 0 0 N/A N/A N/A N/A Dibenzo(a,h)Antrancene 0 0 N/A N/A N/A N/A 1.3-Dichlorobenzene 0 0 160 180 4.857	Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis (2-Ethylhexyl)Phrhatate 0 0 0 910 910 27,822 4-Bromophenyl Phenyl Ether 0 0 54 54.0 1,339 Butyl Benzyl Phrhatate 0 0 0 35 35.0 1.062 2-Chloronaphthalene 0 0 0 N/A N/A N/A Dibenzo(a), hAnthrancene 0 0 0 N/A N/A N/A 1.2-Dichlorobenzene 0 0 0 160 180 4.857 1.3-Dichlorobenzene 0 0 0 150 4.553 3.3-Dichlorobenzene 0 0 0 160 180 4.553 Diethyl Phthalate 0 0 0 500 150.177 150 Di-Butyl Phthalate 0 0 0 200 200 6.071 1.2-Diphenylhydrazine 0 0 0 3.0 91.1 112-Diphenylhydrazine 0 0 12.10 637 <t< td=""><td>Bis(2-Chloroethyl)Ether</td><td>0</td><td>0</td><td>0</td><td>6,000</td><td>6,000</td><td>182,125</td><td></td></t<>	Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	182,125	
4-Bromophenyl Phenyl Ether 0 0 54 54.0 1,839 Butyl Benzyl Phthalate 0 0 36 38.0 1,062 2-Chloronaphthalene 0 0 0 N/A N/A N/A Dibenzo(a,h)Anttrancene 0 0 0 N/A N/A N/A 1.2-Dichlorobenzene 0 0 0 160 180 4.857 1.3-Dichlorobenzene 0 0 0 150 150 4.553 3.3-Dichlorobenzene 0 0 0 800 24.283 Dimethyl Phthalate 0 0 21 21.0 637 2.4-Dinitrotoluene 0 0 3.3 3.3 3.0 91.1 Fluoranthene 0 0 0 3.3 6.0 1.214 Dimethyl Phthalate 0 0 21 21.0 637 2.4-Dinitrotoluene 0 0 3.3.0 91.1 Fluoranthene	Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phihalate 0 0 35 35.0 1.062 2-Chloronaphthalene 0 0 0 N/A N/A N/A Chrysene 0 0 N/A N/A N/A N/A Dibenzo(a,h)Anthrancene 0 0 N/A N/A N/A N/A 1.2-Dichlorobenzene 0 0 160 160 4.857 1.3-Dichlorobenzene 0 0 150 150 4.553 3.3-Dichlorobenzidine 0 0 0 150 150 4.553 Dimethyl Phthalate 0 0 0 800 24.283 1177 Din-Butyl Phthalate 0 0 0 320 9.713 1177 Di-n-Butyl Phthalate 0 0 0 320 9.713 111 1.2-Diphenylhydrazine 0 0 0 30 9.11 111 Fluorene 0 0 0 140 1.10 <	Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	27,622	
2-Chloronaphthalene 0 N/A N/A N/A N/A Chrysene 0 0 0 N/A N/A N/A Dibenzo(a,h)Anthrancene 0 0 0 N/A N/A N/A 1.2-Dichlorobenzene 0 0 160 160 4,857 1.3-Dichlorobenzene 0 0 0 160 4,857 3.3-Dichlorobenzene 0 0 150 150 4,553 3.3-Dichlorobenzidine 0 0 0 N/A N/A Diethyl Phthalate 0 0 0 800 800 24.283 Dimethyl Phthalate 0 0 0 21 21.0 637 2.4-Dinitrotoluene 0 0 320 30.0 91.1 1.1 Fluoranthene 0 0 0 22.0 60.71 1.214 Fluoranthene 0 0 0 N/A N/A N/A Hexachloroben	4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	1,639	
Chrysene 0 0 N/A N/A N/A N/A Dibenzo(a,h)Anthrancene 0 0 0 N/A N/A N/A 1,2-Dichlorobenzene 0 0 160 160 4,857 1,3-Dichlorobenzene 0 0 66 69.0 2,094 1,4-Dichlorobenzene 0 0 150 150 4,553 3,3-Dichlorobenzidine 0 0 0 800 800 24,283 Dimethyl Phthalate 0 0 0 500 500 15,177 Din-Butyl Phthalate 0 0 0 220 200 6,071 1,2-Dipheryhlydrazine 0 0 3 3.0 9,13 1.1 Fluorantene 0 0 0 3.0 9,11 1.1 Fluorantene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 1,1 1,0 30.4	Butyl Benzyl Phthalate	0	0	0	35	35.0	1,062	
Dibenzo(a,h)Anthrancene 0 0 N/A N/A N/A N/A 1,2-Dichlorobenzene 0 0 0 160 160 4,857 1,3-Dichlorobenzene 0 0 0 69 69.0 2,094 1,4-Dichlorobenzene 0 0 0 150 150 4,553 3,3-Dichlorobenzidine 0 0 0 N/A N/A N/A Direthyl Phthalate 0 0 0 800 800 24,283 Dimethyl Phthalate 0 0 0 320 320 9,713 2,4-Dinitrotoluene 0 0 0 3.0 91.1 Fluoranthene 0 0 0 3.0 91.1 Fluoranthene 0 0 0 N/A N/A Hexachlorobutadine 0 0 14.0 30.4 Hexachlorobutadine 0 0 12.1 10.0 30.4 Hexachlorobutadine	2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
1.2-Dichlorobenzene 0 0 180 180 4.857 1.3-Dichlorobenzene 0 0 0 69 69.0 2.094 1.4-Dichlorobenzene 0 0 0 150 150 4.553 3.3-Dichlorobenzidine 0 0 0 0 800 800 24,283 Dinethyl Phthalate 0 0 0 21 21.0 637 2.4-Dinitrotoluene 0 0 20 320 32.0 9.713 2.6-Dinitrotoluene 0 0 20 33 3.0 91.1 Fluoranthene 0 0 0 33 3.0 91.1 Fluoranthene 0 0 0 33 3.0 91.1 Fluoranthene 0 0 0 140 40.0 1.214 Fluoranthene 0 0 0 14.0 384 14.0 Hexachlorobutadiene 0 0 12 10.0 364 Hexachlorobutadiene 0 0 12 12.0	Chrysene	0	0	 0	N/A	N/A	N/A	
1.3-Dichlorobenzene 0 0 69 89.0 2.094 1.4-Dichlorobenzene 0 0 0 150 150 4,553 3.3-Dichlorobenzidine 0 0 0 N/A N/A N/A Diethyl Phthalate 0 0 0 800 800 24.283 Dimethyl Phthalate 0 0 0 500 500 15,177 Din-Butyl Phthalate 0 0 0 21 21.0 837 2,4-Dinitrotoluene 0 0 200 200 6,071 1,2-Diphenylhydrazine 0 0 3 3.0 91.1 Fluoranthene 0 0 0 1.2.14 N/A N/A Hexachlorobutadiene 0 0 0 1.1 1.0 30.4 Hexachlorobutadiene 0 0 0 1.2.14 N/A N/A Hexachlorobutadiene 0 0 0 1.1.0 30.4 Hexachlorobutadiene 0 0 1.2.12.0 364	Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1.4-Dichlorobenzene 0 0 100 100 100 100 3.3-Dichlorobenzidine 0 0 0 100 N/A N/A N/A Diethyl Phthalate 0 0 0 0 800 800 24.283 Dimethyl Phthalate 0 0 0 500 15.07 15.07 Din-Butyl Phthalate 0 0 0 21.01 637 2,4-Dinitrotoluene 0 0 0 320 320 9,713 2,6-Dinitrotoluene 0 0 0 200 200 6,071 1,2-Diphenyfhydrazine 0 0 0 3 3.0 91.1 Fluoranthene 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 1 1.0 30.4 Hexachlorobutadiene 0 0 1 1.0 30.4 Hexachlorocylopentadiene 0 0	1,2-Dichlorobenzene	0	0	0	160	160	4,857	
3.3-Dichlorobenzidine 0 N/A N/A N/A Diethyl Phthalate 0 0 800 800 24.283 Dimethyl Phthalate 0 0 0 500 15.177 Di-n-Butyl Phthalate 0 0 21 21.0 637 2,4-Dinitrotoluene 0 0 320 320 9,713 2,6-Dinitrotoluene 0 0 0 3 3.0 91.1 Fluoranthene 0 0 0 3 3.0 91.1 Fluoranthene 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 12 12.0 864 Ideno(1,2,3-od)Pyrene 0 0 12 12.0 364 Indeno(1,2,3-od)Pyrene 0 0 2,100 63,744 Naphthalene 0 0 24,587	1,3-Dichlorobenzene	0	0	0	69	69.0	2,094	
Diethyl Phthalate 0 0 800 800 24,283 Dimethyl Phthalate 0 0 0 500 500 15,177 Din-Butyl Phthalate 0 0 0 21 21.0 637 2,4-Dinitrotoluene 0 0 0 320 320 9,713 2,6-Dinitrotoluene 0 0 0 3 3.0 91.1 Fluoranthene 0 0 0 3 3.0 91.1 Fluorene 0 0 0 0 1,214 Fluorene 0 0 0 0 1,214 Hexachlorobutadiene 0 0 0 1,10 30.4 Hexachlorobutadiene 0 0 0 1 1,0 30.4 Hexachlorobutadiene 0 0 1 1,0 30.4 1 Hexachlorobutadiene 0 0 1 1,0 30.4 1 Indeno(1,2,3-od)Pyrene	1,4-Dichlorobenzene	0	0	0	150	150	4,553	
Dimethyl Phthalate 0 0 500 500 15,177 Din-Butyl Phthalate 0 0 0 21 21.0 637 2,4-Dinitrotoluene 0 0 0 320 320 9,713 2,6-Dinitrotoluene 0 0 0 200 200 6,071 1,2-Diphenylhydrazine 0 0 0 3 3.0 91.1 Fluoranthene 0 0 0 40 40.0 1,214 Fluoranthene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 1.1 1.0 30.4 Hexachlorobutadiene 0 0 0 1.2 12.0 364 Inden(1,2,3-od)Pyrene 0 0 0 1.1 1.0 30.4 Isophorone 0 0 0 2,100 83,744 N/A Naphthalene 0 0 43 43.0 1,305	3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate 0 0 21.0 637 2.4-Dinitrotoluene 0 0 320 320 9,713 2.6-Dinitrotoluene 0 0 0 200 200 6,071 1.2-Diphenylhydrazine 0 0 0 3 3.0 91.1 Fluoranthene 0 0 0 0 1,214 N/A Fluoranthene 0 0 0 0 1,214 N/A Fluoranthene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 1 1.0 30.4 Hexachlorocyclopentadiene 0 0 12 12.0 364 Indeno(1,2,3-od)Pyrene 0 0 2,100 2,100 63,744 Naphthalene 0 0 43 43.0 1,305 Nitrobenzene 0	Diethyl Phthalate	0	0	0	800	800	24,283	
2,4-Dintrotoluene 0 0 320 320 9,713 2,8-Dinitrotoluene 0 0 0 200 6,071 1,2-Diphenylhydrazine 0 0 0 3 3.0 91.1 Fluoranthene 0 0 0 40 40.0 1,214 Fluorene 0 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 0 1 1.0 30.4 Hexachlorobutadiene 0 0 0 1 1.0 30.4 Hexachlorobtane 0 0 0 12 12.0 364 Indeno(1,2,3-od)Pyrene 0 0 0 12 12.0 364 Indeno(1,2,3-od)Pyrene 0 0 0 2,100 63,744 Naphthalene 0 0 0 810 810 24,587 n-Nitrosodimethylamine 0 0 3,400 3,400 10	Dimethyl Phthalate	0	0	0	500	500	15,177	
2,8-Dinitrotoluene 0 0 200 200 6,071 1,2-Diphenylhydrazine 0 0 0 3 3.0 91.1 Fluoranthene 0 0 0 40 40.0 1,214 Fluorene 0 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 0 1 1.0 30.4 Hexachlorobutadiene 0 0 0 1 1.0 30.4 Hexachlorobetatiene 0 0 0 1 1.0 30.4 Hexachlorobutadiene 0 0 0 12 12.0 364 Indeno(1,2,3-od)Pyrene 0 0 0 2,100 63.744 Naphthalene 0 0 2,100 63.744 Naphthalene 0 0 43.43.0 1.305 Nitrobenzene 0 0 34.00 3.400 103.204 n-Nitrosodimethylamine	Di-n-Butyl Phthalate	0	0	0	21	21.0	637	
1,2-Diphenylhydrazine 0 0 3 3.0 91.1 Fluoranthene 0 0 40 40.0 1,214 Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 2 2.0 60.7 Hexachlorocyclopentadiene 0 0 0 1 1.0 30.4 Hexachlorocyclopentadiene 0 0 0 12 12.0 364 Indeno(1,2,3-cd)Pyrene 0 0 0 2,100 2,100 63,744 Naphthalene 0 0 0 43 43.0 1,305 Nitrobenzene 0 0 0 810 24,587 n-Nitrosodimethylamine 0 0 0 N/A N/A N/A	2,4-Dinitrotoluene	0	0	0	320	320	9,713	
Fluoranthene 0 0 40 40.0 1,214 Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 2 2.0 60.7 Hexachlorocyclopentadiene 0 0 0 1 1.0 30.4 Hexachlorocythane 0 0 0 12 12.0 384 Indeno(1,2,3-od)Pyrene 0 0 0 2,100 63,744 Naphthalene 0 0 0 43 43.0 1,305 Nitrobenzene 0 0 0 810 810 24,587 n-Nitrosodimethylamine 0 0 0 3,400 103,204 n-Nitrosodi-n-Propylamine 0 0 N/A N/A N/A	2,6-Dinitrotoluene	0	0	0	200	200	6,071	
Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 2 2.0 60.7 Hexachlorocyclopentadiene 0 0 0 1 1.0 30.4 Hexachloroethane 0 0 0 12 12.0 364 Indeno(1,2,3-cd)Pyrene 0 0 0 2,100 2,100 63.744 Naphthalene 0 0 0 43 43.0 1,305 Nitrobenzene 0 0 0 810 810 24,587 n-Nitrosodimethylamine 0 0 0 3,400 103,204	1,2-Diphenylhydrazine	0	0	0	3	3.0	91.1	
Hexachlorobenzene 0 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 2 2.0 60.7 Hexachlorocyclopentadiene 0 0 0 1 1.0 30.4 Hexachloroethane 0 0 0 12 12.0 364 Indeno(1,2,3-cd)Pyrene 0 0 0 2,100 2,100 63,744 Isophorone 0 0 0 43 43.0 1,305 Nitrobenzene 0 0 0 810 810 24,587 n-Nitrosodimethylamine 0 0 0 3,400 103,204 n-Nitrosodin-Propylamine 0 0 N/A N/A N/A	Fluoranthene	0	0	0	40	40.0	1,214	
Hexachlorobutadiene 0 0 2 2.0 60.7 Hexachlorocyclopentadiene 0 0 0 1 1.0 30.4 Hexachlorocyclopentadiene 0 0 0 1 1.0 30.4 Hexachlorocyclopentadiene 0 0 0 12 12.0 364 Indeno(1,2,3-cd)Pyrene 0 0 0 1/4 N/A N/A Isophorone 0 0 0 2,100 2,100 63,744 Naphthalene 0 0 0 43 43.0 1,305 Nitrobenzene 0 0 0 810 810 24,587 n-Nitrosodimethylamine 0 0 0 3,400 103,204 n-Nitrosodin-Propylamine 0 0 N/A N/A N/A	Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene 0 0 1 1.0 30.4 Hexachlorocthane 0 0 0 12 12.0 364 Indeno(1,2,3-cd)Pyrene 0 0 0 0 N/A N/A Isophorone 0 0 0 0 2,100 2,100 63,744 Naphthalene 0 0 0 43 43.0 1,305 Nitrobenzene 0 0 0 810 810 24,587 n-Nitrosodimethylamine 0 0 0 3,400 3,400 103,204 n-Nitrosodin-Propylamine 0 0 N/A N/A N/A	Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachloroethane 0 0 12 12.0 364 Indeno(1,2,3-cd)Pyrene 0 0 0 N/A N/A N/A Isophorone 0 0 0 2,100 2,100 63,744 Naphthalene 0 0 0 43 43.0 1,305 Nitrobenzene 0 0 0 810 810 24,587 n-Nitrosodimethylamine 0 0 0 3,400 3,400 103,204 n-Nitrosodi-n-Propylamine 0 0 N/A N/A N/A	Hexachlorobutadiene	0	0	0	2	2.0	60.7	
Indeno(1,2,3-od)Pyrene 0 0 0 N/A N/A N/A Isophorone 0 0 0 2,100 2,100 63,744 Naphthalene 0 0 0 43 43.0 1,305 Nitrobenzene 0 0 0 810 810 24,587 n-Nitrosodimethylamine 0 0 0 3,400 3,400 103,204 n-Nitrosodi-n-Propylamine 0 0 0 N/A N/A N/A	Hexachlorocyclopentadiene	0	0	0	1	1.0	30.4	
Isophorone 0 0 0 2,100 2,100 63,744 Naphthalene 0 0 0 43 43.0 1,305 Nitrobenzene 0 0 0 810 810 24,587 n-Nitrosodimethylamine 0 0 0 3,400 3,400 103,204 n-Nitrosodin-Propylamine 0 0 0 N/A N/A N/A	Hexachloroethane	0	0	0	12	12.0	364	
Naphthalene 0 0 43 43.0 1,305 Nitrobenzene 0 0 0 810 810 24,587 n-Nitrosodimethylamine 0 0 0 3,400 3,400 103,204 n-Nitrosodin-Propylamine 0 0 0 N/A N/A N/A	Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Nitrobenzene 0 0 0 810 810 24,587 n-Nitrosodimethylamine 0 0 0 3,400 3,400 103,204 n-Nitrosodin-Propylamine 0 0 0 N/A N/A N/A	Isophorone	0	0	0	2,100	2,100	63,744	
n-Nitrosodimethylamine 0 0 0 3,400 103,204 n-Nitrosodi-n-Propylamine 0 0 N/A N/A N/A	Naphthalene	0	0	0	43	43.0	1,305	
n-Nitrosodi-n-Propylamine 0 0 0 0 N/A N/A N/A	Nitrobenzene	0	0	0	810	810	24,587	
	n-Nitrosodimethylamine	0	0	0	3,400	3,400	103,204	
	n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine 0 0 0 0 0 59 59.0 1,791	n-Nitrosodiphenylamine	0	0	0	59	59.0	1,791	
Phenanthrene 0 0 0 1 1.0 30.4		0	0	0	1	1.0	30.4	

Pyrene	0	0			0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0			0	26	26.0	789	
<i>⊡ тнн</i> сс	T (min): 31.	424		PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (uo/L)	Stream CV		Conc ig/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0			0	500,000	500,000	N/A	
Chloride (PWS)	0	0			0	250,000	250,000	N/A	
Sulfate (PWS)	0	0			0	250,000	250,000	N/A	
Fluoride (PWS)	0	0			0	2,000	2,000	N/A	
Total Aluminum	0	0			0	N/A	N/A	N/A	
Total Antimony	0	0			0	5.6	5.6	170	
Total Arsenic	0	0			0	10	10.0	304	
Total Barium	0	0			0	2,400	2,400	72,850	
Total Boron	0	0			0	3,100	3,100	94,098	
Total Cadmium	0	0			0	N/A	N/A	N/A	
Total Chromium (III)	0	0			0	N/A	N/A	N/A	
Hexavalent Chromium	0	0			0	N/A	N/A	N/A	
Total Cobalt	0	0			0	N/A	N/A	N/A	
Total Copper	0	0			0	N/A	N/A	N/A	
Dissolved Iron	0	0			0	300	300	9,106	
Total Iron	0	0			0	N/A	N/A	N/A	
Total Lead	0	0			0	N/A	N/A	N/A	
Total Manganese	0	0			0	1,000	1,000	30,354	
Total Mercury	0	0			0	0.050	0.05	1.52	
Total Nickel	0	0			0	610	610	18,516	
Total Phenols (Phenolics) (PWS)	0	0			0	5	5.0	N/A	
Total Selenium	0	0			0	N/A	N/A	N/A	
Total Silver	0	0			0	N/A	N/A	N/A	
Total Thallium	0	0			0	0.24	0.24	7.29	
Total Zinc	0	0			0	N/A	N/A	N/A	
Acrolein	0	0			0	3	3.0	91.1	
Acrylamide	0	0			0	N/A	N/A	N/A	
Acrylonitrile	0	0			0	N/A	N/A	N/A	
Benzene	0	0			0	N/A	N/A	N/A	
Bromoform	0	0			0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0			0	N/A	N/A	N/A	
Chlorobenzene	0	0			0	100	100.0	3,035	
Chlorodibromomethane	0	0			0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0			0	N/A	N/A	N/A	
Chloroform	0	0			0	N/A	N/A	N/A	
Dichlorobromomethane	0	0			0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0			0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0			0	33	33.0	1,002	

1.2 Disblassesses	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	-	N/A N/A	N/A	N/A N/A	
1,3-Dichloropropylene			0				
Ethylbenzene	0	0	0	68	68.0	2,064	
Methyl Bromide	0	0	0	100	100.0	3,035	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	57	57.0	1,730	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	3,035	
1,1,1-Trichloroethane	0	0	0	10,000	10,000	303,542	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	911	
2,4-Dichlorophenol	0	0	0	10	10.0	304	
2,4-Dimethylphenol	0	0	0	100	100.0	3,035	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	60.7	
2,4-Dinitrophenol	0	0	0	10	10.0	304	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	121,417	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	2,125	
Anthracene	0	0	0	300	300	9,106	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	6,071	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	3.04	
2-Chloronaphthalene	0	0	0	800	800	24,283	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1.2-Dichlorobenzene	0	0	0	1,000	1.000	30.354	
1.3-Dichlorobenzene	0	0	0	7	7.0	212	
1.4-Dichlorobenzene	0	0	0	300	300	9,106	
	~	- ×	<u> </u>	000	000		1
3.3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	

Dimethyl Phthalate	0	0		0	2,000	2,000	60,708	
Di-n-Butyl Phthalate	0	0		0	20	20.0	607	
2,4-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0		0	N/A	N/A	N/A	
Fluoranthene	0	0		0	20	20.0	607	
Fluorene	0	0		0	50	50.0	1,518	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0		0	4	4.0	121	
Hexachloroethane	0	0		0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	34	34.0	1,032	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	10	10.0	304	
n-Nitrosodimethylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	N/A	N/A	N/A	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	20	20.0	607	
1,2,4-Trichlorobenzene	0	0		0	0.07	0.07	2.12	
CRL CC	T (min): 12.	`	PMF:	1 Ente		alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants		Stream CV		1 Fate Coef	Ana WQC (µg/L)	WQ Obj (µg/L)	wLA (µg/L)	
	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj		
Pollutants	Conc (up/L)	Stream CV	Trib Conc	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	
Pollutants Total Dissolved Solids (PWS)	Conc (up/L)	Stream CV 0	Trib Conc	Fate Coef 0	WQC (µg/L) N/A	WQ Obj (µg/L) N/A	WLA (µg/L) N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS)	Conc (up/L) 0	Stream CV 0	Trib Conc	Fate Coef 0	WQC (µg/L) N/A N/A	WQ Obj (µg/L) N/A N/A	WLA (µg/L) N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS)	Conc (unll) 0 0 0 0 0	Stream CV 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS)	Stream Conc (unfl) 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0	WQC (µg/L) N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic	Stream Conc (unfl) 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium	Stream Conc (unfl) 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron	Stream Conc (unfl) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Cadmium	Stream Conc (unit) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Cadmium Total Chromium (III)	Stream Conc (unit) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium	Stream Conc (unit) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt	Stream Conc (unit) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	Stream Conc (unit) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron	Stream Conc (unit) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Cadmium Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron	Stream Conc (unit) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Aluminum Total Antimony Total Arsenic Total Barium Total Cadmium Total Cadmium Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron Total Iron Total Lead	Stream Conc (und) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Cadmium Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron	Stream Conc (unit) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	

Total Nickel	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylamide	0	0	0	0.07	0.07	9.07	
Acrylonitrile	0	0	0	0.06	0.06	7.77	
Benzene	0	0	0	0.58	0.58	75.2	
Bromoform	0	0	0	7	7.0	907	
Carbon Tetrachloride	0	0	0	0.4	0.4	51.8	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	104	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	739	
Dichlorobromomethane	0	0	0	0.95	0.95	123	
1,2-Dichloroethane	0	0	0	9,9	9.9	1,283	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1-Dichloropropane	0	0	0	0.9	0.9	117	
	0	0	0	0.9	0.9	35.0	
1,3-Dichloropropylene Ethylbenzene	0	0	0	0.27 N/A	0.27 N/A	35.0 N/A	
· · ·	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A N/A	N/A	N/A N/A	
Methyl Chloride	0	0	0	20	20.0		
Methylene Chloride	0	0	0	0.2	20.0	2,591 25.9	
1,1,2,2-Tetrachloroethane	0	0	-				
Tetrachloroethylene	_	-	0	10	10.0	1,296	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	71.3	
Trichloroethylene	0	0	0	0.6	0.6	77.7	
Vinyl Chloride	0	0	0	0.02	0.02	2.59	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	3.89	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	194	
Acenaphthene	0	0	0	N/A	N/A	N/A	

Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	0.0001	0.0001	0.013	
Benzo(a)Anthracene	0	0		0	0.001	0.001	0.13	
Benzo(a)Pyrene	0	0		0	0.0001	0.0001	0.013	
3.4-Benzofluoranthene	0	0		0	0.001	0.001	0.13	
Benzo(k)Fluoranthene	0	0		0	0.01	0.01	1.3	
Bis(2-Chloroethyl)Ether	0	0		0	0.03	0.03	3.89	
Bis(2-Chloroisopropyl)Ether	0	0	┟┼╌┼╌┼╶┤	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	0.32	0.32	41.5	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	0.12	0.12	15.5	
_				-	0.0001	0.0001	0.013	
Dibenzo(a,h)Anthrancene 1.2-Dichlorobenzene	0	0		0	0.0001 N/A	0.0001 N/A	0.013 N/A	
	_			-				
1,3-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0		0	0.05	0.05	6.48	
Diethyl Phthalate	0	0		0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0		0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0		0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0		0	0.05	0.05	6.48	
2,6-Dinitrotoluene	0	0		0	0.05	0.05	6.48	
1,2-Diphenylhydrazine	0	0		0	0.03	0.03	3.89	
Fluoranthene	0	0		0	N/A	N/A	N/A	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	0.00008	0.00008	0.01	
Hexachlorobutadiene	0	0		0	0.01	0.01	1.3	
Hexachlorocyclopentadiene	0	0		0	N/A	N/A	N/A	
Hexachloroethane	0	0		0	0.1	0.1	13.0	
Indeno(1,2,3-cd)Pyrene	0	0		0	0.001	0.001	0.13	
Isophorone	0	0		0	N/A	N/A	N/A	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0		0	0.0007	0.0007	0.091	
n-Nitrosodi-n-Propylamine	0	0		0	0.005	0.005	0.65	
n-Nitrosodiphenylamine	0	0		0	3.3	3.3	428	
Phenanthrene	0	0		0	N/A	N/A	N/A	
	0							
Pyrene	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits		I				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Lead	Report	Report	Report	Report	Report	µg/L	96.6	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	19.9	31.0	1,634	2,550	4,086	µg/L	1,634	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Acrylamide	0.11	0.17	9.07	14.2	22.7	µg/L	9.07	CRL	Discharge Conc ≥ 50% WQBEL (RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	Discharge Conc < TQL
Total Aluminum	10,230	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	72,850	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	48,567	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	8.21	µg/L	Discharge Conc < TQL
Total Chromium (III)	2,616	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	222	µg/L	Discharge Conc < TQL
Total Cobalt	577	µg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	191	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	9,106	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	45,531	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	30,354	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	1.52	µg/L	Discharge Conc < TQL
Total Nickel	1,583	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable
Total Selenium	151	µg/L	Discharge Conc < TQL
Total Silver	51.6	µg/L	Discharge Conc < TQL

Total Thallium	7.29	µg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	40.9	µg/L	Discharge Conc < TQL
Acrylonitrile	7.77	µg/L	Discharge Conc < TQL
Benzene	75.2	µg/L	Discharge Conc < TQL
Bromoform	907	µg/L	Discharge Conc < TQL
Carbon Tetrachloride	51.8	µg/L	Discharge Conc < TQL
Chlorobenzene	3,035	µg/L	Discharge Conc < TQL
Chlorodibromomethane	104	µg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	106,240	µg/L	Discharge Conc < TQL
Chloroform	739	µg/L	Discharge Conc < TQL
Dichlorobromomethane	123	µg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	1,283	µg/L	Discharge Conc < TQL
1,1-Dichloroethylene	1,002	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	117	µg/L	Discharge Conc < TQL
1,3-Dichloropropylene	35.0	µg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	2,064	µg/L	Discharge Conc < TQL
Methyl Bromide	3,035	µg/L	Discharge Conc ≤ 25% WQBEL
Methyl Chloride	166,948	µg/L	Discharge Conc < TQL
Methylene Chloride	2,591	µg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	25.9	µg/L	Discharge Conc < TQL
Tetrachloroethylene	1,296	µg/L	Discharge Conc < TQL
Toluene	1,730	µg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	3,035	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,1-Trichloroethane	18,516	µg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	71.3	µg/L	Discharge Conc ≤ 25% WQBEL
Trichloroethylene	77.7	µg/L	Discharge Conc < TQL
Vinyl Chloride	2.59	µg/L	Discharge Conc < TQL
2-Chlorophenol	911	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	304	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	3,035	µg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	60.7	µg/L	Discharge Conc < TQL
2,4-Dinitrophenol	304	µg/L	Discharge Conc < TQL
2-Nitrophenol	48,567	µg/L	Discharge Conc < TQL
4-Nitrophenol	14,266	µg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	2,182	µg/L	Discharge Conc < TQL
Pentachlorophenol	3.89	µg/L	Discharge Conc < TQL
Phenol	121,417	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	194	µg/L	Discharge Conc < TQL
Acenaphthene	516	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	9,106	µg/L	Discharge Conc < TQL
		-	•

Benzidine	0.013	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.13	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.013	µg/L	Discharge Conc < TQL
3.4-Benzofluoranthene	0.13	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	1.3	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	3.89	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	6,071	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	41.5	µg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	1,639	µg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	3.04	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	24,283	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	15.5	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.013	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	4,857	µg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	212	µg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	4,553	µg/L	Discharge Conc < TQL
3.3-Dichlorobenzidine	6.48	µg/L	Discharge Conc < TQL
Diethyl Phthalate	18,213	µg/L	Discharge Conc < TQL
Dimethyl Phthalate	15,177	µg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	607	µg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	6.48	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	6.48	µg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	3.89	µg/L	Discharge Conc < TQL
Fluoranthene	607	µg/L	Discharge Conc < TQL
Fluorene	1,518	µg/L	Discharge Conc < TQL
Hexachlorobenzene	0.01	µg/L	Discharge Conc < TQL
Hexachlorobutadiene	1.3	µg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	30.4	µg/L	Discharge Conc < TQL
Hexachloroethane	13.0	µg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.13	µg/L	Discharge Conc < TQL
Isophorone	1,032	µg/L	Discharge Conc < TQL
Naphthalene	1,305	µg/L	Discharge Conc < TQL
Nitrobenzene	304	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.091	µg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.65	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	428	µg/L	Discharge Conc < TQL
Phenanthrene	30.4	µg/L	Discharge Conc < TQL
Pyrene	607	µg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	2.12	µg/L	Discharge Conc < TQL
			-
	1		1

Attachment C:

Site Thermal Discharge Evaluation

Facility:	Johnstown Wi	re Techs Johns	town Plant				
Permit Number:	PA0217093						PMF
Stream Name:	Conemaugh Riv	er					0.30
Analyst/Engineer:	Adam Olesnani	k					
Stream Q7-10 (cfs):							
		Facilit	y Flows			Stream Flows	
	Intake (Stream) (MGD)	Intake (External) (MGD)	Consumptive Loss (MGD)	Discharge Flow (MGD)	Upstream Stream Flow (cfs)	Adjusted Stream Flow (cfs)	Downstream Stream Flow (cfs)
Jan 1-31	0	1.525	0	1.525	212.16	63.65	66.01
Feb 1-29	0	1.525	0	1.525	232.05	69.62	71.97
Mar 1-31	0	1.525	0	1.525	464.10	139.23	141.59
Apr 1-15	0	1.525	0	1.525	616.59	184.98	187.34
Apr 16-30	0	1.525	0	1.525	616.59	184.98	187.34
May 1-15	0	1.525	0	1.525	338.13	101.44	103.80
May 16-30	0	1.525	0	1.525	338.13	101.44	103.80
Jun 1-15	0	1.525	0	1.525	198.90	59.67	62.03
Jun 16-30	0	1.525	0	1.525	198.90	59.67	62.03
Jul 1-31	0	1.525	0	1.525	112.71	33.81	36.17
Aug 1-15	0	1.525	0	1.525	92.82	27.85	30.21
Aug 16-31	0	1.525	0	1.525	92.82	27.85	30.21
Sep 1-15	0	1.525	0	1.525	72.93	21.88	24.24
Sep 16-30	0	1.525	0	1.525	72.93	21.88	24.24
Oct 1-15	0	1.525	0	1.525	79.56	23.87	26.23
Oct 16-31	0	1.525	0	1.525	79.56	23.87	26.23
Nov 1-15	0	1.525	0	1.525	106.08	31.82	34.18
Nov 16-30	0	1.525	0	1.525	106.08	31.82	34.18
Dec 1-31	0	1.525	0	1.525	159.12	47.74	50.10

Facility:	Johnstown Wire	Techs Johnstown	Plant			
Permit Number:	PA0217093					
Stream:	Conemaugh River					
	<u> </u>					
	WWF Criteria	CWF Criteria	TSF Criteria	316 Criteria	Q7-10 Multipliers	Q7-10 Multipliers
	(°F)	(°F)	(°F)	(°F)	(Used in Analysis)	
Jan 1-31	40	38	40	0	3.2	3.2
Feb 1-29	40	38	40	0	3.5	3.5
Mar 1-31	46	42	46	0	7	7
Apr 1-15	52	48	52	0	9.3	9.3
Apr 16-30	58	52	58	0	9.3	9.3
May 1-15	64	54	64	0	5.1	5.1
May 16-30	72	58	68	0	5.1	5.1
Jun 1-15	80	60	70	0	3	3
Jun 16-30	84	64	72	0	3	3
Jul 1-31	87	66	74	0	1.7	1.7
Aug 1-15	87	66	80	0	1.4	1.4
Aug 16-31	87	66	87	0	1.4	1.4
Sep 1-15	84	64	84	0	1.1	1.1
Sep 16-30	78	60	78	0	1.1	1.1
Oct 1-15	72	54	72	0	1.2	1.2
Oct 16-31	66	50	66	0	1.2	1.2
Nov 1-15	58	46	58	0	1.6	1.6
Nov 16-30	50	42	50	0	1.6	1.6
Dec 1-31	42	40	42	0	2.4	2.4
NOTES:						
WWF= Warm wate	er fishes					
CWF= Cold water f	ishes					
TSF= Trout stockin	p					

Facility:	Johnstown Wire	Techs Johnstown	Plant			
Permit Number:	PA0217093			PMF		
Stream:	Conemaugh River		0.3			
	WWF			WWF	WWF	
	Ambient Stream	Ambient Stream	Target Maximum	Daily	Daily	
	Temperature (°F)	Temperature (°F)	Stream Temp.1	WLA ²	WLA ³	at Discharge
	(Default)	(Site-specific data)	(°F)	(Million BTUs/day)	(°F)	Flow (MGD)
Jan 1-31	35	0	40	N/A Case 2	110.0	1.525
Feb 1-29	35	0	40	N/A Case 2	110.0	1.525
Mar 1-31	40	0	46	N/A Case 2	110.0	1.525
Apr 1-15	47	0	52	N/A Case 2	110.0	1.525
Apr 16-30	53	0	58	N/A Case 2	110.0	1.525
May 1-15	58	0	64	N/A Case 2	110.0	1.525
May 16-30	62	0	72	N/A Case 2	110.0	1.525
Jun 1-15	67	0	80	N/A Case 2	110.0	1.525
Jun 16-30	71	0	84	N/A Case 2	110.0	1.525
Jul 1-31	75	0	87	N/A Case 2	110.0	1.525
Aug 1-15	74	0	87	N/A Case 2	110.0	1.525
Aug 16-31	74	0	87	N/A Case 2	110.0	1.525
Sep 1-15	71	0	84	N/A Case 2	110.0	1.525
Sep 16-30	65	0	78	N/A Case 2	110.0	1.525
Oct 1-15	60	0	72	N/A Case 2	110.0	1.525
Oct 16-31	54	0	66	N/A Case 2	110.0	1.525
Nov 1-15	48	0	58	N/A Case 2	110.0	1.525
Nov 16-30	42	0	50	N/A Case 2	110.0	1.525
Dec 1-31	37	0	42	N/A Case 2	110.0	1.525
		on or the ambient tempe		• •		
			ream temperature base	ed on site-specific data entered	by the user.	
	ove ambient stream te in Million BTI Is/day is y	mperature is allocated. valid for Case 1 scenario	ns and disabled for C	ase 2 scenarios		
•				be used for Case 1 or Case 2).		

WLAs greater than 110°F are displayed as 110°F.

Attachment D:

IMP 613 Federal Effluent Limitation Guideline Calculations

Johnstown Wire Techs Inc - Johnstown Plant								
NPDES Permit: PA0217093								
	Federal EL	G Calcuations						
	IM	P 613						
		nize Line						
Average D	Daily Production:	1	8,582.40	Tons				
ELG 40 CFR 420.92(a)(1)	Iron and Steel M	lanufacturing S	ulfuric Acid P	ickling - Rod,				
	Wire, a	and Coil						
	Alumir	nize Line						
	ELG - BPT Efflu	uent Limitations	Mass-Based	Effluent Limtis				
	(lbs/1,000 lb c	of Production)	(lbs./day)					
		2						
Pollutant		Maxium for						
Pollutant	Max for any 1	Maxium for Monthly	Average					
Pollutant	Max for any 1 day		Average Monthly	Max Daily				
TSS	-	Monthly	•	Max Daily 1.406				
	day	Monthly Average	Monthly	-				
TSS	day 0.0819	Monthly Average 0.035	Monthly 0.601	1.406				
TSS O&G*	day 0.0819 0.035	Monthly Average 0.035 0.0117	Monthly 0.601 0.201	1.406 0.601				
TSS O&G* Lead Zinc	day 0.0819 0.035 0.000526 0.000701	Monthly Average 0.035 0.0117 0.000175	Monthly 0.601 0.201 0.003 0.004	1.406 0.601 0.009				
TSS O&G* Lead	day 0.0819 0.035 0.000526 0.000701	Monthly Average 0.035 0.0117 0.000175 0.000234	Monthly 0.601 0.201 0.003 0.004	1.406 0.601 0.009 0.012				
TSS O&G* Lead Zinc	day 0.0819 0.035 0.000526 0.000701 Within Range	Monthly Average 0.035 0.0117 0.000175 0.000234 e of 6.0 to 9.0	Monthly 0.601 0.201 0.003 0.004 Within Rang	1.406 0.601 0.009 0.012 ge of 6.0 to 9.0				
TSS O&G* Lead Zinc pH * the limitations for oil and gre	day 0.0819 0.035 0.000526 0.000701 Within Range ase shall be application	Monthly Average 0.035 0.0117 0.000175 0.000234 e of 6.0 to 9.0	Monthly 0.601 0.201 0.003 0.004 Within Rang ng wastewaters	1.406 0.601 0.009 0.012 ge of 6.0 to 9.0				
TSS O&G* Lead Zinc pH * the limitations for oil and gre	day 0.0819 0.035 0.000526 0.000701 Within Range ase shall be application	Monthly Average 0.035 0.0117 0.000175 0.000234 e of 6.0 to 9.0	Monthly 0.601 0.201 0.003 0.004 Within Rang ng wastewaters	1.406 0.601 0.009 0.012 ge of 6.0 to 9.0				
TSS O&G* Lead Zinc pH * the limitations for oil and gre	day 0.0819 0.035 0.000526 0.000701 Within Range ase shall be applica ng wastewaters (no	Monthly Average 0.035 0.0117 0.000175 0.000234 e of 6.0 to 9.0	Monthly 0.601 0.201 0.003 0.004 Within Rang ng wastewaters	1.406 0.601 0.009 0.012 ge of 6.0 to 9.0				
TSS O&G* Lead Zinc pH * the limitations for oil and gre	day 0.0819 0.00526 0.000701 Within Range ase shall be applica ng wastewaters (no Sample C day) = [ELG Max for	Monthly Average 0.035 0.00175 0.000175 0.000234 e of 6.0 to 9.0 able when acid picki ot applicable to this Calculations	Monthly 0.601 0.201 0.003 0.004 Within Rang ng wastewaters discharge)	1.406 0.601 0.009 0.012 ge of 6.0 to 9.0 are treated with				
TSS O&G* Lead Zinc pH * the limitations for oil and gre cold rolli Mass-Based Effluent Limit (lbs/	day 0.0819 0.035 0.000526 0.000701 Within Range ase shall be applica ng wastewaters (no Sample C day) = [ELG Max for Production (1,0)	Monthly Average 0.035 0.0117 0.000175 0.000234 e of 6.0 to 9.0 able when acid picki ot applicable to this calculations r any 1 day (lbs/1,000 00 lbs production)]	Monthly 0.601 0.201 0.003 0.004 Within Rang ng wastewaters discharge) D lbs production)]	1.406 0.601 0.009 0.012 ge of 6.0 to 9.0 are treated with * [Average Daily				
TSS O&G* Lead Zinc pH * the limitations for oil and gre cold rolli	day 0.0819 0.035 0.000526 0.000701 Within Range ase shall be application of the apple of the	Monthly Average 0.035 0.0117 0.000175 0.000234 e of 6.0 to 9.0 able when acid picki ot applicable to this calculations r any 1 day (lbs/1,000 00 lbs production)] production) * [((8,582	Monthly 0.601 0.201 0.003 0.004 Within Rang ng wastewaters discharge) D lbs production)]	1.406 0.601 0.009 0.012 ge of 6.0 to 9.0 are treated with * [Average Daily				
TSS O&G* Lead Zinc pH * the limitations for oil and gre cold rolli Mass-Based Effluent Limit (lbs/	day 0.0819 0.035 0.000526 0.000701 Within Range ase shall be application in the application in th	Monthly Average 0.035 0.0117 0.000175 0.000234 e of 6.0 to 9.0 able when acid picki ot applicable to this calculations r any 1 day (lbs/1,000 00 lbs production)]	Monthly 0.601 0.201 0.003 0.004 Within Rang ng wastewaters discharge) D lbs production)] .4 tons production	1.406 0.601 0.009 0.012 ge of 6.0 to 9.0 are treated with * [Average Daily				

ELG 40 CFR 420.92(b)(1) Iron and Steel Manufacturing Hydrochloric Acid Pickling - Rod, Wire, and Coil							
	Alumir	nize Line					
		ased Effluent Limtis (lbs./day)					
Pollutant	Max for any 1 day	Maxium for Monthly Average	Average Monthly	Max Daily			
TSS	0.143	0.0613	1.052	2.455			
O&G*	0.0613	0.0204	0.350	1.052			
Lead	0.00092	0.000307	0.005	0.016			
Zinc	0.00123	0.000409	0.007	0.021			
рН	Within Rang	e of 6.0 to 9.0	Within Rang	e of 6.0 to 9.0			

* the limitations for oil and grease shall be applicable when acid picking wastewaters are treated with cold rolling wastewaters (not applicable to this discharge)

ELG 40 CFR 420.122(b)(1) Iron and Steel Manufacturing Galvanizing and Other Coatings - Wire Products and Fasteners

Aluminize Line							
	-	uent Limitations of Production)	Mass-Based Effluent Limtis				
Pollutant		Maxium for	301)	s./day)			
	Max for any 1	Monthly	Average				
	day	Average	Monthly	Max Daily			
TSS	0.701	0.3	5.149	12.033			
O&G	0.3	0.1	1.716	5.149			
Lead	0.00451	0.0015	0.026	0.077			
Zinc	0.00601	0.002	0.034	0.103			
Chromium (Hexavalent)*	0.0006	0.0002	0.003	0.010			
рН	Within Rang	e of 6.0 to 9.0	Within Range of 6.0 to 9.0				

*the limitations for hexavalent chromium shall be applicable only to galvanizing operations which discharge wastewates from the chromate rinse step (not applicable to this discharge)

	Bethanize Line				
ELG 40 CF	R 433.13 (a) Metal Finishing S Bethanize Line	ubcategory			
Pollutant -	ELG - BPT Effluent	Limitations (mg/L)	Mass-Bassed Credit (Ibs/day)		
	Average Monthly	Daily Max	Average Monthly	Daily Max	
Total Cadmium	0.26	0.69	-	-	
Fotal Chromium	1.71	2.77	-	-	
Total Copper	2.07	3.38	-	-	
Total Lead	0.43	0.69	1.65252096	2.65171968	
Total Nickel	2.38	3.98	-	-	
Total Silver	0.24	0.43	-	-	
Fotal Zinc	1.48	2.61	5.68774656	10.03041792	
Total Cyanide	0.65	1.20	-	-	
ГТО	-	2.13	-	-	
Oil and Grease	26	52	99.919872	199.839744	
rss	31	60	119.135232	230.58432	
рΗ	within 6.0 to 9.0	within 6.0 to 9.0	-	-	
	Sample Calculations				
Mass-Based Effluent Limit (lbs/da	Average	320 gpm			
TSS Max	Daily (lbs/day) = (31 mg/L) * (0.4608 M	IGD) * (8.34)	Wastewater Flow	0.4608 MGD	
Г	rSS Max Daily (lbs/day) = 119.13 lbs/d	day			

	Cleaning Ho	use Operations		
Average I	188,010.80	Tons		
ELG 40 CFR 420.92(b)(1)	Iron and Steel M	lanufacturing H	ydrochloric A	cid Pickling -
	Rod, Wir	e, and Coil		
	Cleaning Ho	use Operations		
	ELG - BPT Effle	uent Limitations	Mass-Based	Effluent Limtis
	(lbs/1,000 lb c	of Production)	(lbs	./day)
Pollutant		Maxium for		
	Max for any 1	Monthly	Average	
	day	Average	Monthly	Max Daily
TSS	0.143	0.0613	23.050	53.771
O&G*	0.0613	0.0204	7.671	23.050
Lead	0.00092	0.000307	0.115	0.346
Zinc	0.00123	0.000409	0.154	0.463
рН	Within Rang	e of 6.0 to 9.0	Within Rang	ge of 6.0 to 9.0
* the limitations for oil and gre	ase shall be applica	able when acid picki	ng wastewaters	are treated with
cold roll	ing wastewaters (no	ot applicable to this	discharge)	
	•	Calculations		
Mass-Based Effluent Limit (Ibs	• • •	^r any 1 day (lbs/1,000 00 lbs production)]	0 lbs production)]	* [Average Daily
TSS Max Daily (lbs/day) = (0		oduction) * [((188,010 00 lbs production)]	0.8 tons production	on/day) * (2,000

TSS Max Daily (lbs/day) = 53.771 lbs/day

ELG 40 CFR 420.92(b)(4)		Nanufacturing H crubbers	ydrochloric A	cid Pickling -				
Cleaning House Operations								
Pollutant	ELG - BPT Effluent Limitations (Kg/day)		Mass-Based Effluent Limtis (Ibs./day)					
	Max for any 1 day	Maxium for Monthly Average	Average Monthly	Max Daily				
TSS	5.72	2.45	5.401	12.610				
O&G*	2.45	0.819	1.806	5.401				
Lead	0.368	0.0123	0.027	0.811				
Zinc	0.0491	0.0164	0.036	0.108				
рН	Within Range	e of 6.0 to 9.0	Within Rang	e of 6.0 to 9.0				
Mass-Based Effluent Limit (lbs/o	scru (lbs/day) = (5.720 kg	ubbers	(g) * (1 Scrubbers					
ELG 40 CFR 420.117(a				ing - Batch				
(a	•	•						
	Alumir	nize Line		ing Baton				
	Alumir	nize Line		ing Baton				
		ize Line Jent Limitations	Mass-Based	Effluent Limtis				
Pollutant			Mass-Based Average Monthly					
Pollutant	ELG - BPT Efflu Max for any 1	uent Limitations Maxium for Monthly	Average	Effluent Limtis				
	ELG - BPT Efflu Max for any 1 day	Maxium for Monthly Average	Average Monthly	Effluent Limtis Max Daily				

ELG 40 CF	R 433.13 (a) Metal Finishing S	ubcategory		
Pollutant	ELG - BPT Effluent Limitations (mg/L)		Mass-Bassed Credit (lbs/day)	
	Average Monthly	Daily Max	Average Monthly	Daily Max
Total Cadmium	0.26	0.69	-	-
Total Chromium	1.71	2.77	-	-
Total Copper	2.07	3.38	-	-
Total Lead	0.43	0.69	0.5164128	0.8286624
Total Nickel	2.38	3.98	-	-
Total Silver	0.24	0.43	-	-
Total Zinc	1.48	2.61	1.7774208	3.1345056
Total Cyanide	0.65	1.20	-	-
ТТО	-	2.13	-	-
Oil and Grease	26	52	31.22496	62.44992
TSS	31	60	37.22976	72.0576
θΗ	within 6.0 to 9.0	within 6.0 to 9.0	-	-
	Sample Calculations			
Mass-Based Effluent Limit (lbs/day) = ELG Concentration * Average Contributing wastewate flow *mass unit conversion			Average	100 GPM
TSS Max Daily (lbs/day) = (31 mg/L) * (0.144 MGD) * (8.34)			Wastewater Flow	0.144 MGD
	TSS Max Daily (lbs/day) = 37.23 lbs/d	ay		

	Total ELG	Limitations		
Total Mass David Effluent				
Total Mass Based Effluent	Limits from all pro	duction lines		
	Mass-Based Effluent Limtis			
Pollutant	Average			
	Monthly	Max Daily		
TSS	203.388	412.366		
O&G	136.772	279.209		
Lead	2.346	4.740		
Zinc	7.700	13.872		
рН	Within Rang	e of 6.0 to 9.0		
Total Concentration	Based Effluent	Limitations from	all Production L	ines
Pollutant		- BPT Effluent L		
	Average Monthly		Daily Max	
Total Cadmium	_	0.26		
Total Chromium	1.71		0.69	
			2.77	
Total Copper	2.	07	2.77 3.38	
Total Lead	2. 0.	07 43	2.77 3.38 0.69	
Total Lead Total Nickel	2. 0. 2.	07 43 38	2.77 3.38 0.69 3.98	
Total Lead Total Nickel Total Silver	2. 0. 2. 0.	07 43 38 24	2.77 3.38 0.69 3.98 0.43	
Total Lead Total Nickel Total Silver Total Zinc	2. 0. 2. 0. 1.	07 43 38 24 48	2.77 3.38 0.69 3.98 0.43 2.61	
Total Lead Total Nickel Total Silver Total Zinc Total Cyanide	2. 0. 2. 0. 1.	07 43 38 24	2.77 3.38 0.69 3.98 0.43 2.61 1.20	
Total Lead Total Nickel Total Silver Total Zinc Total Cyanide TTO	2. 0. 2. 0. 1. 0.	07 43 38 24 48 65 -	2.77 3.38 0.69 3.98 0.43 2.61 1.20 2.13	
Total Lead Total Nickel Total Silver Total Zinc Total Cyanide TTO Oil and Grease	2. 0. 2. 0. 1. 0. 2. 0. 2. 2. 0. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	07 43 38 24 48 65 - 26	2.77 3.38 0.69 3.98 0.43 2.61 1.20 2.13 52	
Total Lead Total Nickel Total Silver Total Zinc Total Cyanide TTO	2. 0. 2. 0. 1. 0. 2. 0. 2. 0. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	07 43 38 24 48 65 -	2.77 3.38 0.69 3.98 0.43 2.61 1.20 2.13	