

Southwest Regional Office CLEAN WATER PROGRAM

Application Type	Renewal	NPDES PE
Facility Type	Industrial	INDIVIDUAL IN
Major / Minor	Minor	AND IW

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0217158

 APS ID
 840058

 Authorization ID
 1372484

	Applicant and Facility Information						
Applicant Name	The Autho	ority of the Borough of Charleroi	Facility Name	Charleroi Water Filtration Plant			
Applicant Address	PO Box 21	1	Facility Address	First & McKean Ave			
	Charleroi,	PA 15022-0211		Charleroi, PA 15022			
Applicant Contact	Charles Ca	ardinale	Facility Contact	Chris Sekora			
Applicant Phone	(724) 483-3585		Facility Phone	(724) 483-5411			
Client ID	64399		Site ID	257871			
SIC Code	4941,4952		Municipality	Charleroi Borough			
SIC Description	Trans. & Utilities - Sewerage Systems, Trans. & Utilities - Water Supply		County	Washington			
Date Application Re	eceived	October 4, 2021	EPA Waived?	Yes			
Date Application Accepted		October 27, 2021	If No, Reason				
Purpose of Application		Renewal of NPDES Industrial Waste	e Permit without an EL	G.			

Summary of Review

The Department received a late NPDES permit renewal application from the Authority of the Borough of Charleroi for the Charleroi Water Treatment Plant (WTP) located in Charleroi Township of Washington County on October 27, 2021. Filter backwash water and flocculator wastewater are clarified and discharged to the Monongahela River through Outfall 001 (Avg. discharge rate is 0.293 MGD.) The standard industrial classification (SIC) Code for this facility is 4911 - municipal water supply.

Raw water from the Monongahela River is collected, treated, and distributed for community potable water use. Presedimentation waste or flocculator wastewater and membrane plant reject or WTP filter backwash water is conveyed to a wet well which is then pumped to the wastewater treatment sedimentation basins. Sludge from the sedimentation basins is pumped to the public sewer system and conveyed to the sewage treatment plant. Supernatant from the basins is discharged via Outfall 001 to the Monongahela River.

Part C language in the draft permit provides controls on floating solids, chemical additives, residual solids, Total Residual Chlorine and Sedimentation Basin Cleaning.

The Authority of the Borough of Charleroi has no open violations pertaining to NPDES.

It is recommended that a draft permit be published for public comment in response to this application.

Approve	Deny	Signatures	Date
Х		Cont	
		Curtis Holes, P.E. / Environmental Engineering	October 26, 2021
Х		Michael E. Fifth, P.E. / Environmental Engineer Manager	November 9, 2021

Summary of Review

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving	y Wate	rs and Water Supply Inforn	nation	
Outfall No. 001			Design Flow (MGD)	0.293
Latitude 40° 0°	7' 59.9'	1	Longitude	-79° 53' 26.8"
Quad Name170	06		Quad Code	Monongahela
Wastewater Descrip	otion:	Treated WTP Backwash W	ater and Flocculator Wastewat	er
Receiving Waters	Mono	ongahela River (WWF)	Stream Code	37185
NHD Com ID	9940	9968	RMI	42.2
Drainage Area	5,210)	Yield (cfs/mi²)	0.1151
Q ₇₋₁₀ Flow (cfs)	550		Q ₇₋₁₀ Basis	US Army Corp of Engineers
Elevation (ft)	740		Slope (ft/ft)	
Watershed No.	19-C		Chapter 93 Class.	WWF
Existing Use	Potal	ole Water Supply	Existing Use Qualifier	None
Exceptions to Use	None		Exceptions to Criteria	None
Assessment Status		Impaired		
			ATION, FLOW REGIME MODIF	
Cause(s) of Impairn	nent	METALS, ORGANIC ENR SILTATION	ICHMENT, ORGANIC ENRICH	MENT, SILTATION,
Caase(s) of impairi	iioiit		CID MINE DRAINAGE, HIGHV	VAY/ROAD/BRIDGE
		`	UCTION RELATED), HÍGHWA	
Source(s) of Impair	mont	`	RELATED), NATURAL SOURCI REAS), RURAL (RESIDENTIAL	·
TMDL Status	mem	Final 3/1/99	,,	ela River TMDL
TWIDE Status		1 IIIai 3/1/33	Name <u>wondingane</u>	FIG INVEL TRIDE
Nearest Downstream	m Puhl	ic Water Supply Intake	PA America Water Co – Pittsh	ourab (70 MGD)
		gahela River	Flow at Intake (cfs)	550
	25.5	gariola MVGI	Distance from Outfall (mi)	16.7
1 VVO IXIVII			Distance from Outidit (IIII)	10.7

Changes Since Last Permit Issuance: None

Other Comments: None

Drainage Area of Outfall 001

Compliance History					
Summary of DMRs:	No exceedances with permit effluent limits.				
Summary of Inspections:	The last inspection conducted by the Department was on July 2, 2015 by Pamela Russell and no violations were noted.				

Other Comments: None

Compliance History

DMR Data for Outfall 001 (from September 1, 2020 to August 31, 2021)

Parameter	Limit	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20
Flow (MGD)													
Average Monthly	Report	0.523	0.557	0.458	0.252	0.200	0.209	0.194	0.201	0.233	0.207	0.227	0.354
Flow (MGD)													
Daily Maximum	Report	0.925	1.219	1.204	0.389	0.299	0.495	0.289	0.318	0.331	0.254	0.479	0.569
pH (S.U.)													
Minimum	6.0	7.45	7.26	7.30	7.22	6.96	7.16	7.25	7.12	7.30	7.38	7.50	7.75
pH (S.U.)													
Maximum	9.0	7.59	7.35	7.33	7.33	7.01	7.19	7.45	7.16	7.42	7.50	7.87	7.76
TRC (mg/L)													
Average Monthly	0.5	0.07	0.095	0.11	0.08	0.10	0.065	0.09	0.120	0.10	0.105	0.104	0.085
TRC (mg/L)													
IMAX	1.0	0.12	0.110	0.13	0.12	0.11	0.070	0.10	0.150	0.13	0.170	0.170	0.120
TSS (mg/L)	00.0	40	40.5	40	7.0	0.5	0.5	0.0	0.0	40.5	44.0	7.5	0.5
Average Monthly	30.0	18	13.5	16	7.0	9.5	9.5	9.0	8.0	13.5	11.0	7.5	9.5
TSS (mg/L)	60.0	20	10.0	04	0.0	11.0	42.0	10.0	10.0	45.0	45.0	0.0	140
IMAX Total Aluminum	60.0	20	18.0	21	8.0	11.0	13.0	10.0	10.0	15.0	15.0	8.0	14.0
(mg/L)													
Average Monthly	4.0	0.519	0.655	0.243	0.297	0.782	0.188	0.431	0.133	0.544	0.631	0.346	0.496
Total Aluminum	4.0	0.519	0.000	0.243	0.231	0.702	0.100	0.431	0.100	0.544	0.031	0.540	0.490
(mg/L)													
IMAX	8.0	0.702	0.878	0.292	0.445	0.897	0.231	0.762	0.164	0.671	0.918	0.371	0.612
Total Iron (mg/L)			0.010	******		0.00	0.20	311 32			01010		
Average Monthly	2.0	< 0.001	0.341	0.121	0.172	0.281	0.147	< 0.001	< 0.001	0.256	0.133	< 0.001	0.110
Total Iron (mg/L)													
IMAX	4.0	< 0.001	0.683	0.242	0.345	0.302	0.294	< 0.001	< 0.001	0.265	0.266	< 0.001	0.220
Total Manganese													
(mg/L)													
Average Monthly	1.0	0.0724	0.183	0.168	0.110	0.366	0.090	0.0470	0.0213	0.122	0.206	0.0365	0.142
Total Manganese													
(mg/L)													
IMAX	2.0	0.0963	0.261	0.220	0.189	0.414	0.151	0.0737	0.0219	0.166	0.371	0.0382	0.209
Total Zinc (mg/L)													
Average Monthly	0.035	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Total Zinc (mg/L)	0.050	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
IMAX	0.050	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

Development of Effluent Limitations Outfall No. 001 Design Flow (MGD) 0.293 Latitude 40° 07' 59.9" Longitude -79° 53' 26.8" Wastewater Description: Treated WTP Backwash Water and Flocculator Wastewater

Technology-Based Limitations

The Charleroi WTP facility is not subject to Federal Effluent Limitation Guidelines (ELGs) as the SIC code is not listed under 40 CFR parts 405 through 471.

Regulatory Effluent Standards and Monitoring Requirements

The pH effluent range for all Industrial waste process and non-process discharges pursuant to 25 Pa. Code § 92a.48(a)(2) and 25 Pa. Code § 95.2 is indicated in Table 1 below.

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) as indicated in Table 1 below.

Pursuant to 25 Pa. Code § 95.2(4) effluent standards for industrial wastes may not contain more than 7 mg/L of dissolved iron as indicated in Table 1 below.

Pursuant to 25 Pa. Code § 92a.48(b) the imposition of technology-based Total Residual Chlorine (TRC) limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELG's or a facility specific BPJ evaluation as indicated in Table 1 below.

Table 1. Regulatory Effluent Standards

Parameter	Monthly Avg.	Daily Max	IMAX
Flow (MGD)	Monitor	Monitor	
Iron, Dissolved			7.0 mg/L
pH (S.U.)		6.0-9.0 at all times	
TRC	0.5 mg/L		1.6 mg/L

Total Dissolved Solids (TDS)

Integral to the implementation of 25 Pa. Code § 95.10 is the principle that existing, authorized mass loadings of TDS are exempt from any treatment requirements under these provisions. Existing mass loadings of TDS up to and including the maximum daily discharge loading for any existing discharge, provided that the loading was authorized prior to August 21, 2010 are exempt. Discharge loadings of TDS authorized by the Department are typically exempt from the treatment requirements of Chapter 95.10 until the net TDS loading is increased, an existing discharge proposes a hydraulic expansion or a change in the waste stream. If there are existing mass or production-based TDS effluent limits, then these are used as the basis for the existing mass loading. The facility is not a new or expanding waste loading of TDS, therefore, the facility is exempt from 25 Pa. Code § 95.10 treatment requirements.

Best Practicable Control Technology Currently Achievable (BPT)

The Department's Technical Support Document, *Technology-Based Control Requirements for Water Treatment Plant Wastes* (DEP-ID 362-2183-003) establishes BAT for discharges of WTPs wastewater, which are illustrated in Table 2 below.

Table 2. BAT Limits for WTP Filter Backwash Wastewater

Parameter	Monthly Avg. (mg/L)	Daily Max (mg/L)		
Total Suspended solids (TSS)	30.0	60.0		
Iron (total)	2.0	4.0		
Aluminum (total)	4.0	8.0		
Manganese (total)	1.0	2.0		
Flow	Monitor			
pH (S.U.)	6.0-9.0 at all times			
TRC	0.5	1.0		

Water Quality-Based Limitations

Total Maximum Daily Load (TMDL)

Wastewater discharges from Charleroi Water Filtration Plant are located within the Monongahela River Watershed for which the Department has developed a TMDL. The TMDL was finalized on April 9, 2001 to address PCB, Organics and Chlordane within the Monongahela River Watershed. The Industrial Waste discharge for the Charleroi Water Filtration Plant consist of Treated WTP Backwash Water and Flocculator Wastewater. The facility does not discharge PCBs or Chlordane, therefore, the Ohio River TMDL does not pertain to the Charleroi Water Filtration Plant.

Toxics Management Analysis

The Department's Toxics Management Spreadsheet (TMS) was utilized to facilitate calculations necessary for completing a reasonable potential analysis and determine Water Quality-Based Effluent Limitations (WQBELs) for discharges containing toxic pollutant concentrations. TMS combines the functionality of two (2) of the Department's analysis tools, Toxics Screening Analysis Spreadsheet and PENTOXSD water quality model.

DEP's procedures for evaluating reasonable potential are as follows:

- 1. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken form the permit application.
- 2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants, as reported in the permit application or on DMRs, are modeled by the TMS to determine the parameters of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion].
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by TMS. Establish an IMAX limit at 2.5 times the average monthly limit.
 - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
 - For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% - 50% of the WQBEL.

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and contained in the DMRs; data from those sources are used as inputs into the TMS. A summary of TMS Inputs is contained in Table 3 below.

Table 3. TMS Inputs

Parameter	Value
Discharge In	outs
Facility	Charleroi WTP
Evaluation Type	Industrial
NPDES Permit No.	PA0217158
Wastewater Description	Industrial Wastewater and Stormwater
Outfall ID	001
Design Flow (MGD)	0.293
Hardness (mg/L)	119
pH (S.U.)	7
Partial Mix Factors	Unknown – Calculated by TMS
Complete Mix Times	
Q ₇₋₁₀ (min)	
Q _h (min)	
Stream Input	S
Receiving Surface Water	Monongahela River
Number of Reaches to	
Model	1
Stream Code	37185
RMI	42.2
Elevation (ft)	740/730*
Drainage Area (mi ²)	5,210
Slope (ft/ft)	
PWS Withdrawal (MGD)	70
Apply Fish Criteria	Yes
Low Flow Yield (cfs/mi ²)	
Flows	F00/F00*
Stream (cfs)	530/530*
Tributary (cfs)	N/A
Width (ft)	965/940*
Stream Hardness (mg/L)	118
Stream pH (S.U.) * Denotes discharge legation/	7.3

^{*} Denotes discharge location/downstream location values.

Based on the recommendations of the TMS, no WQBEL are recommended at Outfall 001. Analysis Report from the TMS run is included in Attachment A.

Analysis of the permit renewal application and eDMR data has removed Total Zinc from pollutants of concern contained in Outfall 001's discharge.

WQM 7.0 Model

In general, WQM 7.0 Model is run if the maximum $BOD_5/CBOD_5$ concentrations exceeds 30/25 mg/L respectively in the permit application or the DMRs. The permit application reports BOD_5 concentration of 10.7 mg/L, therefore, WQM 7.0 Model is not required to be run.

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and discharge chlorine demands for the receiving stream, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/L from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is then proposed. The results of the modeling, included in Attachment B, identify that BAT is the most stringent criteria for TRC at an average monthly limit of 0.5 mg/L. The maximum daily limit is 2 times the average monthly limit resulting in a 1.0 mg/L limit for maximum daily.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Effluent Limitations and Monitoring Requirements for Outfall 001

Effluent limits applicable at Outfall 001 are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements as summarized in Table 4. The applicable limits and monitoring requirements provided below are based on in the most stringent limits listed in Tables 1 and 2 of this Fact Sheet.

Table 4. Effluent limits and monitoring requirements for Outfall 001

	Mass (pounds)		Cor	ncentration (
Parameter	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	Basis
Flow (MGD)	Report	Report	_	_	_	25 Pa. Code § 92a.61(d)(1)
Total Residual Chlorine	_	_	0.5	1.0	_	25 Pa. Code § 92a.48(b)
Total Suspended Solids	<u> </u>	_	30.0	60.0	_	40 CFR § 125.3
Iron (total)	_	_	2.0	4.0	_	40 CFR § 125.3
Aluminum (total)		_	4.0	8.0	_	40 CFR § 125.3
Manganese (total)	-	_	1.0	2.0	_	40 CFR § 125.3
pH (S.U.)	Within the range of 6.0 to 9.0 &					25 Pa. Code § 92a.48(a)(2) & 25 Pa. Code § 95.2

Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or as previous permits monitoring requirements for Charleroi WTP are displayed in Table 5 below.

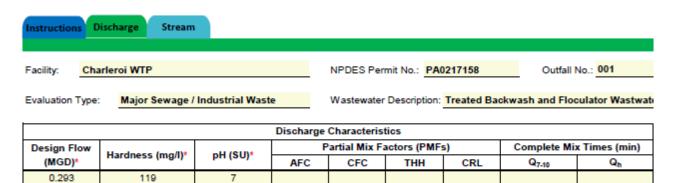
Table 5. Monitoring Requirements for Outfall 001

Parameter	Sample Type	Minimum Sample Frequency
Flow (MGD)	Meter	2/Month
TRC	Grab	2/Month
Total Suspended Solids	Grab	2/Month
Iron (total)	Grab	2/Month
Aluminum (total)	Grab	2/Month
Manganese (total)	Grab	2/Month
pH (S.U.)	Grab	2/Month

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment)
Toxics Management Spreadsheet (see Attachment A)
TRC Model Spreadsheet (see Attachment B)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other: StreamStats (see Attachment C)

Attachment A – Toxics Management Spreadsheet Model Output

Attachment B - TRC Model


Attachment C – USGS StreamStats

NPDES Permit Fact Sheet The Authority of the Borough of Charleroi	NPDES Permit No. PA0217158
Attachment A – Toxics Management Spreadsheet N	Iodel Output

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

					() If let	t blank	0.5 lf le	ft blank	0) If left blan	k	1 If lef	t blank
	Discharge Pollutant	Units	Ma	Max Discharge Conc		rib onc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		119	Ļ	Щ								
7	Chloride (PWS)	mg/L		35.3	4	\Box								
Group	Bromide	mg/L		2.6	+	\vdash								
ق	Sulfate (PWS)	mg/L		91										
	Fluoride (PWS)	mg/L		0.152		\sqcap								
	Total Aluminum	μg/L		918	ļ	Ш								
1	Total Antimony	μg/L		0.1	-	\Box								
1	Total Arsenic	μg/L		0.4	H	\vdash								
1	Total Barium	μg/L		44										
1	Total Beryllium	μg/L	<	1										
1	Total Boron	μg/L	<	92										
	Total Cadmium	µg/L	<	0.4	1	\Box								
1	Total Chromium (III)	µg/L	<	2	H									
	Hexavalent Chromium	µg/L	<	5	Ħ									
1	Total Cobalt	µg/L	<	2		\sqcap								
	Total Copper	µg/L		2		\Box								
2	Free Cyanide	µg/L			H									
Group	Total Cyanide	μg/L	<	2	H	Ħ								
15	Dissolved Iron	µg/L		39	Ħ	Ħ								
	Total Iron	µg/L		683										
1	Total Lead	μg/L		0.2										
1	Total Manganese	μg/L		414	H									
	Total Mercury	µg/L	<	0.04	H									
1	Total Nickel	μg/L		2		Ħ								
1	Total Phenols (Phenolics) (PWS)	μg/L	<	5										
1	Total Selenium	µg/L		2										
1	Total Silver	μg/L	<	1	H	Ħ								
1	Total Thallium	μg/L	<	0.4	Ħ	Ħ								
1	Total Zinc	μg/L		12	\top	\vdash								
	Total Molybdenum	μg/L	<	2										
	Acrolein	μg/L	<			Ħ								
	Acrylamide	μg/L	<			H								
	Acrylonitrile	μg/L	<			Ħ								
	Benzene	µg/L	<											
	Bromoform	μg/L	<											
1		F0												

Discharge Information 10/27/2021 Page 1

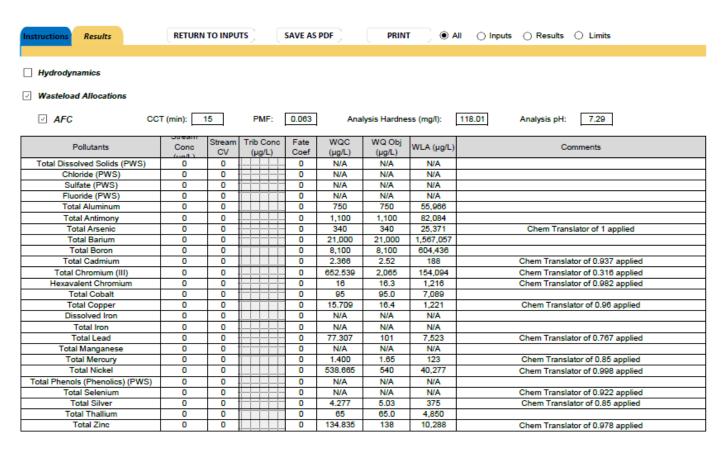
1	Carbon Tetrachloride		-										
1		μg/L	<				-					Е	\Box
1	Chlorobenzene	μg/L	_	Н	_	H	-				H	Ł	₩
1	Chlorodibromomethane	μg/L	<	Н	_	Н	-				H	Ļ	₩
	Chloroethane	μg/L	<	Н	_	H	_				H	H	-
	2-Chloroethyl Vinyl Ether	μg/L	<	H		H						H	\Rightarrow
1	Chloroform	μg/L	<									Έ	\Box
1	Dichlorobromomethane	μg/L	<										
1	1,1-Dichloroethane	μg/L	<	Ц	_	щ	_				L	Ļ	щ
က	1,2-Dichloroethane	μg/L	<	Н		4						L	\square
Group	1,1-Dichloroethylene	μg/L	<	Н								L	
1 2	1,2-Dichloropropane	μg/L	<										
١٥	1,3-Dichloropropylene	μg/L	<	П		T						İ	
1	1,4-Dioxane	μg/L	<										
1	Ethylbenzene	μg/L	<									F	\Box
1	Methyl Bromide	μg/L	<	Н		\Box	-				F	F	\Box
1	Methyl Chloride	μg/L	<	Ħ		Ħ					F	F	Ħ
1	Methylene Chloride	μg/L	<	Ħ		Ħ					F	t	Ħ
1	1.1.2.2-Tetrachloroethane	μg/L	<	П		П						T	
1	Tetrachloroethylene	μg/L	<									E	\Box
1	Toluene	μg/L	<	H							F	F	Ħ
	1,2-trans-Dichloroethylene	µg/L	<	H							F	-	H
	1,1,1-Trichloroethane	µg/L	<	H								-	+
1	1,1,2-Trichloroethane	µg/L	<	Н	_	н					Н	۲	-
1	Trichloroethylene	µg/L	<				1				Е	Ε	\equiv
1	Vinyl Chloride	µg/L	<				-					H	\blacksquare
\vdash	2-Chlorophenol	µg/L	<	H	=	H	-				H	H	Ħ
1	2,4-Dichlorophenol	µg/L	<	Н		Н	_				H	Н	H
1	2,4-Dimethylphenol		<	H	=	H	_				H	H	
1	4,6-Dinitro-o-Cresol	µg/L	<	Ħ	=	Ħ	_				H	H	\Box
4		µg/L	_				-					Ε	\blacksquare
9	2.4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol	μg/L	<	Н		H	-				L	Ļ	₩
Ιē	2-Nitropnenoi	μg/L	<	Н		Н	-				H	H	\blacksquare
၂ဖ	4-Nitrophenoi	μg/L	<	H	_	+	-				H	H	+
1	p-Chloro-m-Cresol	μg/L	<	H							H	H	
1	Pentachlorophenol	μg/L	<									Έ	\Rightarrow
1	Phenol	μg/L	<			Q.						L	\Box
\vdash	2,4,6-Trichlorophenol	μg/L	<	Ц		щ	_				L	Ļ	щ
1	Acenaphthene	μg/L	<	Н		H	_				H	Ł	H
1	Acenaphthylene	μg/L	<	Н								L	
1	Anthracene	μg/L	<	П								Ė	
1	Benzidine	μg/L	<										
1	Benzo(a)Anthracene	μg/L	<	Ц		Щ						L	
1	Benzo(a)Pyrene	μg/L	<	Н		\Box						L	\square
1	3,4-Benzofluoranthene	μg/L	<	Н		\exists						F	
1	Benzo(ghi)Perylene	μg/L	<	Н		H					Е	F	
1	Benzo(k)Fluoranthene	μg/L	<	Ħ		Ħ					Г	ī	\sqcap
1	Bis(2-Chloroethoxy)Methane	μg/L	<										
1	Bis(2-Chloroethyl)Ether	μg/L	<									F	\Box
1	Bis(2-Chloroisopropyl)Ether	μg/L	<	H		\exists					F	F	Ħ
1	Bis(2-Ethylhexyl)Phthalate	μg/L	<	Ħ		Ħ					F	F	Ħ
1	4-Bromophenyl Phenyl Ether	μg/L	<	Ħ		Ħ					Г	t	
1	Butyl Benzyl Phthalate	μg/L	<										
1	2-Chloronaphthalene	μg/L	<									E	
1	4-Chlorophenyl Phenyl Ether	μg/L	<	Ħ		=					F	F	Ħ
	Chrysene	µg/L	<	H								-	H
	Dibenzo(a,h)Anthrancene	µg/L	<	H									
	1.2-Dichlorobenzene	µg/L	<										
	1,3-Dichlorobenzene	µg/L	<									E	
	1,4-Dichlorobenzene	µg/L	<										H
5	3,3-Dichlorobenzidine		<	H								-	H
no	Diethyl Phthalate	µg/L	<	H								-	
Group	-	µg/L	<	H		+						-	
	Dimethyl Phthalate	µg/L	<	H							F	F	
	Di-n-Butyl Phthalate	µg/L	-										
I	2,4-Dinitrotoluene	μg/L	<										

	2,6-Dinitrotoluene		<									
	_	µg/L	<	\exists	4	=					\Box	#
	Di-n-Octyl Phthalate 1,2-Diphenylhydrazine	μg/L	<	H	4	+					H	₩
		μg/L	<	H	4	-	_				+	₩
	Fluoranthene	μg/L	_	Ħ	4	+	_				H	\Rightarrow
	Fluorene	μg/L	<	Ħ		=					\Rightarrow	\Rightarrow
	Hexachlorobenzene	μg/L	<	\exists		\Rightarrow						\Box
	Hexachlorobutadiene	μg/L	<	\exists	_	Ц					Į.	Щ
	Hexachlorocyclopentadiene	μg/L	<	Ц	4	Щ					Ц.	_
	Hexachloroethane	μg/L	<	4	4	4	-				\vdash	+
	Indeno(1,2,3-cd)Pyrene	μg/L	٧	\dashv	\dashv	\dashv					\vdash	+
	Isophorone	μg/L	<	\dashv	7							
	Naphthalene	μg/L	<	Ħ	T	Ħ					Ħ	T
	Nitrobenzene	μg/L	<									\Box
	n-Nitrosodimethylamine	μg/L	<	⇉								
	n-Nitrosodi-n-Propylamine	μg/L	<	⇉	4	#					\Rightarrow	⇉
	n-Nitrosodiphenylamine	μg/L	<	Ħ	=	=					-	##
	Phenanthrene	µg/L	<	H	4	+					H	+
	Pyrene		<	H	-	-					-	+
	1,2,4-Trichlorobenzene	μg/L	_	Ħ	7	-	_				H	\Rightarrow
		μg/L	<									
	Aldrin	μg/L	<									
	alpha-BHC	μg/L	<	П							Į.	Ţ
	beta-BHC	μg/L	<									Щ
	gamma-BHC	μg/L	٧	\dashv	4	4					-	\dashv
	delta BHC	μg/L	<									
	Chlordane	μg/L	<	\exists	7	7					H	77
	4,4-DDT	μg/L	<	Ħ	╗	Ħ						\top
	4,4-DDE	μg/L	<	П		\neg					\vdash	\top
	4.4-DDD	μg/L	<	Ī	I							
	Dieldrin	μg/L	<	⇉	_	#						\Box
	alpha-Endosulfan	μg/L	<	H	4	=					H	##
	beta-Endosulfan	µg/L	<	+	4	+					₩	+
9	Endosulfan Sulfate		<	Н	+	+					\vdash	+
9	Endrin	μg/L	<	Ħ	7	-	_				H	\Rightarrow
_		μg/L	_	Ħ	7	\Rightarrow	_				Ħ	\Rightarrow
O	Endrin Aldehyde	μg/L	<	\exists								\blacksquare
	Heptachlor	μg/L	<	7	_	Ļ					Ļ	
	Heptachlor Epoxide	μg/L	<	Ц	4	Щ					Ц.	щ
	PCB-1016	μg/L	<	H	4	4					₩	\dashv
	PCB-1221	μg/L	<	\dashv	_						\vdash	\rightarrow
	PCB-1232	μg/L	<	\exists								
	PCB-1242	μg/L	٧	Î	Tì							
	PCB-1248	μg/L	<	Д								
	PCB-1254	μg/L	<	П	4	П						\Box
	PCB-1260	μg/L	<	4	4						\vdash	\dashv
	PCBs, Total	μg/L	<	H	7	7					H	$\exists \exists$
	Toxaphene	μg/L	<	Ħ	╗	Ħ					\vdash	77
	2,3,7,8-TCDD	ng/L	<	Н		\neg					\vdash	\top
	Gross Alpha	pCi/L		Ħ	I	Ħ						\Box
	Total Beta	pCi/L	<	∄	_							
	Radium 226/228	pCi/L	<	H	=	-					H	##
ē			-	H	4	+					₩	+
Group	Total Strontium Total Uranium	µg/L	<	+	-	4						
		μg/L	<	H		+						
	Osmotic Pressure	mOs/kg		\Rightarrow	7	=					\rightarrow	
				Ħ								
							4					
				Ħ								

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Charleroi WTP, NPDES Permit No. PA0217158, Outfall 001


reconning our laber in	Vater Name:	Monogahel	a River				No. Rea	aches to Mo	odel:	1	~	tewide Criter			
Location	Stream Co	de' RMI	Elevat	DA (m)	i²)*	Slope (ft/ft)		Withdrawal MGD)	Apply F		_	SANCO Crite			
Point of Discharge	037185	42.2	2 740	5,210	0				Yes	5					
End of Reach 1	037185	25.5	730	5,330	0			70	Yes	;					
Q 7-10 Location	RMI	LFY (cfs/mi ²)*	Flow Stream	v (cfs)	W/I		Depth (ft)	Velocit y (fps)	i ravei Time	Tributa Hardness	ary pH	Strea Hardness*	m pH*	Analys Hardness	sis pH
Point of Discharge	42.2	0.1	530			965	10	1 (-1-7	(days)			118	7.3		
End of Reach 1	25.5	0.1	530			940	10								
Qh	-														
Location	RMI	LFY		v (cfs)	W/I			Velocit	Time	Tributa		Strea		Analys	
20000011		(cfs/mi ²)	Stream	Tributary	Rati	io (ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	p⊦
Point of Discharge	42.2														
	25.5														

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Charleroi WTP, NPDES Permit No. PA0217158, Outfall 001

Model Results 10/27/2021 Page 5

NPDES Permit Fact Sheet The Authority of the Borough of Charleroi

☑ CFC CC	T (min): 7	20	PMF:	0.436	Ana	alysis Hardne	ess (mg/l):	118 Analysis pH: 7.30
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	112,435	
Total Arsenic	0	0		0	150	150	76,660	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	2,095,372	
Total Boron	0	0		0	1,600	1,600	817,706	
Total Cadmium	0	0		0	0.276	0.31	156	Chem Translator of 0.902 applied
Total Chromium (III)	0	0		0	84.875	98.7	50,438	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	5,313	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	9,710	
Total Copper	0	0		0	10.316	10.7	5,492	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	1,755,418	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	3.012	3.93	2,007	Chem Translator of 0.767 applied
Total Manganese	0	0		0	N/A	N/A	N/A	• • • • • • • • • • • • • • • • • • • •
Total Mercury	0	0		0	0.770	0.91	463	Chem Translator of 0.85 applied
Total Nickel	0	0		0	59.824	60.0	30.666	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	2,550	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	6,644	
Total Zinc	0	0		0	135.927	138	70,454	Chem Translator of 0.988 applied
☑ ТНН СС		20 1	THH PMF:	0.436	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A PWS PMF: 1
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
Politiants	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WEX (pg/E)	
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	*********	WQC applied at RMI 25.5 with a design stream flow of 530 cfs
Chloride (PWS)	0	0		0	250,000	250,000	**********	WQC applied at RMI 25.5 with a design stream flow of 530 cfs
Sulfate (PWS)	0	0		0	250,000	250,000	**********	WQC applied at RMI 25.5 with a design stream flow of 530 cfs
Fluoride (PWS)	0	0		0	2,000	2,000	2,340,557	WQC applied at RMI 25.5 with a design stream flow of 530 cfs
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	2,862	
Total Arsenic	0	0		0	10	10.0	5,111	
Total Barium	0	0		0	2,400	2,400	1,226,559	
Total Boron	0	0		0	3,100	3,100	1,584,306	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	

Model Results 10/27/2021 Page 6

NPDES Permit Fact Sheet The Authority of the Borough of Charleroi

Hexavalent Chromium	0	0	- 0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	300	300	153,320	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	1,000	1,000	511,066	
Total Mercury	0	0	- 0	0.050	0.05	25.6	
Total Nickel	0	0	0	610	610	311,751	
Total Phenols (Phenolics) (PWS)	0	0	0	5	5.0	5,851	WQC applied at RMI 25.5 with a design stream flow of 530 cfs
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	- 0	N/A	N/A	N/A	
Total Thallium	0	0	0	0.24	0.24	123	
Total Zinc	0	0	0	N/A	N/A	N/A	

✓ CRL	CCT (min): 720	PMF:	0.651	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	

Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0 .		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0 .		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Model Results 10/27/2021 Page 7

NPDES Permit Fact Sheet The Authority of the Borough of Charleroi

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	ition Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	585,139	mg/L	Discharge Conc ≤ 10% WQBEL
Chloride (PWS)	292,570	mg/L	Discharge Conc ≤ 10% WQBEL
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	292,570	mg/L	Discharge Conc ≤ 10% WQBEL
Fluoride (PWS)	2,341	mg/L	Discharge Conc ≤ 10% WQBEL
Total Aluminum	35,872	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	2,862	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	5,111	μg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	1,004,420	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	387,419	μg/L	Discharge Conc < TQL
Total Cadmium	121	μg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	50,438	μg/L	Discharge Conc < TQL
Hexavalent Chromium	779	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	4,544	μg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	783	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	153,320	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	1,755,418	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	2,007	μg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	511,066	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	25.6	μg/L	Discharge Conc < TQL
Total Nickel	25,816	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)	5,851	μg/L	Discharge Conc < TQL
Total Selenium	2,550	μg/L	Discharge Conc ≤ 10% WQBEL
Total Silver	241	μg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	123	μg/L	Discharge Conc < TQL
Total Zinc	6,594	μg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS

Model Results 10/27/2021 Page 8

Attachment B – TRC Model

TRC EVALUATION Charleroi WTP Outfall 001

	= Q stream (= CV Daily	
	= Q discharg			= CV Hourly	
	= no. sample			= AFC_Partial I	
	4	emand of Stream		= CFC_Partial I	
	-	emand of Discharge		_	Compliance Time (min)
0.5	= BAT/BPJ V		720	_	Compliance Time (min)
	= % Factor o	of Safety (FOS)		=Decay Coeffic	
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	262.984	1.3.2.iii	WLA cfc = 363.657
PENTOXSD TRO	5 5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRO	3 5.1b	LTA_afc=	97.994	5.1d	LTA_cfc = 211.413
Source		Effluer	nt Limit Calcu	lations	
PENTOXSD TRO			AML MULT =	1.720	
PENTOXSD TRO	3 5.1g	AVG MON L	.IMIT (mg/l) =	0.500	BAT/BPJ
		INST MAX L	.IMIT (mg/l) =	1.170	
WLA afc	-	FC_tc)) + [(AFC_Yc*Q: C_Yc*Qs*Xs/Qd)]*(1-F	_	·k*AFC_tc))	
LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(cvh^2+1)^0.5))	
LTA_afc	wla_afc*LTA	MULT_afc			
WLA_cfc	-	FC_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F	-	k*CFC_tc))	
LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1	1))-2.326*LN(cvd^2/no_samp	les+1)^0.5)
LTA_cfc	wla_cfc*LTA	MULT_cfc			
AML MULT AVG MON LIMIT INST MAX LIMIT	MIN(BAT_BP	.N((cvd^2/no_samples 'J,MIN(LTA_afc,LTA_c n_limit/AML_MULT)/L	fc)*AML_MUL	T)	amples+1))

NPDES Permit No. PA0217158

Attachment C – USGS StreamStats

StreamStats Report - Charleroi WTP Outfall 001

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	5210	square miles
ELEV	Mean Basin Elevation	1842	feet

	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	5210	square miles	2.26	1400
ELEV	Mean Basin Elevation	1842	feet	1050	2580
ow-Flow Statistics Disclain	ners (99.9 Percent (5210 square miles) Low Fl	ow Region 4]			
One or more of the peran	neters is outside the suggested range. Estima	ates were extrapolate	d with unknown errors		
ow-Flow Statistics Flow Re	port [99.9 Percent (5210 square miles) Low F	ow Region 4			
Statistic			Value		Unit
7 Day 2 Year Low Flow			689	- 0	ft^3/s
30 Day 2 Year Low Flov	v		914	-	ft^3/s
7 Day 10 Year Low Flow	v		401		ft^3/s
30 Day 10 Year Low Flo	rw.		470	- 1	ft^3/s
90 Day 10 Year Low Flo	w.		698		ft^3/s
ou bay to rear Low Fig					
ow-Flow Statistics Ottation					

USGS Data Disclaimer. Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

https://streamstats.usgs.gov/ss/

10/26/2021

StreamStats Page 3 of 3

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2

StreamStats Report - Charleroi WTP Downstream Location

Region ID:

Workspace ID: PA20211027160027563000

Clicked Point (Latitude, Longitude): 40.24899, -79.91837

Time: 2021-10-27 12:00:53 -0400

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	5330	square miles
ELEV	Mean Basin Elevation	1825	feet

Low+low Statistics P	arameters [99.9 Percent (53	330 square m	les) Low Flow	Region 4J	
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	5330	square miles	2.26	1400
ELEV	Mean Basin Elevation	1825	feet	1050	2580

Low-Flow Statistics Disclaimers [99.9 Percent (5330 square miles) Low Flow Region 4]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [99.9 Percent (5330 square miles) Low Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	701	ft^3/s
30 Day 2 Year Low Flow	929	ft^3/s
7 Day 10 Year Low Flow	410	ft^3/s
30 Day 10 Year Low Flow	479	ft^3/s
90 Day 10 Year Low Flow	710	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2

StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2