

Southwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.	PA0217468
APS ID	844276
Authorization ID	1310298

Applicant Name	Beav	er Falls Municipal Authority	Facility Name	Eastvale Water Treatment Plant
Applicant Address	1425	Eighth Avenue	Facility Address	101 2nd Avenue E
	Beave	er Falls, PA 15010-0400	<u> </u>	Beaver Falls, PA 15010
Applicant Contact	Jame	s Riggio	Facility Contact	Cecil Griffith
Applicant Phone	(724)	846-2400	Facility Phone	(724) 846-2400
Client ID	3943	5	Site ID	630214
SIC Code	4941		Municipality	Eastvale Borough
SIC Description	Trans. & Utilities - Water Supply		County	Beaver
Date Application Rece	Date Application Received March 30, 2020		EPA Waived?	Yes
Date Application Accepted April 6, 2020		If No, Reason		

Summary of Review

The Department received an NPDES permit renewal application from Beaver Falls Municipal Authority on March 30, 2020 for the coverage of its Eastvale Water Treatment Plant. The facility is a water treatment plant, owned and operated by the Beaver Falls Municipal Authority (BFMA). The plant serves approximately 50,000 customers in several municipalities in Beaver County. The standard industrial classification (SIC) code for this type of facility is 4941, water supply.

Wastewater generated at the site is filter backwash and sludge thickener supernatant. The filter backwash and sludge thickener supernatant is collected in an equalization basin to allow settling prior to discharging via Outfall 001 to the Beaver River, designated in 25 Pa Code Chapter 93 as a Warm Water Fishery. Sludge is generated during the flocculation and primary settling portion of the potable water treatment process, as well as, the wastewater equalization basin. The sludge is treated in a sludge thickener to further reduce the water contained in the sludge prior to the solids being pressed and disposed of offsite.

The site was last inspected on July 30, 2015; one violation was noted but has since been resolved. The Permittee has no open violations.

Draft Permit issuance is recommended.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is

Approve	Deny	Signatures	Date
X		Adam Olesnanik	
		Adam Olesnanik / Environmental Engineering Specialist	4/8/2020
Х		Michael E. Fifth	
		Michael E. Fifth, P.E. / Environmental Engineer Manager	4/28/2020

Summary of Review
significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the <i>Pennsylvania Bulletin</i> at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

scharge, Receivi	ng Water	s and Water Supply Info	rmation			
Outfall No. 001		Design Flow (MGD)	1.8			
Latitude 40°	45' 43"		Longitude	-80º 18' 42"		
Quad Name E	eaver Fa	lls	Quad Code	1203		
Wastewater Desc	ription:	Treated industrial waster	water associated with potable wat	er treatment plant.		
Receiving Waters	Beave	er River (WWF)	Stream Code	33953		
NHD Com ID	1239	18321	RMI	5.19		
Drainage Area	3110		Yield (cfs/mi²)	0.21		
Q ₇₋₁₀ Flow (cfs)	640		Q ₇₋₁₀ Basis	US Army Corp of Engineers		
Elevation (ft)	722		Slope (ft/ft)	0.0001		
Watershed No.	20-B		Chapter 93 Class.	WWF		
Existing Use			Existing Use Qualifier	Existing Use Qualifier		
Exceptions to Use	•		Exceptions to Criteria			
Assessment Statu	ıs	Impaired				
Cause(s) of Impai	rment	Metals, Polychlorinated	Biphenyls (PCBS)			
Source(s) of Impa	irment	Source Unknown				
TMDL Status		Final	Name Beaver Rive	r		
Nearest Downstre	am Publi	c Water Supply Intake	Beaver Falls Municipal Author	rity		
PWS Waters	Beaver	River	Flow at Intake (cfs)	640		
PWS RMI	3.06		Distance from Outfall (mi)	2.15		

Development of Effluent Limitations						
Outfall No.	001	Design Flow (MGD)	1.8			
Latitude	40° 45' 43"	Longitude	-80° 18' 42"			
Wastewater Description:		Treated industrial wastewater associated with potable water treat	ment plant.			

Technology-Based Limitations

The Eastvale Water Treatment Plant is not subject to Federal Effluent Limitation Guidelines (ELGs) as the SIC code is not listed under 40 CFR parts 405 through 471.

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) which is displayed in Table 1 below.

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code §§ 95.2(1) which is displayed in Table 1 below.

Pennsylvania regulations at 25 Pa. Code § 92a.48(b) require the imposition of technology-based TRC limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELGs or a facility-specific BPJ evaluation which is displayed in Table 1 below.

Table 1. Regulatory Effluent Standards

Parameter	Monthly Avg	IMAX	
Flow	Monitor Monitor		
рH	6-9 at a		
TRC	0.5 mg/l		1.6 mg/l

Best Practicable Control Technology Currently Achievable (BPT)

BPT for wastewater from treatment of WTP sludges and filter backwash is found in DEPs Technology-Based Control Requirements for Water Treatment Plant Wastes Document which falls under Best Professional Judgement under 40 CFR § 125.3 and the limits imposed are displayed in Table 2 below.

Table 2. BPT Limits for WTP sludge and filter backwash wastewater

Parameter	Monthly Avg (mg/l)	Daily Max (mg/l)		
Suspended solids	30.0	60.0		
Iron (total)	2.0	4.0		
Aluminum (total)	4.0	8.0		
Manganese (total)	1.0	2.0		
Flow	Monitor			
pH	6-9 at all times			
Total Residual Chlorine	0.5	1.0		

Water Quality-Based Limitations

Toxics Screening Analysis – Procedures for Evaluating Reasonable Potential and Developing WQBELs

DEP's procedures for evaluating reasonable potential are as follows:

- 1. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken from the permit application.
- 2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion are pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water

NPDES Permit Fact Sheet Beaver Falls Municipal Authority

quality criterion]. List all toxic pollutants of concern in a Toxics Screening Analysis section of the fact sheet (see Attachment B).

- 3. For any outfall with an applicable design flow, perform PENTOXSD modeling for all pollutants of concern. Use the maximum reported value from the application form or from DMRs as the input concentration for the PENTOXSD model run.
- 4. Compare the actual WQBEL from PENTOXSD with the maximum concentration reported on DMRs or the permit application. Use WQN data or another source to establish the existing or background concentration for naturally occurring pollutants, but generally assume zero background concentration for non-naturally occurring pollutants.
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by PENTOXSD. Establish an IMAX limit at 2.5 times the average monthly limit.
 - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
 - For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% - 50% of the WQBEL.

The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are collected on a spreadsheet titled "Toxics Screening Analysis." (Attachment B).

PENTOXSD Water Quality Modeling Program

PENTOXSD Version 2.0 for Windows is a single discharge, mass-balance water quality modeling program that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number and discharge flow rate are entered into PENTOXSD to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Pollutants are then selected for analysis based on those present or likely to be present in a discharge at levels that may cause, have the reasonable potential to cause, or contribute to excursions above state water quality standards (i.e., a reasonable potential analysis). Discharge concentrations for the selected pollutants are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). PENTOXSD then evaluates each pollutant by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, PENTOXSD may recommend average monthly and maximum daily WQBELs.

Reasonable Potential Analysis and WQBEL Development for Outfall 001

Table 3: PENTOXSD Inputs

Parameter	Value
River Mile Index	5.19
Discharge Flow (MGD)	0.64
Basin/Stream Character	ristics
Parameter	Value
Area in Square Miles	3,110
Q ₇₋₁₀ (cfs)	640
Low-flow yield (cfs/mi²)	0.21
Elevation (ft)	722
Slope	0.001

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and on DMRs; data from those sources are used for toxics screening as described above. The PENTOXSD model is run with the discharge and receiving stream characteristics shown in Table 3. The pollutants selected for analysis include those identified as candidates for modeling by the Toxics Screening Analysis spreadsheet (in accordance with Step 2 of the Toxics Screening Analysis procedure discussed above). Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis.

The WQBELs calculated using PENTOXSD are compared to the maximum reported effluent concentrations as described in the Toxics Screening Analysis section above to evaluate the need to impose WQBELs or monitoring requirements in the permit. Output from the PENTOXSD model run is included in Attachment C. No WQBELs are recommended based on the Water Quality Analysis.

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and chlorine demands for the receiving stream and the discharge, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/l from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is imposed in the permit. The results of the modeling, included in Attachment D, indicate that no WQBELs are required for TRC.

Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I). The limits below in Table 4 are from the current permit. The parameters listed are from the Departments Technical Support Document (TSD) "Development of Technology-Based Control Requirements for Water Treatment Plant Wastes in Pennsylvania".

Table 4: Current Permit Effluent Limits

	Mass (lb/day)	Concentration (mg/l)			
Parameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX
Total Suspended Solids	XXX	XXX	XXX	30	XXX	60
Total Residual Chlorine	XXX	XXX	XXX	0.5	XXX	1.0
Total Aluminum	XXX	XXX	XXX	4.0	XXX	8.0
Total Iron	XXX	XXX	XXX	2.0	XXX	4.0
Total Manganese	XXX	XXX	XXX	1.0	XXX	2.0
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0

Proposed Effluent Limitations for Outfall 001

The proposed effluent limitations and monitoring requirements for Outfall 001 are shown below in Table 5. Note that some values were incorrectly labeled as IMAX values in the previous permit when they should have been label as Daily Max, this has been changed to reflect existing permitting practices. The monitoring frequency will remain the same as the current permit, twice per month.

Table 5: Proposed Effluent Limitation for Outfall 001

Parameters	Mass (lb/day)		Concentration				Monitoring Requirements	
Parameters	Average Monthly	Daily Maximum	Instant. Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	2/Month	Measured
Total Suspended Solids (mg/L)	XXX	XXX	XXX	30.0	60.0	XXX	2/Month	Grab
Total Residual Chlorine (mg/L)	XXX	XXX	XXX	0.5	1.0	XXX	2/Month	Grab
Total Aluminum (mg/L)	XXX	XXX	XXX	4.0	8.0	XXX	2/Month	Grab
Total Iron (mg/L)	XXX	XXX	XXX	2.0	4.0	XXX	2/Month	Grab
Total Manganese (mg/L)	XXX	XXX	XXX	1.0	2.0	XXX	2/Month	Grab
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	2/Month	Grab

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	PENTOXSD for Windows Model (see Attachment C)
	TRC Model Spreadsheet (see Attachment D)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment B)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
一百	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

Attachments

Attachment A: StreamStats Drainage Area Attachment B: Toxics Screening Analysis Attachment C: PENTOXSD Model run Attachment D: TRC Evaluation Model Attachment A: StreamStats Drainage Area

Outfall 001 StreamStats Report

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	3110	square miles
ELEV	Mean Basin Elevation	1127.7	feet

arameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	3110	square miles	2.26	1400
ELEV	Mean Basin Elevation	1127.7	feet	1050	2580
.ow-Flow Statistics Disclain	REFS(100 Percent (S1110 equare rolles) Low Flow Region 4				
One or more of the param	neters is outside the suggested range. Estim	ates were extrapolated	with unknown errors		
.ow-Flow Statistics Flow Re	CONTROC Percent (0110 aguare rolles) Live Pice Region 4)				
Statistic			Value	U	nit
7 Day 2 Year Low Flow			254	ft	^3/s
30 Day 2 Year Low Flow	v		336	ft	^3/s
7 Day 10 Year Low Flow	v		161	ft	^3/s
30 Day 10 Year Low Flo	ow .		187	ft	^3/s
90 Day 10 Year Low Flo	ow .		255	ft	^3/s
ow-Flow Statistics Otation					

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

Attachment B: Toxic Screening Analysis

Stream Flow, Q₇₋₁₀ (cfs):

NPDES Permit No. PA0217468 Eastvale WTP

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.7

CLEAR FORM

Facility: Eastvale WTP
Analysis Hardness (mg/L): 100

640

NPDES Permit No.: Discharge Flow (MGD): PA0217468 0.64 Outfall: 001

Analysis pH (SU): 7

	Parameter		aximum Concentration in pplication or DMRs (µg/L)	Most Stringent Criterion (µg/L)	Candidate for PENTOXSD Modeling?	Most Stringent WQBEL (µg/L)	Screening Recommendation
Π	Total Dissolved Solids		248000	500000	No		
1	Chloride		66200	250000	No		
Group	Bromide	<	100	N/A	No		
5	Sulfate		69000	250000	No		
	Fluoride	<	200	2000	No (Value < QL)		
	Total Aluminum		367	750	No		
	Total Antimony		0.1	5.6	No		
	Total Arsenic		0.5	10	No		
	Total Barium		95	2400	No		
	Total Beryllium		0.3	N/A	No		
	Total Boron		100	1600	No		
	Total Cadmium		0.08	0.271	No		
	Total Chromium		1	N/A	No		
	Hexavalent Chromium		5	10.4	No		
	Total Cobalt		0.2	19	No		
~	Total Copper		11	9.3	Yes	2362.359	No Limits/Monitoring
Group	Total Cyanide		1	N/A	No		
16	Total Iron		40	1500	No		
	Dissolved Iron		20	300	No		
	Total Lead		0.2	3.2	No		
	Total Manganese		3090	1000	Yes	647412.4	No Limits/Monitoring
	Total Mercury	<	0.05	0.05	No (Value < QL)		
	Total Molybdenum		0.9	N/A	No		
	Total Nickel		2	52.2	No		
	Total Phenols (Phenolics)		22	5	Yes	3237.062	No Limits/Monitoring
	Total Selenium	<	5	5.0	No (Value < QL)		
	Total Silver		0.05	3.8	No		
	Total Thallium		4	0.24	Yes	155.79	No Limits/Monitoring
	Total Zinc		34	119.8 12	No		

Attachment C: PENTOXSD model run

PENTOXSD

Modeling Input Data

Stream Code	RMI	Elevati (ft)		rainage Area (sq mi)	51	оре	PWS (m	gd)			pply FC	_			
3395	3 5.19	72	2.00	3110.0	0.0	00100		0.00			✓				
								Stream D	ata						
	LFY	Trib Flow	Stream Flow			Rch /idth	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	pH	Strear Hard	<u>n</u> pH	Analys Hard	pH
	(cfsm)	(cfs)	(cfs)			(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.1	0	64	10	0	350	15	0	0	100	7	0	0	0	0
Qh		0		0	0	0	0	0	0	100	7	0	0	0	0
								ischarge [Data						
	Name	Pern Num	ber	xisting Disc Flow	Permi Dis Flo	SC .	Design Disc Flow	Reserve Factor		CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
				(mgd)	(mg	d)	(mgd)						(mg/L)		
East	vale WTP	PA021	7468	0	0.6	4	0	0	0	0	0	0	100	7	
							P	arameter E	Data						
	Parameter N	lame		Dis Con	_	Trib Conc	Dis Dail C\	y Hourl	y Con		n Fate Coe		Crit Mod	Max Disc Conc	
				(µg/l	_)	(µg/L)			(µg/	L)				(µg/L)	
COPPER				1E+	10	0	0.		5 0	0	0	0	1	0	
MANGAI				1E+	10	0	0.	5 0.5	5 0	0	0	0	1	0	
PHENOL	ICS (PWS)			1E+	10	0	0.	.5 0.5	5 0	0	0	0	1	0	
THALLIU	IM			1E+	10	0	0.	5 0.5	5 0	0	0	0	1	0	

Strea		Elevati (ft)	A	inage rea 1 mi)	Slope	PWS (m	With gd)			pply FC				
339	953 3.06	70	3.00 3	121.00	0.00100)	11.90			✓				
							Stream D	ata						
	LFY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	pH	<u>Strear</u> Hard	n pH	Analysi Hard	<u>is</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.1	0	640	0	350	15	0	0	100	7	0	0	0	0
Qh		0	0	0	0	0	0	0	100	7	0	0	0	0
)ischarge l	Data						
	Name	Pern Num	ber Di	sting Pe isc low	ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(m	gd) (mgd)	(mgd)						(mg/L)		
				0	0	0	0	0	0	0	0	100	7	
						Р	arameter [)ata						
	Parameter	Name		Disc Conc	Trib Cond	C	y Hour	y Con	c CV	Fate Coe		Crit Mod	Conc	
				(µg/L)	(µg/L			(µg/l					(µg/L)	
COPP				0	0	0.			0	0	0	1	0	
	ANESE			0	0		.5 0.5		0	0	0	1	0	
	OLICS (PWS)			0	0		.5 0.5		0	0	0	1	0	
THALL	IUM			0	0	0.	.5 0.5	5 0	0	0	0	1	0	

PENTOXSD Analysis Results

Hydrodynamics

<u>s</u>	WP Basir	<u>1</u>	Stream	n Code:			Stream	n Name:	1		
	20B		33	953			BEAVE	R RIVE	2		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)
					Q7	-10 Hyd	drodyna	mics			
5.190	640	0	640	0.99007	0.001	15	350	23.333	0.1221	1.0661	91.113
3.060	640	18.409	621.59	NA	0	0	0	0	0	0	NA
					Q	h Hydr	odynan	nics			
5.190	2106.6	0	2106.6	0.99007	0.001	25.325	350	13.820	0.2378	0.5474	41.623
3.060	2106.6	18.409	2088.2	NA	0	0	0	0	0	0	NA

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name	Permit Nur	nber						
5.19	Eastvale WTP	PA02174	68						
				P	IFC				
Q	7-10: CCT (min)	15	PMF	0.405	Analysis	pH 7	Analysis	Hardness	100
	Parameter	:	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	COPPER		0	0	0	0	13.439	13.999	3685.66
		Di	ssolved	WQC. Ch	emical tran	nslator of	0.96 applied.		
	MANGANESE		0	0	0	0	NA	NA	NA
	PHENOLICS (PWS)		0	0	0	0	NA	NA	NA
	THALLIUM		0	0	0	0	65	65	17113.13
				С	FC				
Q7-10:	CCT (min)	91.113	PMF	1	Analysis	рН 7	Analysis	Hardness	100
	Parameter		tream Conc.	Stream CV	Trib Conc.	Fate Coef	WQC	WQ Obi	WLA
	radificaci		(µg/L)	•	(µg/L)	000	(µg/L)	(µg/L)	(µg/L)
	COPPER		0	0	0	0	8.956	9.329	6039.65
		Di	ssolved	WQC. Ch	emical tra	nslator of	0.96 applied.		
	MANGANESE		0	0	0	0	NA	NA	NA
	PHENOLICS (PWS)		0	0	0	0	NA	NA	NA
	THALLIUM		0	0	0	0	13	13	8416.361
				т	НН				
Q7-10:	CCT (min)	91.113	PMF	NA	Analysis	pH N/	A Analysis	Hardness	NA
		S	tream	Stream	Trib	Fate	WQC	WQ	WLA
	Parameter		Conc (µg/L)	CV	Conc (µg/L)	Coef	(µg/L)	Obj (µg/L)	(µg/L)
	COPPER		0	0	0	0	NA	NA	NA
	MANGANESE		0	0	0	0	1000	1000	647412.4
	PHENOLICS (PWS)		0	0	0	0	5	5	3237.062
		V		•		•	n stream flow o		
	THALLIUM		0	0	0	0	0.24	0.24	155.379
					:RI				

CRL

Qh: CCT (min) 41.623 PMF 1

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name	Permit Number							
5.19	Eastvale WTP	PA0217468							
	Parameter	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	
	COPPER	0	0	0	0	NA	NA	NA	
	MANGANESE	0	0	0	0	NA	NA	NA	
	PHENOLICS (PWS) 0	0	0	0	NA	NA	NA	
	THALLIUM	0	0	0	0	NA	NA	NA	

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name	Permit Number
5.19	Eastvale WTP	PA0217468

PENTOXSD Analysis Results

Recommended Effluent Limitations

SWP Basin	Stream Code:		Stream	Name:			
20B	33953		BEAVER	RIVER			
RMI	Name	Permit Number	Disc Flow (mgd)				
5.19	Eastvale WTP	PA0217468	0.6400	_			
	_	ffluent		Max.	Most	Stringent	
	Parameter	Limit	mina	Daily	WOREI	WOREI	

	Effluent Limit		Max.	Most Stringent		
Parameter	(µg/L)	Governing Criterion	Daily Limit (μg/L)	WQBEL (µg/L)	WQBEL Criterion	
COPPER	2362.359	AFC	3685.66	2362.359	AFC	
MANGANESE	647412.4	THH	1010000	647412.4	THH	
PHENOLICS (PWS)	3237.062	THH	5050.337	3237.062	THH	
THALLIUM	155.379	THH	242.416	155.379	THH	

Attachment D: TRC Evaluation Model

TRC EVALUATION

640	= Q stream (cfs)	0.5	= CV Daily				
0.64	= Q discharg	ge (MGD)	0.5	= CV Hourly				
4	= no. sample	es	0.405	= AFC_Partial N	Mix Factor			
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial N	Mix Factor			
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)			
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)			
	= %Factor o	of Safety (FOS)		=Decay Coeffic	ient (K)			
Source	Reference	AFC Calculations		Reference	CFC Calculations			
TRC	1.3.2.iii	WLA afc =	83.532	1.3.2.iii	WLA cfc = 201.045			
PENTOXSD TRO	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRO	TOXSD TRG 5.1b LTA_afc= 31.126		31.126	5.1d	$LTA_cfc = 116.878$			
Source		Effluer	nt Limit Calcu	lations				
PENTOXSD TRO			AML MULT =					
PENTOXSD TRO	PENTOXSD TRG 5.1g AVG MON LIMIT $(mg/l) = 0.500$ BAT/BPJ							
	INST MAX LIMIT $(mg/I) = 1.170$							
WLA afc LTAMULT afc LTA_afc	+ Xd + (AFC	FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(0 MULT afc	OS/100)					
WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc								
AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT) INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)								