

Southwest Regional Office CLEAN WATER PROGRAM

Application Type
Application Type

Major
NonFacility Type
Municipal

Minor

Major / Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0217514 A-1

APS ID 1072906

1412972

Authorization ID

Applicant Name	Honeywell Electronic Materials Inc.	Facility Name	Honeywell Electric Materials
Applicant Address	195 Hartzell School Road	Facility Address	195 Hartzell School Road
<u>-</u>	Fombell, PA 16123-1207	<u>_</u>	Fombell, PA 16123-1207
Applicant Contact	Amanda Brown	Facility Contact	Same as applicant
Applicant Phone	(724) 452-2976	Facility Phone	Same as applicant
Client ID	238716	Site ID	241780
Ch 94 Load Status		Municipality	Marion Township
Connection Status		County	Beaver
Date Application Receiv	ed September 12, 2022	EPA Waived?	Yes
Date Application Accepted October 11, 2022		If No, Reason	

Summary of Review

The applicant has applied to amend NPDES Permit No. PA0217514, which was issued on November 15, 2021 and will expire on November 30, 2026. The proposed amendment is a reduction in flow from 0.015 MGD (15,000 gpd) to 0.00205 MGD (2,050 gpd). A re-rate analysis is included with the amendment application for WQM Permit No. 0497401, which will be issued simultaneously with the NPDES Permit Amendment.

Sewage from this plant is treated with: equalization tanks, extended aeration, clarifiers, chlorine tablet disinfection, dechlorination (proposed), and phosphorus reduction.

Stormwater Outfalls 011, 012, and 013 will again be permitted for the discharge of uncontaminated stormwater runoff from the areas in and around the treatment plant. Part C. III, Requirements Applicable to Stormwater Outfalls, has been added to the permit. See the table below for a description of each stormwater outfall.

Outfall No.	Latitude	Longitude	Description
011	40° 48' 08"	-80° 11' 52.5"	Parking Lot Area
012	40° 48' 00"	-80° 11' 57"	Manufacturing Building Roof Drains
013	40° 48' 0.5"	-80° 11' 53"	Retention Basin Emergency Overflow

The applicant is currently enrolled in and will continue to use eDMR.

The Act 14-PL 834 Municipal Notification was provided by the September 8, 2022 letters and no comments were received.

Approve	Deny	Signatures	Date
х		grace tolahosti	
		Grace Polakoski, E.I.T. / Environmental Engineering Specialist	January 17, 2023
х		MAHBUBA TASMIN	
		Mahbuba lasmin, Ph.D., P.E. / Environmental Engineer Manager	May 8, 2023

Summary of Review

Below is a summary of changes made to this permit:

- Design flow has been changed to 0.00205 MGD
- Ammonia-nitrogen monitoring has been imposed

Sludge use and disposal description and location(s): Beaver Falls Wastewater Plant (100 6th Ave Ext Beaver Falls, PA)

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

ischarge, Receiving Wat	ers and Water Supply Infor	mation		
Outfall No. 001		Design Flow (MGD)	0.00205	
Latitude 40° 48' 8"		Longitude	-80° 11' 52"	
Quad Name Canonsi	ourg	Quad Code	1204	
Wastewater Description:	Sewage Effluent			
Receiving Waters Cor	nnoquenessing Creek (WWF)	Stream Code	34025	
	223585	RMI	15.3	
	sq. mi.	Yield (cfs/mi²)	0.0318	
Q ₇₋₁₀ Flow (cfs) 10.6	3	Q ₇₋₁₀ Basis	USGS StreamStats (Attachment A)	
Elevation (ft) 870		Slope (ft/ft)		
Watershed No. 20-	C	Chapter 93 Class.	WWF	
Existing Use		Existing Use Qualifier		
Exceptions to Use		Exceptions to Criteria		
Assessment Status	Impaired			
Cause(s) of Impairment	ORGANIC ENRICHMEN	Т		
Source(s) of Impairment	AGRICULTURE			
TMDL Status		Name		
Background/Ambient Da	ta	Data Source		
pH (SU)	6.0/8.9	NPDES Amendment Applicat	ion	
Temperature (°F)				
Hardness (mg/L)				
Other:				
Nearest Downstream Pu	blic Water Supply Intake	Beaver Falls Municipal Author	rity	
	er River	Flow at Intake (cfs)		
PWS RMI		Distance from Outfall (mi)	22.11	

Changes Since Last Permit Issuance: Design flow has been adjusted to 2,050 gpd per the NPDES Amendment Application.

Other Comments: N/A

Treatment Facility Summary						
Treatment Facility Name: Honeywell Sewer Treatment Plant						
WQM Permit No.	Issuance Date		Purpose			
0497104 A-1	Under DEP Review	Modifications to the existing STP consisting of: installing a manually- operated influent screening system, re-sizing the influent pumps, convert the existing wet well to a flow equalization system, modifying the existing aeration tanks to better match the reduced flow, installation a dechlorination tank, installing a post-aeration sampling tank				
0497401 T-1	05/02/2003	Transfer STP from Alta Group to Honeywell Electronic Materials				
0497401	05/06/1997	Construction of original STP				
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)		
Sewage	Tertiary	Extended aeration + phosphorus reduction	Chlorine tablets	0.00205		
Hydraulic Capacity	Organic Capacity			Biosolids		
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal		
0.00205	3.76			Other WWTP		

Changes Since Last Permit Issuance: Annual Average flow and Hydraulic Capacity are now 0.00205 MGD. Organic Capacity is now 3.76 lbs/day.

Other Comments: N/A

Compliance History

Facility: Honeywell STP

NPDES Permit No.: PA0217514

Compliance Review Period: 11/1/2017-11/29/2022

Inspection Summary:

INSPECTED			
DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC
08/09/2021	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted
11/01/2018	Administrative/File Review	PA Dept of Environmental Protection	Violation(s) Noted

Violation Summary:

	VIOLATION	VIOLATION		RESOLVED
VIOL ID	DATE	TYPE	VIOLATION TYPE DESC	DATE
925773	08/09/2021	92A.44	NPDES - Violation of effluent limits in Part A of permit	08/16/2021
832261	11/01/2018	302.202	Operator Certification - Failure to submit annual system fee	11/26/2018

Open Violations by Client ID:

No open violations for Client ID 238716

Enforcement Summary:

ENF TYPE	ENF TYPE DESC	EXECUTED DATE	VIOLATIONS	ENF FINALSTATUS	ENF CLOSED DATE
NOV	Notice of Violation	08/16/2021	92A.44	Comply/Closed	8/16/2021
NOV	Notice of Violation	11/01/2018	302.202	Comply/Closed	11/26/2018

DMR Violation Summary:

Mon_Pd_End	PARAMETER	SAMPLE	PERMIT	<u>UNIT</u>	STAT_BASE_CODE	FACILITY_COMMENTS
	Total Residual					
9/30/20	Chlorine (TRC)	2.2	1.6	mg/L	Instantaneous Maximu	ım
						Cause of Violation: Lack of
						sufficient chlorine residual.
				No. /400		Compositive actions Adirect the
E/04/00	Food Coliforn	044	200	No./100	Coometrie Mann	Corrective action: Adjust the
5/31/20	Fecal Coliform	241	200	ml	Geometric Mean	addition of chlorine.
						Cause of Violation: Lack of sufficient chlorine residual.
						Sumoient emonne residual.
				No./100	Instantaneous	Corrective action: Adjust the
5/31/20	Fecal Coliform	2420	1000	ml	Maximum	addition of chlorine.
						Licensed WWTP operator
						increased chlorine input due
				No./100		to insufficient residual
6/30/18	Fecal Coliform	388	200	ml	Geometric Mean	chlorine.

Compliance Status: Facility is currently in compliance with no open violations or pending enforcements.

Completed by: Amanda Schmidt

Completed date: 11/30/22

Development of Effluent Limitations					
Outfall No.	001		Design Flow (MGD)	0.00205	
Latitude	40° 48' 8.00'	1	Longitude	-80° 11' 52.00"	
Wastewater D	escription:	Sewage Effluent			

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
Flow (MGD)	Report	Average Monthly	-	92a.27, 92a.61
	Report	Average Weekly	-	92a.27, 92a.61
	Max Daily			
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBODs	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended Solids	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
(TSS)	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
Total Residual Chlorine				
(TRC)	0.5	Average Monthly	-	92a.48(b)(2)
	25	Average Monthly	-	92a.61
Ammonia-Nitrogen (NH ₃ -N)	50	IMAX	-	92a.61
		Instantaneous		
Dissolved Oxygen (DO)	4.0	Minimum	-	93.6, 92a.61
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Total N	Report	Average Monthly	-	92a.61
Total P	Report	Average Monthly	-	92a.61
Fecal Coliform (No./100mL)				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (No./100mL)				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (No./100mL)				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (No./100mL)				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
E. Coli (No./100mL)	Report	IMAX	-	92a.61

Water Quality-Based Limitations

WQM7.0

WQM7.0 is a water quality modeling program for Windows that determines Waste Load Allocations ("WLAs") and effluent limitations for carbonaceous biochemical oxygen demand ("CBOD₅"), ammonia-nitrogen, and dissolved oxygen for single and multiple point-source discharge scenarios. To accomplish this, the model simulates two basic processes. In the ammonia-nitrogen module, the model simulates the mixing and degradation of ammonia-nitrogen in the stream and compares calculated instream ammonia-nitrogen concentrations to ammonia-nitrogen water quality criteria. In the dissolved oxygen module, the model simulates the mixing and consumption of dissolved oxygen in the stream due to the degradation of CBOD₅ and ammonia-nitrogen and compares calculated instream dissolved oxygen concentrations to dissolved oxygen water quality criteria. WQM 7.0 then determines the highest pollutant loadings that the stream can assimilate while still meeting water quality criteria under design conditions.

DEP's modeling for sewage discharges is a two-step process. First, a discharge is modeled for the summer period (May through October) using warm temperatures for the discharge and the receiving stream. Modeling for the summer period is done first because allowable ammonia-nitrogen concentrations in a discharge are lower at higher temperatures (i.e., warm temperatures are more likely to result in critical loading conditions). Reduced dissolved oxygen levels also appear to increase ammonia toxicity and the maximum concentration of dissolved oxygen in water is lower at higher temperatures.

NPDES Permit Fact Sheet Honeywell Electric Materials

The second step is to evaluate WQBELs for the winter period, but only if modeling shows that WQBELs are needed for the summer period.

The model inputs used to model the discharge from Honeywell Electric Materials are shown below:

Stream Parameters					
Read	:h 1	Rea	ch 2		
Stream Code	34025	Stream Code	34025		
RMI	15.3	RMI	15.2		
Elevation (ft)	870	Elevation (ft)	869		
Drainage Area (mi ²)	333	Drainage Area (mi ²)	334		
Q ₇₋₁₀ Flow (cfs)	10.6	Q ₇₋₁₀ Flow (cfs)	10.6		

Facility/Design Parameters										
Discharge Flow (MGD)	0.00205									
LFY (cfs/mi ²) [for use in summer modeling]	0.0318									
2*LFY (cfs/mi²) [for use in winter modeling]	0.0637									

Sum	nmer Mo	deling Inputs				
Tributary		Discharge	;			
Temperature (°C)	25	Temperature (°C)	20			
pH (S.U.)	7	pH (S.U.)	7			
DO (mg/L)	8.24	DO (mg/L)	4			
CBOD ₅ (mg/L)	2	CBOD ₅ (mg/L)	25			
NH ₃ -N (mg/L)	0	NH ₃ -N (mg/L)	25			
DO Goal (mg/L)	5	DO Goal (mg/L)	5			
<u>Wir</u>	nter Mod	eling Inputs				
Tributary		Discharge				
Temperature (°C)	5	Temperature (°C)	15			
pH (S.U.)	7	pH (S.U.)	7			
DO (mg/L)	12.51	DO (mg/L)	4			
CBOD₅ (mg/L)	2	CBOD ₅ (mg/L)	25			
NH ₃ -N (mg/L)	0	NH ₃ -N (mg/L)	25			
DO Goal (mg/L)	5	DO Goal (mg/L)	5			

The modeling results shown that technology-based effluent limitations are appropriate for CBOD₅. Per DEP SOP "Establishing Effluent Limitations for Individual Sewage Permits" (Rev. March 34, 2021, BCW-PMT-033), when WQM7.0 indicates that a summer limit of 25 mg/L for ammonia nitrogen is acceptable, a year-round monitoring requirement for ammonia-nitrogen will be established, at a minimum. Despite modeling results recommending a DO limit of 4.0 mg/L, 25 PA Code 93.7, waters designated as WWF are subject to a DO limit of 5.0 mg/L. Since 5.0 mg/L was established in the current permit and is the more stringent of the two values, the DO limit will remain at 5.0 mg/L during this permit cycle. The modeling results can be found in Attachment B.

Parameter	Limit (mg/l)	SBC	Model
Dissolved Oxygen	4	Minimum	WQM7.0
Ammonia Nitrogen	25	Average Monthly	WQM7.0

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and chlorine demands for the receiving stream and the discharge, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of

NPDES Permit Fact Sheet Honeywell Electric Materials

samples taken per month and the TRC variability coefficients (normally kept at default values unless site-specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/L from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is imposed in the permit. TRC_CALC recommends the BAT limits of 0.5 mg/L average monthly and 1.6 mg/L IMAX (Attachment C).

Total Phosphorus

Phosphorus limits (2.0 mg/L average monthly, 4.0 mg/L IMAX) have previously been imposed for Honeywell Electric Materials. Phosphorus limitations for Connoquenessing Creek were addressed in an internal memo from 1985 (Attachment D). According to this memo, all permits in the watershed would be subject to a phosphorus limit of 2.0 mg/L. As such, the phosphorus limit will remain in this permit.

Best Professional Judgment (BPJ) Limitations

According to the standard in 25 PA Code Chapter 93 and best professional judgment, a dissolved oxygen minimum limitation of 4.0 mg/L should be implemented. However, where water quality demands more protective dissolved oxygen limits, the more stringent of the two values will be imposed. See the above section "WQM7.0" for a discussion of dissolved oxygen limitations.

Additional Considerations

Sewage discharges will include monitoring, at a minimum, for E. coli, in new and reissued permits, with a monitoring frequency of 1/year for design flows 0.002-0.05 MGD.

Annual monitoring for Total Nitrogen will remain in the permit.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3 "Self-Monitoring Requirements for Sewage Dischargers" and Table 6-4 "Self-Monitoring Requirements for Industrial Dischargers", from the Department's Technical Guidance for the Development and Specification of Effluent Limitations.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

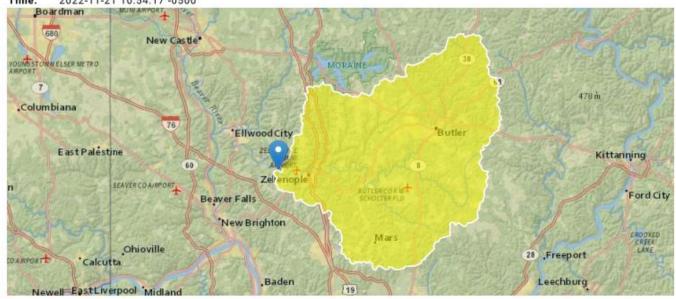
Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat		Minimum ⁽²⁾	Required		
raiametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Pentrations (mg/L) Jacob Maximum Instant. Measurement Frequency XXX XXX XXX 2/month 9.0 Daily Max XXX 1/day XXX XXX 1/day Gra XXX 1.6 1/day Gra XXX 50.0 2/month Gra XXX 60.0 2/month Gra XXX 1000 2/month Gra XXX Report Report Daily Max XXX 1/year Gra XXX Report Ty Minimum (2) Measurement Frequency Ty Measurement Frequency Yean XXX 2/month Gra Sam XXX 1/day Gra XXX 50.0 2/month Gra XXX 60.0 6/month Gra XXX 7/year Gra Report Daily Max XXX 1/year Gra Tt XXX Report 1/year Gra Tt XXX Report 2/month Gra Tt Tt XXX Report 2/month Gra Tt Tt XXX Report 2/month Ty Ty Ty Ty Ty Ty Ty Ty Ty T	Sample Type			
Flow (MGD)	0.00205	XXX	XXX	XXX		XXX	2/month	Measured	
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX		XXX	1/day	Grab	
Dissolved Oxygen	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab	
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab	
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	25.0	XXX	50.0	2/month	Grab	
Total Suspended Solids	XXX	XXX	XXX	30.0	XXX	60.0	2/month	Grab	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab	
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab	
Total Nitrogen	XXX	XXX	XXX	XXX		XXX	1/year	Grab	
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	Report	2/month	Grab	
Total Phosphorus	XXX	XXX	XXX	2.0	XXX	4.0	2/month	Grab	

Compliance Sampling Location: Outfall 001

Other Comments: N/A

ATTACHMENT A: USGS STREAMSTATS


StreamStats Report

Region ID: PA

Workspace ID: PA20221121155355613000

Clicked Point (Latitude, Longitude): 40.80236, -80.19756

Time: 2022-11-21 10:54:17 -0500

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	333	square mi l es
ELEV	Mean Basin Elevation	1192	feet

Low-Flow Statistics

Low-Flow Statistics Parameters [100.0 Percent (333 square miles) Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	333	square mi l es	2.26	1400
ELEV	Mean Basin Elevation	1192	feet	1050	2580

Low-Flow Statistics Flow Report [100.0 Percent (333 square miles) Low Flow Region 4]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	20.9	ft^3/s	43	43
30 Day 2 Year Low Flow	30.7	ft^3/s	38	38
7 Day 10 Year Low Flow	10.6	ft^3/s	66	66
30 Day 10 Year Low Flow	14.6	ft^3/s	54	54
90 Day 10 Year Low Flow	22.5	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.11.1

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

ATTACHMENT B: WQM7.0 MODELING RESULTS

Input Data WQM 7.0

	SWP Basin	Strea		Stre	eam Name		RMI	Ek	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	20C	340	025 CONN	IOQUENE	SSING CR	EEK	15.3	00	870.00	333.00	0.0000	0	0.00	V
					St	ream Data	1							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	Те	Stream emp	n pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	0	C)		
Q7-10 Q1-10 Q30-10	0.032	10.60 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	00 2	5.00 7.	00	0.00	0.00	
	Discharge Data											1		
			Name	Per	mit Number	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd	Di:	sc Res	Dis erve Ter ctor	np	Disc pH		
		Hone	ywell	PAG	217514	0.0000		00 0.	0021	0.000	20.00	7.00		
					Pa	arameter D								
				Paramete	r Name	Dis Co		Trib Conc	Stream Conc	Fate Coef				
	rataliete Name			(mg	g/L) (r	mg/L)	(mg/L)	(1/days)						
		CBOD5			2	5.00	2.00	0.00	1.50					
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N			2	5.00	0.00	0.00	0.70				

					Inp	ut Data	WQM	17.0						
	SWF Basin			Stre	am Name		RMI	Elevation (ft)	A	inage rea q mi)	Slope (ft/ft)	PW: Withdr (mg	awal	Apply FC
	20C	340	25 CONN	OQUENE	SSING CR	EEK	15.20	0 86	9.00	334.00	0.00000	0	0.00	\checkmark
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribi</u> Temp	utary pH	Ter	Stream mp	рН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(0)	C)		
27-10 21-10 230-10	0.032	10.60 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	25.00	7.0	0	0.00	0.00	
					Di	scharge [Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Tem (°C)	Р	Disc pH		
						0.0000	0.000	0.0000	0.000	0 2	5.00	7.00		

Disc	charge Data						
Name Permit Number	Disc Flow	rmitted Disc Flow mgd)	Design Disc Flow (mgd)	Reser Fact	rve Te	emp C)	Disc pH
	0.0000	0.0000	0.0000	0.	000	25.00	7.00
Par	ameter Data						
BtN	Disc Conc	Trit Cor		eam onc	Fate Coef		
Parameter Name	(mg/L)	(mg	/L) (m	g/L) ((1/days)		
CBOD5	25.0	0 2	2.00	0.00	1.50		
Dissolved Oxygen	3.0	0 6	3.24	0.00	0.00		
NH3-N	25.0	0 (0.00	0.00	0.70		

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	5		

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code									
	20C		20C 34025			CONNOQUENESSING CREEK							
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-10 Flow												•	
15.300	10.60	0.00	10.60	.0032	0.00189	.854	61.27	71.74	0.20	0.030	25.00	7.00	
Q1-1	0 Flow												
15.300	6.78	0.00	6.78	.0032	0.00189	NA	NA	NA	0.16	0.039	25.00	7.00	
Q30-	10 Flow												
15.300	14.42	0.00	14.42	.0032	0.00189	NA	NA	NA	0.24	0.025	25.00	7.00	

WQM 7.0 D.O.Simulation

SWP Basin 20C	Stream Code 34025		CONNO	Stream Nam	_	
RMI	Total Discharge) Ana	ysis Temperat	ure (°C)	Analysis pH
15.300	0.00)2		24.999		7.000
Reach Width (ft)	Reach De			Reach WDRa	tio	Reach Velocity (fps)
61.269	0.85	i4		71.743		0.203
Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (r	ng/L)	Reach Kn (1/days)
2.01	0.00	_		0.01		1.028
Reach DO (mg/L)	Reach Kr			Kr Equation	!	Reach DO Goal (mg/L)
8.242	2.94	19		Tsivoglou		5
Reach Travel Time (days	3)	Subreach	Results			
0.030	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.003	2.01	0.01	7.54		
	0.006	2.01	0.01	7.54		
	0.009	2.01	0.01	7.54		
	0.012	2.01	0.01	7.54		
	0.015	2.01	0.01	7.54		
	0.018	2.01	0.01	7.54		
	0.021	2.01	0.01	7.54		
	0.024	2.01	0.01	7.54		
	0.027	2.01	0.01	7.54		
	0.030		0.01	7.54		

WQM 7.0 Wasteload Allocations

	SWP Basin 20C	Stream C 34025			CONNO		m Name ESSING C	REEK		
NH3-N	Acute Alloca	tions								
RMI	Discharge N	ame Cr	seline iterion mg/L)	Baseline WLA (mg/L)	Multiple Criterio (mg/L	n	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	n
15.30	0 Honeywell		11.08	50	11	.08	50	0	0	_
NH3-N (Chronic Allo Discharge Na	Base ne Crite	eline B erion	laseline WLA (mg/L)	Multiple Criterion (mg/L)	١.	ultiple VLA ng/L)	Critical Reach	Percent Reduction	
15.30	0 Honeywell		1.37	25	1	.37	25	0	0	-
Dissolve	d Oxygen A	llocatio		OD5	NH	3-N	Dissolv	ved Oxygen	Critical	Percent
RMI	Discharge	Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multipl (mg/L)				Reduction
15.3	0 Honeywell		25	25	25	2	5 4	4	0	0

WQM 7.0 Effluent Limits

	SWP Basin Street	am Code		Stream Name	2		
	20C 3	4025		ONNOQUENESSING	CREEK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
15.300	Honeywell	PA0217514	0.000	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

ATTACHMENT C: TRC_CALC RESULTS

TRC EVALUA	ATION				
Input appropria	te values in /	A3: A9 and D3:D9			
	= Qstream (0.5	=CV Daily	
0.00205	= Qdischar	ge (MIGD)	0.5	=CV Hourly	
	= no. sample			=AFC Partial	Mix Factor
		emand of Stream		=CFC Partial	
0	= Chlorine D	emand of Discharge		_	Compliance Time (min)
	= BAT/BPJ V	_		_	Compliance Time (min)
		of Safety (FOS)		=Decay Coeffic	
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	1066.253	1.3.2.iii	WLA cfc = 1039.505
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	397.311	5.1d	LTA_cfc = 604.320
Source		Efflue	nt Limit Calcu	lations	
PENTOXSD TRG	5.1f		AML MULT =	1.231	
PENTOXSD TRG	5.1g		LIMIT (mg/l) =		BAT/BPJ
		INST MAX	LIMIT (mg/l) =	1.635	
WLA afc	(.019/e(-k*A	FC_tc)) + [(AFC_Yc*Qs*.019	WQd*e(-k*AFC	_tc))	
	+Xd +(AF	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	10)		
LTAMULTafc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(cvh^2+	+1)^0.5)		
LTA_afc	wla_afc*LTA	MULT_afc			
WLA_cfc		FC_tc) + [(CFC_Yc*Qs*.011 C_Yc*Qs*Xs/Qd)]*(1-FOS/10		_tc))	
LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.32	6*LN(cvd^2/n	o_samples+1)^(0.5)
LTA_cfc	wla_cfc*LTA	MULT_cfc			
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.	5)-0.5*LN(cvd	l^2/no_samples	+1))
AVG MON LIMIT		PJ,MIN(LTA_afc,LTA_cfc)*All	_		
INST MAX LIMIT	1.5*((av_mo	n_limi#A ML_M ULTYLT AM U	LT_afc)		

ATTACHMENT D: 1985 PHOSPHORUS MEMO

- 1

€

Phosphorus Loading to Connoquenessing Creek SUBJECT: Butler County

Edward R. Brezina, Chief
To: Division of Water Quality
Bureau of Water Quality Management

FROM: Peren A Urager
Regional Water Quality Manager
Burbau of Water Quality Management

COMMONWEALTH OF PENNSYLVANIA 1012 Water Street Meadville, PA 16335 NETWORK: 673-6950 January 9, 1985:

STREAM FILE 9,20.1

See Parnyraph 7 re: 20mg/c effluent - limit for all dischargers

Pursuant to our telephone conversation (including J.T. Ulanoski, K.A. Bartal, and R. B. Patel) on November 28, 1984, the following comments were prepared concerning phosphorus loading to the Connoquenessing Creek Watershed, Butler County:

- Tables 1 and 2 (attached) summarize phosphorus loads from point sources in the watershd (excluding Slippery Rock Creek).
- The Table 1 data were compiled using actual reported "P" concentrations and flows from 1983 - 84 (April-October) monthly discharge monitoring reports (DMRs).
- 3. The Table 2 data are considered "best guesstimates". Many of these treatment facilities do not as yet have NPDES permits, consequently, discharge monitoring information was inadequate or not available. Inspection reports and samples taken by our field staff (since 1980) did provide limited data for making the phosphorus loading calculations.
- 4. Based on our calculations, the six publicly owned treatment works (Table 1) account for approximately 91% (149 lbs/day) of the total point source phosphorus load (164 lbs) to Connoquenessing Creek. Of these six, the Butler Area Sanitary Authority is the largest contributor with an average phosphorus load of 132 lbs/day.
- 5. Five of the six municipal plants have tertiary treatment. Three of these are able to meet the .5 mg/l "P" limit established under the implementation plan. Saxonburg Borough comes close with .83 mg/l "P". The Butler Area Sewer Authority and Borough of Mars treatment plants have monthly average "P" concentrations of 2.14 mg/l and 2.72 mg/l, respectively.

15. K. J. J. J. W.

-2

- 6. The 26 non-municipal dischargers (Table 2) account for 9% of the total point source phosphorus load (15 lbs/day). Only two of these facilities have average "P" concentrations less than .5 mg/l. Eighteen facilities exceed the maximum technology based "P" limit of 2.0 mg/l (monthly average).
- 7. In a telephone conversation with Jim Ulanoski on December 7, 1984, it was agreed that the maximum technology limit of 2.0 mg/l phosphorus should be incorporated into all NPDES permits for this watershed. All existing tertiary treatment facilities, however, would be required to remain operational so that there would be no net increase in phosphorus from current levels. Those facilities which cannot meet the 2.0 mg/l limit will be required to do
- 8. Very little information was available for estimating phosphorus loading from non-point sources. However, land use information supplied by the Butler County Conservation District (Table 3) suggests that agricultural activities are a major contributing factor and will need to be addressed in the future. By estimating yearly soil loss from agricultural areas in the watershed and by estimating the average phosphorus content of those soils, the daily average of phosphorus discharged to Connoquenessing Creek can be guesstimated at 380 lbs/day. However inaccurate this figure may be, we believe it does represent a substantial impact on the watershed at least as significant as the point discharges. It should also be noted that all non-point sources (e.g. malfunctioning septic tanks, urban runoff, silvicultural activities, etc.) were not included in the estimate and actual "P" loading from non-point sources may be greater than 380 lbs/day.

RLH/11k

cc: Mr. Yeager

Mr. Hasse

Mr. Zimmerman

Ms. Pesek

Mr. Ulanoski - Thru: Mr. Clista

Mr. Patel - Thru: Mr. Bartal

Central Files Regional Files

TABLE) Phosphorus loading from publicly owned treatment works located in the Connoquenessing Creek Watershed.

Discharger	Avg. Reported Flow or Permitted Flow (MGD)	Avg. Phos. Conc. (mg/1)	Avg. Phos. Loading (1bs/day)	Phos. Load- ing @ 2 mg/l (lbs/day)
1. Butler Area Sewer Authority Butler Township	7.42	2.14	132.4	123
2. Municipal Sewer & Water Auth. of Cranberry Township Cranberry Township	1.36	0.47	5.3	5.3*
3. Western Butler County Authority Zelienople Borough	0.97	0.44	3.6	3.6*
4. Saxonburg Area Authority Saxonburg Borough	0.26	0.83	1.8	1.8*
5. Borough of Mars Adams Township	0.24	2.72	5.4	4.0
6. Evansburg Borough Mun. Auth. Evans City	0.24	0.39	0.8	0.8*
TOTALS	10.49		149.3	

^{*}No net increase as existing facilities will remain in operation (See Memo - Item 7)

TABLE 2: Phosphorus loading from privately owned treatment works located in the Connoquenessing Creek Wat.

Dis	charger	Avg. Reported Flow or Permitted Flow (MGD)	Avg. Phos. Conc. (mg/1)	Avg. Phos. Loading (lbs/day)	Phos. Load ing @ 2 mg/l (1bs/day)
1.	James Austin Company Adams Township	.0039	2.82	0.94	.067
2.	Mars Area School District Adams Township	.0650	4.80	2.60	1.08
3.	Roessing Bronze Co., Inc. Adams Township	.0024	2.45	.049	.040
4.	Armco Steel Corporation -Butler Works, Butler Township	Outfall 001274 Outfall 005- 1.511 Outfall 006567	001= .012 005= .037 006= .015	001= .027 005= .466 (.564) 006= .071 TOTAL	.564 (TOTAL)*
5.	Buttercup Woodland Campground Connoquenessing Twp.	.040	14.21	4.74	.667
6.	Woodland Meadows MNP Connoquenessing Township	.020	3.60	.600	.334
7.	Rolling Valley Estates Connoquenessing Township	.025	1.51	.315	.315*
8.	Seven Fields Community Serv. Assoc. Cranberry Township	.038	No data	;	
9.	KOA Campgrounds Cranberry Twonship	.0035	5.27	.154	.058
10.	Oak Spring Mobile Home Park	.020	3.37	.562	.334

NPDES Permit Fact Sheet Honeywell Electric Materials

Disc	char" r	Avg. Reported Flow or Permitted How (MGD)	Avg. Phos. Conc. (mg/1)	Avg. Phos. Loading (lbs/day)	ing (1bs,
11.	Mine Safety Appliances Co. Evans City	.0489	.12	.049	•049 *
12.	Church of the Nazarene Franklin Township	.0295	1.63	.401	.401*
13.	Franklin Mobile Home Park Franklin Township	.010	11.00	.917	.167
14.	Pine Valley Estates Lancaster Township	.0103	7.87	.676	.172
15.	Villa Vista Estates Middlesex Township	.025	2,03	.423	.417
16.	Sandy Hill Estates Middlesex Township	.0220	3.55	.651	.367
17.	Holy Sepulcher Parish Middlesex Township	.0026	.68	.051	•015*
18.	Lakeview Racquet Club Middlesex Township	.006	3.88	.194	.100
19.	Port-O-Call Recreational Club Penn Township	.027	2.62	•590	.450
20.	High Meadows Sewer Service, Inc. Penn Township	.0045	•71	.027	.027*

NPDES Permit Fact Sheet Honeywell Electric Materials

Disc	haı r	Avg. Reported Flow or Permitted Ow (MGD)	Avg. Phos. Conc. (mg/1)	Avg. Phos. Loading (lbs/day)	r, ing (1bs/c
21.	Williams Mobile Home Park Penn Township	.0065	6.85	.371	.108
22.	Green Acres MIP Penn Township	.004	2.6	.087	.067
23.	South Butler Co. School District Penn Twp. Elementary School Penn Township	.0007	3.67	.021	.012
24.	The United Cause, Inc. Penn Township	.0094	1.38	.108	.108*
25.	St. Fidelis Seminary Summit Township	.006	6.22	.311	.100
26.	St. John's Hospital Conval. Unit Valencia Borough	.008	7.18	.479	.133
TOTA	ıs	.4382 w/o Armco 2.7902 w/Armco		14.998	

*No net increase as existing facilities will remain in operation (See Memo - Item 7).

	NESSING	LAND USE CREEK WATERSHED COUNTY	_
	٠		
Cropland	-	30%	
Pasture	-	5%	
Forest	-	30%	
Urban	-	30%	
Other	-	5%	
		**	
Source: But (1967 App	ler Cou alachia	unty Conservation District un Water Resources Survey)	