

Southwest Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Industrial
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.	PA0217751
APS ID	1101734
Authorization ID	1463302

Applicant and Facility Information						
Applicant Name	Sewic	ckley Borough Water Authority	Facility Name	Sewickley Borough Water System		
Applicant Address	900 C	hio River Boulevard	Facility Address	900 Ohio River Boulevard		
	Sewic	kley, PA 15143-2024	_	Sewickley, PA 15143-2024		
Applicant Contact	Mark	Brooks	Facility Contact	Mark Brooks		
Applicant Phone	(412)	741-9180	Facility Phone	(412) 741-9180		
Client ID	36040)	Site ID	261132		
SIC Code	4941		Municipality	Sewickley Borough		
SIC Description	Trans	. & Utilities - Water Supply	County	Allegheny		
Date Application Rec	eived	November 29, 2023	EPA Waived?	Yes		
Date Application Accepted November 30, 2023		If No, Reason				

Summary of Review

The Department received an NPDES permit renewal application from Sewickley Borough Water Authority on November 29, 2023 for coverage of the Sewickley Borough Water System Water Treatment Plant. The site is a public water supply facility with an SIC code of 4941.

The Borough of Sewickley Water Authority owns and operates a water filtration plant located in Glen-Osborne borough which serves the Borough of Sewickley and surrounding communities. The water supply is obtained from the two ground water wells used alternatively, as well as a ground water crib below the Ohio Riverbed. Raw water is treated with 60% of the flow through two ion exchange filters (1 &2) which operate simultaneously, and 40% of the flow through two greensand filters (3&4) which operate alternately. The Permittee plans to replace the existing greensand filters with Zeolite ion exchange media sometime during the next five years, for the purpose of water softening. Disinfection, pH adjustment, corrosion control and fluoridation are provided, and finish water is supplied to the public water supply system.

Process wastewater is generated form the filter backwash process from ion exchange filters and greensand filters. Ion exchange filter operated simultaneously. Every 10 hours of operation one filter backwashes and regenerates in an alternating setup. Greensand filters operate alternately. When the active filter is online, the inactive filter is being backwashed. The filters are backwashed every 30 hours utilizing an air scrub. The wastewater generated from the backwash processes flows into the facility's wastewater treatment system consisting of two (2) sedimentation basins. Solids generated by the backwashing processes are settled and separated in the basins. The settling basins discharge treated wastewater supernatant to the Ohio River, designated in 25 PA Code Chapter 93 as a Warm Water Fishery, at Outfall 001. Solids separated in the treatment clarifiers are pumped to the Borough of Sewickley Wastewater Treatment Plant for treatment, processing and disposal.

Approve	Deny	Signatures	Date
Х		ah On	
		Adam Olesnanik, P.E. / Environmental Engineer	January 4, 2024
Х		Mideral E. Fatel	
		Michael E. Fifth, P.E. / Environmental Engineer Manager	January 12, 2024

Summary of Review

Two internal monitoring points were added to the NPDES permit, two permit cycles ago for the points where the backwash from the filters go to the settling basins. These internal monitoring points were included in the previous permits because of high Total Dissolved Solids concentrations in the discharge and to monitor the contributions from each backwashing process to Outfall 001. IMP 101 is the backwash from the ion exchange filters and IMP 201 is from the greensand filters. After reviewing the discharge data and the influent date from the two IMPs, TDS is still being reported at elevated concentrations; therefore, monitoring for TDS and its major constituents will remain in the permit, as well as monitoring at the two IMPs.

The site was last inspected on November 20, 2019, no violations were noted. The Permittee has no open violations.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Outfall No. 0	01		Design Flow (MGD)	0.171
Latitude 4	0º 31' 54"		Longitude	-80° 10' 34"
Quad Name	Ambridge		Quad Code	1404
Wastewater De	escription:	IW Process Effluent with	out ELG	
Receiving Wate	ers Ohio	River (WWF)	Stream Code	32317
NHD Com ID	-	96150	 RMI	969.22
Drainage Area	1950	0	Yield (cfs/mi²)	0.243
Q ₇₋₁₀ Flow (cfs)			Q ₇₋₁₀ Basis	US Army Corp of Engineers
Elevation (ft)	963		Slope (ft/ft)	0.0001
Watershed No.	20-G		Chapter 93 Class.	WWF
Existing Use			Existing Use Qualifier	
Exceptions to U	Jse		Exceptions to Criteria	
Assessment St	atus	Impaired		
Cause(s) of Imp	pairment	DIOXIN, PATHOGENS,	POLYCHLORINATED BIPHEN	YLS (PCBS)
Source(s) of Im	pairment	SOURCE UNKNOWN		
TMDL Status Final		Name Ohio River		
Nearest Downs	tream Pub	ic Water Supply Intake	Moon Township Municipal Au	ıthority
PWS Waters	Ohio Ri	ver	Flow at Intake (cfs)	4,730
PWS RMI 968.72		Distance from Outfall (mi)	0.5	

	Development of Effluent Limitations						
Outfall No. 001 Design Flow (MGD) 0.171							
Latitude	40° 31' 54.00	П	Longitude	-80° 10' 34.00"			
Wastewater D	escription:	IW Process Effluent without ELG					

Technology-Based Limitations

Best Practicable Control Technology Currently Achievable (BPT)

BPT for wastewater from treatment of WTP sludges and filter backwash is found in DEPs Technology-Based Control Requirements for Water Treatment Plant Wastes Document which is imposed under Best Professional Judgement under 40 CFR § 125.3. The effluent limitations from this document are displayed below in Table 1.

Table 1: BPT Limits for WTP Sludge and Filter Backwash Wastewater

Parameter	Monthly Avg (mg/l)	Daily Max (mg/l)
Suspended solids	30.0	60.0
Iron (total)	2.0	4.0
Aluminum (total)	4.0	8.0
Manganese (total)	1.0	2.0
Flow (MGD)	Monitor	
pH (S.U.)	Not less than 6.0 nor gre	ater than 9.0 at all times
Total Residual Chlorine	0.5	1.0

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) which is displayed in Table 2 below.

Effluent standards for pH are imposed in accordance with 25 Pa. Code §§ 95.2(1) which is displayed in Table 2 below.

Pennsylvania regulations at 25 Pa. Code § 92a.48(b) require the imposition of technology-based TRC limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELGs or a facility-specific BPJ evaluation which is displayed in Table 2 below

Table 2: Regulatory Effluent Standards and Monitoring Reguirements for Outfall 001

Parameter	Monthly Average	Units	
Flow	Monitor	MGD	
Total Residual Chlorine (TRC)	0.5	1.6	mg/L
рH	Not less than 6.0	nor greater than 9.0	S.U.

Water Quality-Based Limitations

Toxics Management Spread Sheet

The Department of Environmental Protection (DEP) has developed the DEP Toxics Management Spreadsheet ("TMS") to facilitate calculations necessary for completing a reasonable potential (RP) analysis and determining water quality-based effluent limitations for discharges of toxic pollutants. The Toxics Management Spreadsheet is a macro-enabled Excel binary file that combines the functions of the PENTOXSD model and the Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water quality standards and to determine WQBELs. The Toxics Management Spread Sheet is a single discharge, mass-balance water quality calculation spread sheet that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number, discharge flow rate and the discharge concentrations for parameters in the permit application or in DMRs, which are entered into the spread sheet to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Discharge concentrations for the parameters are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). The

spread sheet then evaluates each parameter by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, the Toxics Management Spread sheet recommends average monthly and maximum daily WQBELs.

ORSANCO Considerations

The Ohio River Valley Water Sanitation Commission (ORSANCO)—an interstate commission established by interstate compact—established water quality standards (Pollution Control Standards) that apply to surface waters of the Commonwealth, specifically to the Ohio River, which is the receiving water for Sewickley Borough Water System WTP. ORSANCO standards were considered as part of the reasonable potential analysis to the extent that ORSANCO's standards provide more stringent water quality criteria than Pennsylvania's regulations in Chapter 93.

Reasonable Potential Analysis and WQBEL Development for Outfall 001

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and on DMRs; data from those sources are entered into the Toxics Management Spread Sheet. The maximum reported value of the parameters from the application form or from previous DMRs is used as the input concentration in the Toxics Management Spread Sheet. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion is considered to be pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. The Toxics Management Spread Sheet is run with the discharge and receiving stream characteristics shown in Table 3. For IW discharges, the design flow used in modeling is the average flow during production or operation taken from the permit application. Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis. All the parameters are evaluated using the model to determine the water quality-based effluent limits applicable to the discharge and the receiving stream. The spreadsheet then compares the reported discharge concentrations to the calculated water qualitybased effluent limitations to determine if a reasonable potential exists to exceed the calculated WQBELs. Effluent limitations are established in the draft permit where a pollutant's maximum reported discharge concentration equals or exceeds 50% of the WQBEL. For non-conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 25% - 50% of the WQBEL. For conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 10% - 50% of the WQBEL. The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are displayed in the Toxics Management Spread Sheet in Attachment B of this Fact Sheet. The Toxics Management Spread Sheet did not recommend any WQBELs for toxics.

Table 3: TMS Inputs for Outfall 001

Parameter	Value					
River Mile Index	969.22					
Discharge Flow (MGD)	1.296					
Basin/Stream Characteristics						
Parameter	Value					
Area in Square Miles	19500					
Q ₇₋₁₀ (cfs)	4,760					
Low-flow yield (cfs/mi²)	0.243					
Elevation (ft)	963					
Slope	0.0001					

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and chlorine demands for the receiving stream and the discharge, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/l from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is imposed in the permit. The results of the modeling, included in Attachment D, indicate that no WQBELs are required for TRC.

Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 4.

Table 4: Current Effluent Limitation for Outfall 001

	Mass	(lb/day)		Concentration				Requirements
Parameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	2/Month	Measure
Total Dissolved Solids	Report	Report	XXX	Report	Report	XXX	2/Month	Grab
Chloride	XXX	XXX	XXX	Report	Report	XXX	2/Month	Grab
Bromide	XXX	XXX	XXX	Report	Report	XXX	2/Month	Grab
Sulfate	XXX	XXX	XXX	Report	Report	XXX	2/Month	Grab
Total Suspended Solids (mg/L)	xxx	xxx	xxx	30.0	60.0	XXX	2/Month	Grab
Total Residual Chlorine (mg/L)	XXX	XXX	XXX	0.5	1.0	XXX	2/Month	Grab
Total Aluminum (mg/L)	xxx	XXX	XXX	4.0	8.0	xxx	2/Month	Grab
Total Iron (mg/L)	XXX	XXX	XXX	2.0	4.0	XXX	2/Month	Grab
Total Manganese (mg/L)	XXX	XXX	XXX	1.0	2.0	XXX	2/Month	Grab
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	2/Month	Grab

Proposed Effluent Limitations for Outfall 001

The proposed effluent limitations and monitoring requirements for Outfall 001 are shown below in Table 5.

Table 5: Proposed Effluent Limitation for Outfall 001

Table 5: Propose		(lb/day)		Concentra	tion (mg/L)		Monitoring Requirements		
Parameters	Average Monthly	Daily Maximum	Instant. Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type	
Flow (MGD)	Report	Report	xxx	XXX	xxx	xxx	2/Month	Measure	
Total Dissolved Solids	Report	Report	XXX	Report	Report	XXX	2/Month	Grab	
Chloride	xxx	XXX	XXX	Report	Report	XXX	2/Month	Grab	
Bromide	xxx	XXX	XXX	Report	Report	XXX	2/Month	Grab	
Sulfate	xxx	XXX	XXX	Report	Report	XXX	2/Month	Grab	
Total Suspended Solids	xxx	XXX	XXX	30.0	60.0	XXX	2/Month	Grab	
Total Residual Chlorine	XXX	XXX	XXX	0.5	1.0	XXX	2/Month	Grab	
Total Aluminum	XXX	XXX	XXX	4.0	8.0	XXX	2/Month	Grab	
Total Iron	xxx	XXX	XXX	2.0	4.0	XXX	2/Month	Grab	
Total Manganese	xxx	XXX	XXX	1.0	2.0	XXX	2/Month	Grab	
pH (S.U.)	xxx	XXX	6.0	XXX	XXX	9.0	2/Month	Grab	

Development of Effluent Limitations						
MP No. 101 and 201 Design Flow (MGD)						
Latitude		Longitude				
Wastewater	Description:	Wastewater influent to the site setting basins				

Internal Monitoring Points 101 and 201 are included in the permit to monitor the contributions from the two different backwash wastewaters to Outfall 001. Therefore, these monitoring points will receive monitoring requirements for all of the parameters that Outfall 001 received effluent limitations or monitoring requirements for. The monitoring requirements for IMPs 101 and 201 are displayed below in Table 6.

Table 6: Proposed Effluent Monitoring Requirements for IMP 101 and 201

Parameters	Mass	lb/day)		Conce	Monitoring Requirements			
Farameters	Average Monthly	Daily Maximum	Instant. Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	2/Month	Measure
Total Dissolved Solids	Report	Report	XXX	Report	Report	XXX	2/Month	Grab
Chloride	XXX	XXX	XXX	Report	Report	XXX	2/Month	Grab
Bromide	XXX	XXX	XXX	Report	Report	XXX	2/Month	Grab
Sulfate	XXX	XXX	XXX	Report	Report	XXX	2/Month	Grab
Total Suspended Solids	XXX	XXX	XXX	Report	Report	XXX	2/Month	Grab
Total Residual Chlorine	XXX	XXX	XXX	Report	Report	XXX	2/Month	Grab
Total Aluminum	XXX	XXX	XXX	Report	Report	XXX	2/Month	Grab
Total Iron	XXX	XXX	XXX	Report	Report	XXX	2/Month	Grab
Total Manganese	XXX	XXX	XXX	Report	Report	XXX	2/Month	Grab
pH (S.U.)	XXX	XXX	Report	XXX	XXX	Report	2/Month	Grab

Tools and References Used to Develop Permit
MOM for Mindows Madel (see Attack react
WQM for Windows Model (see Attachment) Taylor Management Spreadshoot (see Attachment B)
Toxics Management Spreadsheet (see Attachment B)
TRC Model Spreadsheet (see Attachment C)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002,
12/97.
Pennsylvania CSO Policy, 386-2000-002, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
Implementation Guidance Design Conditions, 386-2000-007, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
Design Stream Flows, 386-2000-003, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other

Attachments

Attachment A: StreamStats Drainage Area

Attachment B: Toxics Management Spreadsheet for Outfall 001
Attachment C: TRC Evaluation Model for Outfall 001

Attachment A: StreamStats Drainage Area

StreamStats Report

Region ID: P/

Workspace ID: PA20231207125020382000

Clicked Point (Latitude, Longitude): 40.52918, -80.17758

Time: 2023-12-07 07:50:53 -0500

Collapse All

arameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	19500	square miles
ELEV	Mean Basin Elevation	1673	feet
PRECIP	Mean Annual Precipitation	45	inches

Attachment B: Toxic Management Spreadsheet for Outfall 001

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Instructions	Disch	arge	Stream					
Facility:	Sewick	ley Bo	rough WTP		NPDES Permit No.:	PA0217751	Outfall No.:	001
Evaluation T	ype:	Major	Sewage / Inc	dustrial Waste	Wastewater Descrip	tion: WTP wastewater	r	

	Discharge Characteristics												
Design Flow	Handana (mar/l)t	11 (010)	P	artial Mix Fa	ctors (PMF	5)	Complete Mix Times (min)						
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh					
1.296	586	7.3											

					0 if left blank			0.5 If left blank		0 if left blank			1 If left blank	
	Discharge Pollutant	Units	Ma	x Discharge Conc		rib onc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS		Chem Transl
	Total Dissolved Solids (PWS)	mg/L		21700	\mp	\vdash								
7	Chloride (PWS)	mg/L		465	7	H								
1	Bromide	mg/L	<	0.1										
Group	Sulfate (PWS)	mg/L		86.6	7									
	Fluoride (PWS)	mg/L		0.18	7									
	Total Aluminum	μg/L		165										
	Total Antimony	μg/L	<	1	Н	П								
	Total Arsenic	μg/L	<	2	7									
	Total Barium	μg/L		144										
	Total Beryllium	μg/L	<	1										
	Total Boron	μg/L		100	7									
	Total Cadmium	μg/L	<	0.2	7									
	Total Chromium (III)	μg/L	<	2										
	Hexavalent Chromium	μg/L	<	5	\Box	П								
	Total Cobalt	μg/L	<	1	7									
	Total Copper	μg/L		9	\top	Ħ								
2	Free Cyanide	μg/L				П								
l 🛎	Total Cyanide	μg/L	<	50										
Group	Dissolved Iron	μg/L		20	\top									
	Total Iron	μg/L		490										
	Total Lead	μg/L		1.13	7	\Box								
	Total Manganese	μg/L		310	\mp									
	Total Mercury	μg/L	<	0.2	\top	Ħ								
	Total Nickel	μg/L		5.39	\Box	П								
	Total Phenols (Phenolics) (PWS)	μg/L		5	7									
	Total Selenium	μg/L	<	5										
	Total Silver	μg/L	<	0.4		\Box								
	Total Thallium	μg/L	<	2	7	\Box								
	Total Zinc	μg/L		10.7	+									
	Total Molybdenum	μg/L	<	2										
	Acrolein	μg/L	<		\Box	П								
	Acrylamide	μg/L	<				-							
	Acrylonitrile	μg/L	<											
	Benzene	μg/L	<											
	Bromoform	μg/L	<				-							

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Sewickley Borough WTP, NPDES Permit No. PA0217751, Outfall 001

Instructions Disc	harge Str	ream													
Receiving Surface	Water Name:	Ohio River					No. Rea	iches to l	Model:	1_	~	tewide Criteri			
Location	Stream Co	de' RMI	Elevat	DA (m)	i²)* SI	lope (ft/ft)		Withdraw MGD)	val Apply Crite		_	SANCO Crite			
Point of Discharge	032317	969.2	22 963	1950	0	0.001			Ye	5					
End of Reach 1	032317	968.7	2 962	2 1950	1	0.001		5.2	Ye	5					
Q ₇₋₁₀															
Location	RMI	(cfs/mi ²)*	Stream	Tributary	Ratio		(ft)	y (fps)	Time	Hardness		Hardness'	pH*	Hardness	pН
Point of Discharge	969.22	0.1	4760	 		1,300	20	211 7	(days)		l in	100	7		· ·
End of Reach 1	968.72	0.1	4760			1,300	20								
Q _h												•			
Location	RMI	LFY	Flow	v (cfs)	W/D	Width	Depth	Velocit	Time	Tribu	tary	Strea	m	Analys	sis
Location	TXIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	969.22														
End of Reach 1	968.72														

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

Sewickley Borough WTP, NPDES Permit No. PA0217751, Outfall 001

Instructions Results		RETURN	TO INPU	TS	SAVE AS	PDF	PRINT	r) 🔘 A	II O Inputs	○ Results	○ Limits
Hydrodynamics											
✓ Wasteload Allocations											
 AFC	сст	(min): 1	15	PMF:	0.135	L .	lysis Hardne	ss (mg/l):	101.51	Analysis pH:	7.00
Pollutants		Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	mments
Total Dissolved Solids (F	PWS)	0	0		0	N/A	N/A	N/A			
Chloride (PWS)		0	0		0	N/A	N/A	N/A			
Sulfate (PWS)		0	0		0	N/A	N/A	N/A			
Fluoride (PWS)		0	0		0	N/A	N/A	N/A			
Total Aluminum		0	0		0	750	750	241,833			
Total Antimony		0	0		0	1,100	1,100	354,689			
Total Arsenic		0	0		0	340	340	109,631		Chem Trans	slator of 1 applied
Total Barium		0	0		0	21,000	21,000	6,771,327			
Total Boron		0	0		0	8,100	8,100	2,611,797			
Total Cadmium		0	0		0	2.043	2.17	698			tor of 0.943 applied
Total Chromium (III))	0	0		0	576.787	1,825	588,550		Chem Transla	tor of 0.316 applied
Hexavalent Chromius	m	0	0		0	16	16.3	5,254		Chem Transla	tor of 0.982 applied
Total Cobalt		0	0		0	95	95.0	30,632			
Total Copper		0	0		0	13.630	14.2	4,578		Chem Transla	ator of 0.96 applied
Dissolved Iron		0	0		0	N/A	N/A	N/A			
Total Iron		0	0		0	N/A	N/A	N/A			
Total Lead		0	0		0	65.642	83.2	26,832		Chem Transla	tor of 0.789 applied
Total Manganese		0	0		0	N/A	N/A	N/A			
Total Mercury		0	0		0	1.400	1.65	531		Chem Transla	ator of 0.85 applied
Total Nickel		0	0		0	474.199	475	153,209		Chem Transla	tor of 0.998 applied
Total Phenols (Phenolics)	(PWS)	0	0		0	N/A	N/A	N/A			
Total Selenium		0	0		0	N/A	N/A	N/A		Chem Transla	tor of 0.922 applied
Total Silver		0	0		0	3.301	3.88	1,252			ator of 0.85 applied
Total Thallium		0	0		0	65	65.0	20,959			••
Total Zinc		0	0		0	118.675	121	39,127		Chem Transla	tor of 0.978 applied

NPDES Permit No. PA0217751

√ CFC CCT (min): 720 PMF: 0.938 Analysis Hardness (mg/l): 100.22 Analysis pH: 7.00 WQC WQ Obj Stream Trib Conc Fate **Pollutants** WLA (µg/L) Conc Comments CV (µg/L) Coef (µg/L) (µg/L) io/I Total Dissolved Solids (PWS) N/A N/A 0 0 N/A Chloride (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 N/A N/A N/A 0 0 Fluoride (PWS) 0 0 0 N/A N/A N/A 0 N/A N/A N/A Total Aluminum 0 0 0 0 0 220 220 490,167 Total Antimony 0 150 150 Total Arsenic 0 0 334,205 Chem Translator of 1 applied 4,100 4,100 Total Barium 0 0 0 9,134,924 Total Boron 0 0 0 1,600 1,600 3,564,848 Total Cadmium 0 0 0 0.246 0.27 604 Chem Translator of 0.909 applied Total Chromium (III) 0 0 0 74.247 86.3 192,354 Chem Translator of 0.86 applied 0 0 10.4 23,160 Hexavalent Chromium 0 10 Chem Translator of 0.962 applied 0 0 0 19 19.0 42,333 Total Cobalt Total Copper 0 0 0 8.972 9.35 20,824 Chem Translator of 0.98 applied 0 N/A N/A Dissolved Iron 0 0 N/A Total Iron 0 0 0 1,500 1,500 3,562,754 WQC = 30 day average; PMF = 1 0 0 2.523 3.19 Chem Translator of 0.791 applied Total Lead 0 7,108 Total Manganese 0 0 0 N/A N/A N/A Total Mercury 0 0 0 0.770 0.91 2,018 Chem Translator of 0.85 applied 0 0 0 52.102 52.3 116,435 Total Nickel Chem Translator of 0.997 applied Total Phenols (Phenolics) (PWS) 0 0 0 N/A N/A N/A Total Selenium 0 0 0 4.600 4.99 11,116 Chem Translator of 0.922 applied 0 0 N/A N/A N/A Total Silver 0 Chem Translator of 1 applied Total Thallium 0 0 0 13 13.0 28,964 Total Zinc 0 0 0 118.357 120 267,448 Chem Translator of 0.986 applied ☑ THH CCT (min): ###### THH PMF: 0.938 Analysis Hardness (mg/l): N/A N/A PWS PMF: 0.5418 Analysis pH: sirean Stream Trib Conc Fate WQC WQ Obj WLA (µg/L) Comments Pollutants Conc CV (µg/L) (µg/L) (µg/L) Coef Total Dissolved Solids (PWS) 0 0 0 500,000 500,000 ******** WQC applied at RMI 968.72 with a design stream flow of 4760 cfs Chloride (PWS) 0 250,000 250,000 WQC applied at RMI 968.72 with a design stream flow of 4760 cfs 0 0 Sulfate (PWS) 0 0 0 250,000 250,000 ****** WQC applied at RMI 968.72 with a design stream flow of 4760 cfs Fluoride (PWS) 0 0 0 1,000 1,000 1,287,406 THH WQC applied at PWS at RMI 968.72 0 Total Aluminum 0 0 N/A N/A N/A 5.6 Total Antimony 0 0 0 5.6 7,209 THH WQC applied at PWS at RMI 968.72 10 10.0 12,874 THH WQC applied at PWS at RMI 968.72 Total Arsenic 0 0 0 Total Barium 0 0 0 1,000 1.000 1,287,406 THH WQC applied at PWS at RMI 968.72 0 0 3,100 3,100 3,990,958 THH WQC applied at PWS at RMI 968.72 Total Boron 0 Total Cadmium 0 0 0 N/A N/A N/A 0 0 0 N/A N/A N/A Total Chromium (III)

Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	1,300	1,300	1,673,627	THH WQC applied at PWS at RMI 968.72
Dissolved Iron	0	0	0	300	300	386,222	THH WQC applied at PWS at RMI 968.72
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	1,000	1,000	1,287,406	THH WQC applied at PWS at RMI 968.72
Total Mercury	0	0	0	0.012	0.012	15.4	THH WQC applied at PWS at RMI 968.72
Total Nickel	0	0	0	610	610	785,317	THH WQC applied at PWS at RMI 968.72
Total Phenols (Phenolics) (PWS)	0	0	0	5	5.0	6,437	WQC applied at RMI 968.72 with a design stream flow of 4760 cfs
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	0.24	0.24	309	THH WQC applied at PWS at RMI 968.72
Total Zinc	0	0	0	7,400	7,400	9,526,802	THH WQC applied at PWS at RMI 968.72

): ######	PMF:	1	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	I
--	-----------	------	---	---------------------------	-----	--------------	-----	---

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	(ug/L)	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	50	50.0	303,503	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments	
Total Dissolved Solids (PWS)	643,703	mg/L	Discharge Conc ≤ 10% WQBEL	
Chloride (PWS)	321,851	mg/L	Discharge Conc ≤ 10% WQBEL	
Bromide	N/A	N/A	No WQS	
Sulfate (PWS)	321,851	mg/L	Discharge Conc ≤ 10% WQBEL	
Fluoride (PWS)	1,287	mg/L	Discharge Conc ≤ 10% WQBEL	
Total Aluminum	155,005	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Antimony	N/A	N/A	Discharge Conc < TQL	
Total Arsenic	N/A	N/A	Discharge Conc < TQL	
Total Barium	1,287,406	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Beryllium	N/A	N/A	No WQS	
Total Boron	1,674,057	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Cadmium	448	μg/L	Discharge Conc < TQL	
Total Chromium (III)	192,354	μg/L	Discharge Conc < TQL	
Hexavalent Chromium	3,367	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Cobalt	19,634	μg/L	Discharge Conc < TQL	
Total Copper	2,934	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Cyanide	N/A	N/A	No WQS	
Dissolved Iron	386,222	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Iron	3,562,754	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Lead	7,108	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Manganese	1,287,406	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Mercury	0.012	μg/L	Discharge Conc < TQL	
Total Nickel	98,201	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Phenols (Phenolics) (PWS)	6,437	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Selenium	11,116	μg/L	Discharge Conc < TQL	
Total Silver	803	μg/L	Discharge Conc < TQL	
Total Thallium	309	μg/L	Discharge Conc < TQL	
Total Zinc	25,079	μg/L	Discharge Conc ≤ 10% WQBEL	
Total Molybdenum	N/A	N/A	No WQS	

Attachment C: TRC Evaluation Model for Outfall 001

TRC EVALUATION

4760	= Q stream ((cfs)	0.5	= CV Daily			
1.296	1.296 = Q discharge (MGD)		0.5	= CV Hourly			
4 = no. samples		0.25	= AFC_Partial Mix Factor				
0.3 = Chlorine Demand of Stream		0.25	= CFC_Partial Mix Factor				
0 = Chlorine Demand of Discharge		15	= AFC_Criteria Compliance Time (min)				
0.5 = BAT/BPJ Value		720	= CFC_Criteria Compliance Time (min)				
= %Factor of Safety (FOS)			=Decay Coefficient (K)				
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =	189.359	1.3.2.iii	WLA cfc = 184.603		
PENTOXSD TRG		LTAMULT afc = 0.373		5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRG	5.1b	LTA_afc= 70.560		5.1d	LTA_cfc = 107.319		
Source Effluent Limit Calculations							
	PENTOXSD TRG 5.1f AML MULT = 1.720						
PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ							
INST MAX LIMIT (mg/l) = 1.170							
WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)							
LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc							
WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)							
LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc							
AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))							
AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)							
INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)							