

Application TypeRenewalFacility TypeNon-MunicipalMajor / MinorMinor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0217913
APS ID	1030069
Authorization ID	1339006

Applicant and Facility Information

Applicant Name	William	B. McIntire	Facility Name	Urling Mine 1 & 2 Main Portal STP
Applicant Address	1160 H	udson Road	Facility Address	Anthony Run Road
	Creeks	ide, PA 15732		Shelocta, PA 15774
Applicant Contact	William	B. McIntire	Facility Contact	William B. McIntire
Applicant Phone	(724) 3	97-8387	Facility Phone	(724) 397-8387
Client ID	307765		Site ID	253854
Ch 94 Load Status	Not Ove	erloaded	Municipality	Armstrong Township
Connection Status	No Limi	tations	County	Indiana County
Date Application Receiv	ved	March 20, 2019	EPA Waived?	Yes
Date Application Accep	ted	July 17, 2019	If No, Reason	
Purpose of Application		Renewal of an NPDES Per-	mit for an existing discharge o wnership from the William J. N	f treated sanitary wastewater. This IcIntire Estate to William B. McIntire.

Summary of Review

Act 14 - Proof of Notification was submitted and received.

Water Quality Management permit number 3274409 will be transferred with the Final NPDES Permit issuance. The applicant should be able to continue to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

- A. Stormwater into sewers
- B. Right of way
- C. Solids handling
- D. Public sewerage availability
- E. Effluent Chlorine Optimization and Minimization

There are no open violations in efacts associated with the subject Client ID (307765) as of 5/14/2021.

Approve	Deny	Signatures	Date
x		Stephen A. McCauley	5/14/2021
X		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	0/14/2021
×		Justin C. Dickey	E/17/2021
^		Justin C. Dickey, P.E. / Environmental Engineer Manager	5/17/2021

SPECIAL CONDITIONS:

- II. Solids Management
- III. Compliance Schedule for Total Residual Chlorine (TRC)

Discharge, Receiving	g Watei	rs and Water Supply Info	rmation	
Outfall No. 002			Design Flow (MGD)	0.023
Latitude 40° 3	8' 53.00)"	Longitude	-79º 16' 55.00"
Quad Name			Quad Code	-
Wastewater Descri	ption:	Sewage Effluent		
Receiving Waters	Antho	ony Run (CWF)	Stream Code	46692
NHD Com ID	1238	58097	RMI	0.92
Drainage Area	4.99		Yield (cfs/mi ²)	0.1
Q ₇₋₁₀ Flow (cfs)	0.49		Q7-10 Basis	calculated
Elevation (ft)	1030		Slope (ft/ft)	0.00697
Watershed No.	17-E		Chapter 93 Class.	CWF
Existing Use	-		Existing Use Qualifier	-
Exceptions to Use	-		Exceptions to Criteria	-
Assessment Status	i	Impaired*		
Cause(s) of Impairr	nent	Siltation		
Source(s) of Impair	ment	Removal of Riparian Veg	getation	
TMDL Status		Final, 04/08/2009	Name Crooked Cre	eek Watershed
Background/Ambie	nt Data		Data Source	
pH (SU)		-	-	
Temperature (°F)		-	-	
Hardness (mg/L)		-	-	
Other:		-	-	
Nearest Downstrea	m Publi	c Water Supply Intake	Buffalo Township Municipal V	Vater Authority - Freeport
PWS Waters	Allegher	ny River	Flow at Intake (cfs)	2,576
PWS RMI	30.0		Distance from Outfall (mi)	46.5

* - The receiving stream at the Outfall is impaired. The contribution of siltation from a sewage plant of this nature is expected to be less than water quality criteria and therefore not contributing to the stream impairment. No new monitoring related to the stream impairment will be added with this renewal.

The mines are not currently operating. This discharge is from the treatment of office wastewater.

Sludge use and disposal description and location(s): Sludge is not used, it is disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

NPDES Permit Fact Sheet Urling Mine 1 & 2 Main Portal STP

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.023 MGD of treated sewage from an STP in Armstrong Township, Indiana County.

Treatment permitted under Water Quality Management Permit No. 3274409 consists of the following: A comminutor, aeration, clarification, surge tank, sludge holding tank, and chlorine disinfection with a contact tank.

1. Streamflow:

Crooked Creek at Idaho, Pa. (1970-2008):

Q ₇₋₁₀ :	<u>19.9</u>	cfs	(USGS StreamStats)
Drainage Area:	<u>191</u>	sq. mi.	(USGS StreamStats)
Yieldrate:	<u>0.1</u>	cfsm	calculated
Anthony Run at Outfall 001:			
Yieldrate:	<u>0.1</u>	cfsm	calculated above
Drainage Area:	<u>4.99</u>	sq. mi.	(USGS StreamStats)
Q ₇₋₁₀ :	<u>0.49</u>	cfs	calculated
% of stream allocated:	<u>100%</u>	Basis:	No nearby discharges

2. Wasteflow:

Maximum discharge:	<u>0.023</u> MGD =	<u>0.035</u> cfs
Runoff flow period:	<u>16</u> hours	Basis: Runoff flow for small STPs
24 hour flow:	<u>0.023</u> MGD	x 24/16 = 0.034 MGD = 0.053 cfs

There is greater than 3 parts stream flow (Q7-10) to 1 part effluent (design flow). In accordance with the SOP, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, are not required to be evaluated for this facility.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, Total Residual Chlorine, influent Total Suspended Solids, and influent BOD5. NH₃-N, CBOD₅, and Dissolved Oxygen were evaluated using WQM 7.0 at the discharge point.

а. <u>pH</u>

Between 6.0 and 9.0 at all times

- Basis: Application of Chapter 93.7 technology-based limits. The measurement frequency was previously set to 2/month, but will be set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).
- b. Total Suspended Solids

Limits are 30 mg/l as a monthly average and 60 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits.

NPDES Permit Fact Sheet Urling Mine 1 & 2 Main Portal STP

c. <u>Fecal Coliform</u>

05/01 - 09/30:	<u>200/100ml</u>	(monthly average geometric mean)
	<u>1,000/100ml</u>	(instantaneous maximum)
10/01 - 04/30:	<u>2,000/100ml</u> <u>10,000/100ml</u>	(monthly average geometric mean) (instantaneous maximum)
Basis:	Application of C	Chapter 92a47 technology-based limits

d. <u>E. Coli</u>

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP.

e. Phosphorus

- Limit necessary due to:
 - Discharge to lake, pond, or impoundment
 - Discharge to stream
 - Basis: Chapter 96.5 does not apply.
- Limit not necessary
 - Basis: <u>The previous monitoring for Total Phosphorus will be retained in accordance with the SOP,</u> <u>based on Chapter 92a.61.</u>

f. <u>Total Nitrogen</u>

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used:	<u>7.0</u>	Standard Units (S.U.)			
	В	asis: Default, no eDMR data available			
Discharge temperature:	<u>25°C</u>	(default value used in the absence of data)			
Median stream pH to be used:	<u>7.0</u>	Standard Units (S.U.)			
	В	asis: default value used in the absence of data			
Stream Temperature:	<u>20°C</u>	(default value used for CWF modeling)			
Background NH ₃ -N concentration:	<u>0.1</u>	mg/l			
	В	asis: Default value			
Calculated NH ₃ -N Summer limits:	<u>25.0</u>	mg/I (monthly average)			
	<u>50.0</u>	mg/I (instantaneous maximum)			
Calculated NH ₃ -N Winter limits:	<u>25.0</u>	mg/l (monthly average)			
	<u>50.0</u>	mg/l (instantaneous maximum)			

- Result: WQ modeling resulted in the summer limits above (see Attachment 1). The winter limits are calculated as three times the summer limits, but since the technology-based limits would govern, they will be used. Since the previous summer NH3-N limits are more restrictive, they will be retained. Per the SOP, winter NH3-N will remain monitor only.
- h. <u>CBOD5</u>

Median discharge pH to be used:	<u>7.0</u>	Standard Units (S.U.)
	B	asis: Default, no eDMR data available
Discharge temperature:	<u>25°C</u>	(default value used in the absence of data)
Median stream pH to be used:	<u>7.0</u>	Standard Units (S.U.)
	В	asis: default value used in the absence of data
Stream Temperature:	<u>20°C</u>	(default value used for CWF modeling)
Background CBOD5 concentration:	<u>2.0</u>	mg/l
	В	asis: Default value
CBOD ₅ Summer limits:	<u>25.0</u> 50.0	mg/l (monthly average) mg/l (instantaneous maximum)
CBOD₅ Winter limits:	<u>25.0</u> 50.0	mg/l (monthly average) mg/l (instantaneous maximum)

- Result: WQ modeling resulted in the summer limits above (see Attachment 1), which are the same as in the previous permit. The winter limits are calculated as three times the summer limits, but since the technology-based limits would govern, they will be used. Since the summer and winter limits are technology-based, per the SOP, the year-round limit of 25.0 mg/l monthly average and 50.0 mg/l instantaneous maximum will be retained with this renewal.
- i. <u>Dissolved Oxygen (DO)</u>
 - <u>4.0</u> mg/l minimum desired in effluent to protect all aquatic life
 - 5.0 mg/l desired in effluent for CWF, WWF, or TSF
 - 6.0 mg/l minimum required due to discharge falling under guidance document 391-2000-014
 - 8.0 mg/l required due to discharge going to a naturally reproducing salmonid stream

Discussion: The Dissolved Oxygen minimum of 4.0 mg/l will be retained with this renewal. The technologybased minimum of 4.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. The measurement frequency was previously set to 2/month, but will be set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

- j. <u>Total Residual Chlorine (TRC)</u>
 - No limit necessary

Basis: <u>N/A</u>

- TRC limits: 0.5 mg/l (monthly average)
 - <u>1.6</u> mg/l (instantaneous maximum)

Basis: <u>The TRC limits above are technology-based using the TRC Calc Spreadsheet (see Attachment 2),</u> and are more restrictive than in the previous permit. Since there is no eDMR data to decide if the new limits are attainable, the previous limits will be set for 1 year to allow time for the Permittee to adjust to the new limits. The measurement frequency was previously set to 4/month, but will be set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

k. Anti-Backsliding

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices for Outfall 001 since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

A Reasonable Potential Analysis, if performed, does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). However, since no data was provided, mass-balance calculations were not able to be performed.

Nearest Downstream potable water supply (PWS):Buffalo Township Municipal Water Authority - FreeportDistance downstream from the point of discharge:46.5miles (approximate)

Limits needed

Basis: Significant dilution available.

6. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through July 31, 2022.

		Monitoring Requirements						
Paramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	2/month	Measured
pH (S.U.)	xxx	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
DO	xxx	xxx	4.0 Inst Min	xxx	xxx	xxx	1/day	Grab
TRC	XXX	xxx	xxx	1.0	xxx	2.3	1/day	Grab
CBOD5	xxx	xxx	ХХХ	25.0	xxx	50.0	2/month	Grab
TSS	XXX	XXX	XXX	30.0	xxx	60.0	2/month	Grab
BOD5 Raw Sewage Influent	xxx	xxx	ххх	Report	xxx	xxx	2/month	Grab
TSS Raw Sewage Influent	xxx	xxx	ххх	Report	xxx	xxx	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	xxx	ххх	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	xxx	ХХХ	200 Geo Mean	xxx	1000	2/month	Grab
E. Coli (No./100 ml)	xxx	xxx	ххх	xxx	xxx	Report	1/year	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	xxx	xxx	ххх	Report	xxx	Report	2/month	Grab
Ammonia-Nitrogen May 1 - Oct 31	xxx	xxx	xxx	13.0	xxx	26.0	2/month	Grab
Total Nitrogen	XXX	XXX	XXX	xxx	XXX	Report	1/year	Grab

Outfall 002, Continued (from Permit Effective Date through July 31, 2022)

	Effluent Limitations						Monitoring Red	quirements
Baramotor	Mass Units (Ibs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Phosphorus	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab

Compliance Sampling Location: at Outfall 002, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are technology-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for influent BOD5 and influent TSS is based on Chapter 92a.61. Monitoring for E. Coli, Total Nitrogen, and Total Phosphorus is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: August 1, 2022 through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units (lbs/day) ⁽¹⁾ Concentrations (mg/L)				Minimum ⁽²⁾	Required		
Farameter	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	2/month	Measured
			6.0					
_pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Inst Min	xxx	xxx	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	xxx	1.6	1/day	Grab
CBOD5	XXX	XXX	xxx	25.0	xxx	50.0	2/month	Grab
TSS	XXX	XXX	XXX	30.0	XXX	60.0	2/month	Grab
BOD5								
Raw Sewage Influent	XXX	XXX	XXX	Report	XXX	XXX	2/month	Grab
TSS				_				
Raw Sewage Influent	XXX	XXX	XXX	Report	XXX	XXX	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	xxx	XXX	xxx	XXX	xxx	Report	1/year	Grab
Ammonia-Nitrogen								
Nov 1 - Apr 30	XXX	XXX	XXX	Report	XXX	Report	2/month	Grab
Ammonia-Nitrogen May 1 - Oct 31	XXX	XXX	XXX	13.0	xxx	26.0	2/month	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab

Outfall 002, Continued (from August 1, 2022 through Permit Expiration Date)

		Monitoring Red	quirements					
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Phosphorus	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab

Compliance Sampling Location: at Outfall 002, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are technology-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for influent BOD5 and influent TSS is based on Chapter 92a.61. Monitoring for E. Coli, Total Nitrogen, and Total Phosphorus is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7.

Attachment 1

	<u>SWP Basin</u> Stre	<u>am Code</u> 16692		<u>Stream Nam</u> ANTHONY RU	<u>e</u> IN		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.920	Urling Mine 1&2	PA0217913	0.034	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

WQM 7.0 Effluent Limits

Thursday, May 13, 2021

Version 1.1

			otream Name	
46692			ANTHONY RUN	
Total Discharge	Flow (mad) Ana	vsis Temperature (°C)	Analysis nH
0.03	4	<u>, 110</u>	20.483	7.000
Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
0.46	2		23.810	0.109
Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
0.71	1		2.42	0.727
<u>Reach Kr (</u>	<u>1/days)</u>		Kr Equation	<u>Reach DO Goal (mg/L)</u>
20.73	8		Owens	6
	Subroach	Baculto		
Tra∨Time	CBOD5	NH3-N	D.O.	
(days)	(mg/L)	(mg/L)	(mg/L)	
0.052	4.07	2.33	8.17	
0.103	3.92	2.24	8.17	
0.155	3.77	2.16	8.17	
0.207	3.63	2.08	8.17	
0.258	3.50	2.00	8.17	
0.310	3.37	1.93	8.17	
0.362	3.25	1.86	8.17	
0.413	3.13	1.79	8.17	
0.465	3.01	1.72	8.17	
0.517	2.90	1.66	8.17	
	46692 <u>Total Discharge</u> 0.03 <u>Reach De</u> 0.46 <u>Reach Kc (</u> 0.71 <u>Reach Kr (</u> 20.73 TravTime (days) 0.052 0.103 0.155 0.207 0.258 0.310 0.362 0.413 0.465 0.517	46692 Total Discharge Flow (mgd 0.034 Reach Depth (ft) 0.462 Reach Kc (1/days) 0.711 Reach Kr (1/days) 20.738 TravTime CBOD5 (days) Subreach CBOD5 (mg/L) 0.052 4.07 0.052 4.07 0.103 3.92 0.155 3.77 0.207 3.63 0.258 3.50 0.310 3.37 0.362 3.25 0.413 3.13 0.465 3.01 0.517 2.90	46692 Total Discharge Flow (mgd) 0.034 Anal 0.034 Reach Depth (ft) 0.462 Anal 0.034 Reach Kc (1/days) 0.711 Reach Kc (1/days) 20.738 TravTime (days) CBOD5 NH3-N (mg/L) 0.052 4.07 2.33 0.103 3.92 2.24 0.155 3.77 2.16 0.207 3.63 2.08 0.258 3.50 2.00 0.310 3.37 1.93 0.362 3.25 1.86 0.413 3.13 1.79 0.465 3.01 1.72 0.517 2.90 1.66	Anthony Run Total Discharge Flow (mgd) Analysis Temperature (°C) 0.034 20.483 Reach Depth (ft) 20.483 Reach C (T/days) Reach WDRatio 0.711 2.3.810 Reach K (1/days) Reach N/071 0.711 2.42 Reach K (1/days) Reach N/071 0.713 2.0738 TravTime (days) Subreach Kr (mg/L) D.0. 0.052 4.07 2.33 8.17 0.0103 3.92 2.24 8.17 0.155 3.77 2.16 8.17 0.155 3.50 2.00 8.17 0.258 3.50 2.00 8.17 0.362 3.25 1.86 8.17 0.362 3.25 1.86 8.17 0.362 3.25 1.86 8.17 0.362 3.20 1.81 8.17 0.362 3.20 1.81 8.17 0.465 3.01 1.72 8.17 0.465 3.01 1.72 8.17

WQM 7.0 D.O.Simulation

Thursday, May 13, 2021

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	
D.O. Goal	6		

Thursday, May 13, 2021

Version 1.1

Input Data WQM 7.0

	SWF Basir	o Strea n Coo	am de	Stre	eam Name		RMI	Elev (vation ft)	Draina Area (sq m	ge a ni)	Slope (ft/ft)	PW Withdr (mg	'S rawal jd)	Apply FC
	17E	460	692 ANTH		1		0.92	2 0 1	030.00		4.99 (0.00000		0.00	✓
5					St	ream Dat	a								
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributa</u> np	ry pH	Tem	<u>Stream</u> p	і рН	
eona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	2)		(°C)		
Q7-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.00	0 2	20.00	7.00	()	0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000										
Q30-10		0.00	0.00	0.000	0.000										
					Di	scharge I	Data								
			Name	Per	mit Number	Existing Disc Flow	Permitte Disc Flow	ed Desig Disc Flow	gn c Res w Fa	serve actor	Disc Temp	Di	sc H		
						(mgd)	(mgd)	(mga	d)		(°C)				
		Urling	g Mine 1&2	PA	0217913	0.034	5 0.000	0.00	000	0.000	25.	.00	7.00		
					Pa	arameter I	Data								
				Devene 4 a	. Novos	Di	sc 1 onc C	Frib S Conc	Stream Conc	Fate Coet	f				
	_			-aramete	iname	(m	g/L) (n	ng/L)	(mg/L)	(1/day	rs)				
			CBOD5			:	25.00	2.00	0.00) 1.	50				

4.00

25.00

8.24

0.00

0.00

0.00

0.00

0.70

Dissolved Oxygen

NH3-N

Version 1.1

Input Data WQM 7.0

	SWF Basi	o Strea n Coo	am le	Stre	am Name		RMI	Elevat (ft)	ion Dra , (s	ainage Area aq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	17E	460	592 ANTH	ONY RUN	l.		0.00	0 99	6.00	5.21	0.00000	0.00	\checkmark
a					St	ream Dat	a						5. 1
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Trit</u> Temp	<u>putary</u> pH	Tem	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00) 7.0	00 0	0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
					Di	scharge l	Data						
			Name	Dor	mit Number	Existing Disc	Permitte Disc	d Design Disc	Reserve	Dis Terr	c Dis Ip pl	ic H	

Name	Permit Number	Disc Flow (mgd)	Disc Flow (mgd)	Disc Flow (mgd)	Rese Fac	rve To tor (emp ⁰C)	pН
194		0.0000	0.0000	0.000) 0.	.000	25.00	7.00
	Par	ameter Dat	a					
	Parameter Name	Disc Conc	Trib	o Stre no Co	eam onc	Fate Coef		
	Farameter Name	(mg/L) (mg/	′L) (m	g/L)	(1/days)		
CBOD5		25.0	00 2	2.00	0.00	1.50		
Dissolved	Oxygen	3.0	30 OC	8.24	0.00	0.00		
NH3-N		25.0	00 O	0.00	0.00	0.70		

Version 1.1

	SWP Basin Stre	am Code		St	ream Name			
	17E	46692		AN	THONY RUN			
NH3-N	Acute Allocatio	ns						
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	ĺ
0.9:	20 Urling Mine 1&2	15.79	50	15.79	50	0	0	
NH3-N RMI	Chronic Allocat	ions Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
								2
0.92	20 Urling Mine 1&2	1.84	25	1.84	25	0	0	
0.9: Dissolv	ed Oxygen Allo	cations	CBOD5	1.84 NH3-N	25 Dissol	0 ved Oxvaer	0	-12
0.9: Dissolv RMI	20 Urling Mine 1&2 ed Oxygen Allo Discharge Na	1.84 cations me Basel (mg/	CBOD5 ine Multiple L) (mg/L)	1.84 <u>NH3-N</u> Baseline Mu (mg/L) (m	25 <u>Dissol</u> Iltiple Baselin g/L) (mg/L	0 <u>ved Oxyger</u> ne Multiple .) (mg/L)	0 <u>1</u> Critical 2 Reach I	- Percent Reductic

Version 1.1

					-							
	SW	P Basin	<u>Strea</u>	m Code				Stream	Name			
	i	17E	4	6692			A	NTHON	Y RUN			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.920	0.50	0.00	0.50	.0534	0.00700	.462	11	23.81	0.11	0.517	20.48	7.00
Q1-1	0 Flow											
0.920	0.32	0.00	0.32	.0534	0.00700	NA	NA	NA	0.09	0.644	20.72	7.00
Q30-	10 Flow	/										
0.920	0.68	0.00	0.68	.0534	0.00700	NA	NA	NA	0.13	0.441	20.36	7.00

WQM 7.0 Hydrodynamic Outputs

Thursday, May 13, 2021

Version 1.1

Attachment 2

TRC EVALUA	TION								
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9							
0.49	= Q stream (cfs)	0.5	= CV Daily					
0.0345	= Q discharg	je (MGD)	0.5	= CV Hourly					
30	= no. sample	18	1	= AFC_Partial Mix Factor					
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial Mix Factor					
0	= Chlorine D	emand of Discharge	15	= AFC Criteria Compliance Time (min)					
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)					
0	= % Factor of	of Safety (FOS)	0	=Decay Coeffic	cient (K)				
Source	Reference	AFC Calculations		Reference	CFC Calculations				
TRC	1.3.2.iii	WLA afc =	2.948	1.3.2.iii	WLA cfc = 2.866				
PENTOXSD TRG	DTRG 5.1a LTAMULT afc =			5.1c	LTAMULT cfc = 0.581				
PENTOXSD TRG	5.1b	LTA_afc=	1.098	5.1d	LTA_cfc = 1.666				
Source		Effluer	nt Limit Calcul	lations					
PENTOXSD TRG	5.1f		AML MULT =	1.231					
PENTOXSD TRG	5.1g	AVG MON	_IMIT (mg/l) =	0.500	BAT/BPJ				
		INST MAX	_IMIT (mg/l) =	1.635					
WLA afc	(.019/e(-k*Al + Xd + (AF)	FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10	/Qd*e(-k*AFC 0)	⊱tc))					
LTAMULT afc	EXP((0.5*LN		-1)^0.5)						
LTA_afc	wla_afc*LTA	MULT_afc							
WLA_cfc	(.011/e(-k*C) + Xd + (CF)	FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10	Qd*e(-k*CFC <u>-</u> 0)	_tc))					
LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.32	6*LN(cvd^2/n	o_samples+1)^(0.5)				
LTA_cfc	wla_cfc*LTA	MULT_cfc							
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.	5)-0.5*LN(cvd	^2/no_samples-	+1))				
AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfc)*AN	IL_MULT)						
INST MAX LIMIT	1.5*((av_moi	n_limit/AML_MULT)/LTAMUL	.T_afc)						