

Northwest Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Renewal

Non-Municipal

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0218138

APS ID 1040430

Authorization ID 1357153

Applicant Name	Armstrong County Industrial Development Authority	Facility Name	Armstrong County Industrial Development Authority STP
Applicant Address	402 East Market Street	Facility Address	374 Bable Road
	Kittanning, PA 16201-1409		Freeport, PA 16229
Applicant Contact	Justin Nolder, Business Manager (jrnolder@co.armstrong.pa.us)	Facility Contact	Justin Nolder, Business Manage (jrnolder@co.armstrong.pa.us)
Applicant Phone	(724) 548-1500	Facility Phone	(724) 548-1500
Client ID	132969	Site ID	518770
SIC Code	4952	Municipality	North Buffalo Township
SIC Description	Trans. & Utilities - Sewerage Systems	County	Armstrong
Date Application Rec	eived June 3, 2021	EPA Waived?	Yes
Date Application Acce	epted June 9, 2021	If No, Reason	

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

SPECIAL CONDITIONS: II. Solids Management

- A. Stormwater into Sewers
- B. Right of Way
- C. Solids Handling
- D. Public Sewerage Availability
- E. Batch Discharge
- F. Little Assimilative Capacity

There are no open violations in efacts associated with the subject Client ID (132969) as of 2/21/2024.

Approve	Deny	Signatures	Date
V		Stephen A. McCauley	2/24/2024
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	2/21/2024
			Okay to Draft
^		Vacant / Environmental Engineer Manager	JCD 2/26/2024

Outfall No. 001 Latitude 40° 45′ 29.84″ Quad Name -	Design Flow (MGD) Longitude	0.4
Latitude 40° 45′ 29.84″ Quad Name -	- ' '	0.4
Quad Name	Longitude	
· · · · · · · · · · · · · · · · · · ·		79° 36' 42.74"
	_ Quad Code	
Wastewater Description: Sewage Effluent		
Receiving Waters _ Nicholson Run (WWF)	Stream Code	46169
NHD Com ID 123860299	RMI	3.0
Drainage Area 2.62	Yield (cfs/mi²)	0.047
Q ₇₋₁₀ Flow (cfs) 0.123	Q ₇₋₁₀ Basis	calculated
Elevation (ft) 1026	Slope (ft/ft)	0.01559
Watershed No. 17-E	Chapter 93 Class.	WWF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Attaining Use(s)		
Cause(s) of Impairment		
Source(s) of Impairment		
TMDL Status	Name	
Background/Ambient Data	Data Source	
pH (SU) -	-	
Temperature (°F) -	-	
Hardness (mg/L) -	-	
Other:	-	
Nearest Downstream Public Water Supply Intake	Buffalo Township Municipal W	/ater Authority - Freeport
PWS Waters Allegheny River	Flow at Intake (cfs)	2,576
PWS RMI 30.0	Distance from Outfall (mi)	8.0

Sludge use and disposal description and location(s): Sludge is hauled to an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.4 MGD of treated sewage from an existing non-municipal STP in North Buffalo Township, Armstrong County.

Permitted treatment consists of: An influent pump station, mechanical screen, SBR treatment, and ultraviolet (UV) light (WQM Permit no. 0399404) disinfection. Sludge is pumped to the sludge holding tank, followed by the belt filter press.

1. Streamflow:

The yieldrate for the receiving stream at the Outfall was calculated from the Q₇₋₁₀ low flow and the drainage area of the nearest stream with a gage station:

Buffalo Creek near Freeport, PA - USGS Gage no. 03049000 (1976-1996):

Q₇₋₁₀: <u>6.37</u> cfs from StreamStats
Drainage Area: 137 sq. mi. from StreamStats

Yieldrate: 0.047 cfsm calculated

Buffalo Creek at Outfall 001:

Yieldrate: <u>0.047</u> cfsm calculated above Drainage Area: <u>2.62</u> sq. mi. from StreamStats

% of stream allocated: 100% Basis: No nearby discharges

Q₇₋₁₀: 0.123 cfs

2. Wasteflow:

Maximum discharge: 0.4 MGD = 0.61 cfs

Runoff flow period: 24 hours Basis: Runoff flow for an SBR

There is less than 3 parts stream flow (Q7-10) to 1 part effluent (design flow) at the discharge point. However, since this is an existing discharge, the more stringent treatment requirements cannot be achieved, and the receiving stream is not impaired by the discharge, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, will not be implemented in this NPDES Permit renewal.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, Phosphorus, NH₃-N, CBOD₅, Dissolved Oxygen, and Disinfection.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

b. <u>Total Suspended Solids</u>

Limits are 30.0 mg/l as a monthly average and 60.0 mg/l as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits.

c. Fecal Coliform

05/01 - 09/30: <u>200/100ml</u> (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: 2,000/100ml (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/quarter.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows greater than 0.05 MGD and

less than 1.0 MGD.

e. <u>Total Phosphorus</u>

The previous monitoring for Total Phosphorus will be retained in accordance with the SOP, based on Chapter 92a.61.

f. Total Nitrogen

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. Ammonia-Nitrogen (NH₃-N)

Median discharge pH to be used: 7.5 Standard Units (S.U.)

Basis: Average pH value from DMR summary

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 25°C (default value used for WWF modeling)

Background NH₃-N concentration: <u>0.1</u> mg/l

Basis: Default value.

Calculated NH₃-N Summer limits: 1.4 mg/l (monthly average)

2.8 mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: 4.2 mg/l (monthly average)

8.4 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated summer limits above (see Attachment 1), which are more

restrictive than in the previous NPDES Permit. The winter limits are calculated as three times the

summer limits. Since the new limits are attainable, they will be used with this renewal.

h. CBOD₅

Median discharge pH to be used: 7.5 Standard Units (S.U.)

Basis: Average pH value from DMR summary

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 25°C (default value used for WWF modeling)

Background CBOD₅ concentration: <u>2.0</u> mg/l

Basis: Default value

Calculated CBOD₅ Summer limits: <u>25.0</u> mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated limits above (see Attachment 1), which are the same as the

previous NPDES Permit and will be retained.

i. Dissolved Oxygen (DO)

A Dissolved Oxygen technology-based minimum of 5.0 mg/l is recommended by the WQ Model (see Attachment 1), and the SOP, based on Chapter 93.7, under the authority of Chapter 92a.61. Since the Dissolved Oxygen minimum of 5.0 mg/l is the same as in the previous permit, it will be retained with this renewal.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

j. <u>Disinfection</u>

□ Ultraviolet (UV) light monitoring

Total Residual Chlorine (TRC) limits: mg/l (monthly average)

mg/l (instantaneous maximum)

Basis: UV Transmittance (%) monitoring will be retained with this renewal.

The measurement frequency will remain as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations"

<u>(362-0400-001).</u>

4. Industrial/Commercial users:

Business Name	Business Type	Average Flow (gpd)
Sloan Brothers	Lubrication System	200
AP Services	Gasket Manufacturing	700
FLIR Systems	Military Applications	500

5. Reasonable Potential Analysis:

A Reasonable Potential Analysis was performed in accordance with State practices for Outfall 001 by the Department's Toxics Management Spreadsheet (see Attachment 2).

Result: The discharge concentrations for the following parameters were found to be greater than 10% of the calculated WQBELs:

Parameter	Discharge Conc. (mg/l)	WQBEL (mg/l)	%WQBEL
Total Copper	<0.02	0.011	>50%
Total Lead	<0.02	0.004	>50%
Total Zinc	<0.02	0.12	>10%

Per the SOP, a survey letter (see Attachment 3) was sent via email on March 29, 2022 to provide the Permittee a chance to collect additional samples for the parameters above using the target QLs. A response email was received on January 26, 2024 (see Attachment 3) with the required sampling.

The Department's Toxics Management Spreadsheet was revised with the new sampling (see Attachment 4) and the following parameters were found to be greater than 10% of the calculated WQBELs:

Parameter	Discharge Conc. (mg/l)	WQBEL (mg/l)	%WQBEL
Total Copper	0.021	0.011	>50%
Total Zinc	<0.02	0.12	>10%

Per the SOP, since the maximum discharge concentration for Total Copper was greater than 50% of the calculated WQBEL, a new limit will be added with a three year compliance schedule.

Also, per the SOP, since the maximum discharge concentration for Total Zinc was greater than 10% of the calculated WQBEL, 1/quarter monitoring will be set with the NPDES Permit renewal.

6. Reasonable Potential for Downstream Public Water Supply (PWS):

The Reasonable Potential Analysis performed above does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). Since the sample data was provided, mass-balance calculations were performed (see below).

Nearest Downstream potable water supply (PWS): <u>Buffalo Township Municipal Water Authority - Freeport</u>
Distance downstream from the point of discharge: 8.0 miles (approximate)

Parameter	PWS Criteria (mg/l)	Discharge Maximum (mg/l)
TDS	500	434
Chloride	250	231
Bromide	1.0	1.39
Sulfate	250	52.3

Result: Since none of the parameters are discharged at a concentration significantly greater than the criteria at the PWS, and the PWS is located on the Allegheny River with a lot of available dilution, no limits or monitoring are necessary.

7. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

8. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - Toxics Management Spreadsheet - Pre-Survey

Attachment 3 - Pre-Draft Survey Letter and Responses

Attachment 4 - Toxics Management Spreadsheet - Post-Survey

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from January 1, 2023 to December 31, 2023)

Parameter	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23
Flow (MGD)												
Average Monthly	0.0198	0.0216	0.0189	0.0228	0.00254	0.0193	0.0146	0.02267	0.0224	0.0274	0.00195	0.0506
pH (S.U.)												
Minimum	7.41	7.19	7.58	7.91	7.60	7.27	7.65	7.2	7.2	7.04	6.79	7.09
pH (S.U.)												
Maximum	7.51	7.93	8.05	8.1	8.0	7.98	8.22	8.0	8.0	7.27	7.35	7.24
DO (mg/L)												
Minimum	9.86	7.2	5.96	8.6	8.9	8.46	8.7	8.09	10.58	10.74	11.28	11.65
CBOD5 (lbs/day)												
Average Monthly	< 0.7	< 3.29	< 0.2	< 0.30	< 0.05	< 0.50	< 0.30	< 0.50	< 0.60	< 0.7	< 0.05	< 2.03
CBOD5 (lbs/day)												
Weekly Average	< 0.7	6.00	< 0.2	< 0.40	< 0.07	< 0.80	< 0.40	< 0.80	< 1.0	1.3	< 0.05	< 6.6
CBOD5 (mg/L)												
Average Monthly	< 3.1	< 9.7	< 3.0	< 3.0	< 3.0	< 3.0	< 4.1	< 3.3	< 3.0	< 3.3	< 3.0	< 3.0
CBOD5 (mg/L)												
Weekly Average	3.2	< 36.7	< 3.0	< 3.0	< 3.0	< 3.0	7.4	4.6	< 3.0	4.2	3.0	< 3.0
TSS (lbs/day)												
Average Monthly	< 0.7	< 1.0	< 0.2	< 0.30	< 0.05	< 0.50	< 0.30	< 0.60	< 0.60	< 0.70	< 0.05	< 2.0
TSS (lbs/day)												
Weekly Average	< 0.7	1.5	< 0.2	< 0.40	< 0.07	< 0.80	< 0.40	< 0.80	< 1.0	< 0.90	< 0.05	< 6.6
TSS (mg/L)												
Average Monthly	< 3.3	4.2	< 3.6	< 3.0	< 3.0	< 3.2	< 3.0	< 3.8	< 3.0	< 3.0	< 3.0	< 3.0
TSS (mg/L)												
Weekly Average	4.0	9.0	6.0	< 3.0	< 3.0	< 3.0	< 3.0	6.0	3.0	3.0	3.0	< 3.0
Fecal Coliform (CFU/100 ml)												
Geometric Mean	< 1.0	< 1.0	< 3.0	< 1.0	< 6.0	< 9.0	< 4.0	< 11.00	< 5.0	< 6.0	5.0	14.0
UV Transmittance (%)												
Average Monthly	0.4	0.40	0.4	0.40	0.40	0.3	0.30	0.30	0.30	0.30	0.3	0.30
UV Transmittance (%)												
Weekly Average	0.4	0.40	0.4	0.40	0.40	0.3	0.30	0.30	0.30	0.30	0.3	0.30
Ammonia (lbs/day)												
Average Monthly	< 0.1	< 1.7	< 0.006	< 0.01	< 0.004	< 0.02	< 0.01	< 0.02	< 0.02	< 1.1	< 0.002	< 5.4
Ammonia (lbs/day)												
Weekly Average	0.2	3.3	< 0.006	< 0.01	0.008	0.03	< 0.01	0.04	0.04	0.07	0.003	26.9
Ammonia (mg/L)												
Average Monthly	< 0.8	< 4.1	< 4.5	< 1.6	< 0.30	< 0.10	< 0.10	< 0.10	< 0.10	< 0.20	< 0.10	< 2.7
Ammonia (mg/L)												
Daily Maximum			13.1	5.1	0.71	0.18	0.12	0.22				
Ammonia (mg/L)												
Weekly Average	2.0	20.2							0.20	0.3	0.2	2.7

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through March 31, 2027.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	xxx	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
CBOD5	83.4	125.1	XXX	25.0	37.5	50	1/week	8-Hr Composite
TSS	100.0	151.1	XXX	30.0	45.0	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
UV Transmittance (%)	XXX	XXX	XXX	Report	Report	XXX	1/day	Measured
Total Nitrogen	XXX	XXX	XXX	XXX	Report Annl Avg	XXX	1/year	8-Hr Composite
Ammonia Nov 1 - Apr 30	14.0	21.0	XXX	4.2	6.3	8.4	1/week	8-Hr Composite
Ammonia May 1 - Oct 31	4.6	7.0	XXX	1.4	2.1	2.8	1/week	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	XXX	Report Annl Avg	XXX	1/year	8-Hr Composite
Total Copper	Report	Report	XXX	Report	Report	XXX	1/week	8-Hr Composite

Outfall 001, Continued (from Permit Effective Date through March 31, 2027)

			Monitoring Red	quirements				
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
Parameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample .
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Type
	Report	Report		Report	Report			8-Hr
Total Zinc	Avg Qrtly	Daily Max	XXX	Avg Qrtly	Daily Max	XXX	1/quarter	Composite

Compliance Sampling Location: at Outfall 001, after ultraviolet (UV) light disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliform are technology based on Chapter 92a.47. Monitoring for E. Coli, UV Transmittance, Total Nitrogen, Total Phosphorus, Total Copper, and Total Zinc is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: April 1, 2027 through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Darameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Required Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
CBOD5	83.4	125.1	XXX	25.0	37.5	50	1/week	8-Hr Composite
TSS	100.0	151.1	XXX	30.0	45.0	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
UV Transmittance (%)	XXX	XXX	XXX	Report	Report	XXX	1/day	Measured
Total Nitrogen	XXX	XXX	XXX	XXX	Report Annl Avg	XXX	1/year	8-Hr Composite
Ammonia Nov 1 - Apr 30	14.0	21.0	XXX	4.2	6.3	8.4	1/week	8-Hr Composite
Ammonia May 1 - Oct 31	4.6	7.0	XXX	1.4	2.1	2.8	1/week	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	XXX	Report Annl Avg	XXX	1/year	8-Hr Composite
Total Copper	0.036	0.054	XXX	0.011	0.016	0.022	1/week	8-Hr Composite

Outfall 001, Continued (from April 1, 2027 through Permit Expiration Date)

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum (2)	Required		
Parameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample .
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Type
	Report	Report		Report	Report			8-Hr
Total Zinc	Avg Qrtly	Daily Max	XXX	Avg Qrtly	Daily Max	XXX	1/quarter	Composite

Compliance Sampling Location: <u>at Outfall 001, after ultraviolet (UV) light disinfection.</u>

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliform are technology based on Chapter 92a.47. Monitoring for E. Coli, UV Transmittance, Total Nitrogen, Total Phosphorus, and Total Zinc is based on Chapter 92a.61. The limits for Total Copper are water quality-based on Chapter 16. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7.

Attachment 1

WQM 7.0 Effluent Limits

	11 <u> </u>	<u>m Code</u> 6169		Stream Name NICHOLSON R	X		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
3.000	ACIDA STP	PA0218138	0.400	CBOD5	25		
				NH3-N	1.46	2.92	
				Dissolved Oxygen			5

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
17E	46169		ı	IICHOLSON RUN	
<u>RMI</u>	Total Discharge	Flow (mgd	<u>) Ana</u>	lysis Temperature (°C)	Analysis pH
3.000	0.400)		25.000	7.367
Reach Width (ft)	Reach Dep	oth (ft)		Reach WDRatio	Reach Velocity (fps)
9.751	0.481	1		20.253	0.158
Reach CBOD5 (mg/L)	Reach Kc (<u>1/days)</u>	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
21.18	1.420			1.22	1.029
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
5.422	27.44	4		Owens	5
Reach Travel Time (days)		Subreach	Results		
1.160	Tra∨Time	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.116	17.22	1.08	6.36	
	0.232	14.00	0.96	6.74	
	0.348	11.38	0.85	7.04	
	0.464	9.25	0.75	7.28	
	0.580	7.52	0.67	7.47	
	0.696	6.11	0.59	7.54	
	0.812	4.97	0.53	7.54	
	0.928	4.04	0.47	7.54	
	1.044	3.28	0.42	7.54	
	1.160	2.67	0.37	7.54	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Input Data WQM 7.0

					p	ut Duti	u • • • • • •	11.7.19						
	SWP Basin			Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slop (ft/ft	With	WS drawal ngd)	Appl FC
	17E	461	169 NICHO	DLSON R	UN		3.0	00	1026.00	2.62	2 0.000	000	0.00	~
					St	tream Dat	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np pH	į	<u>Strea</u> Temp	<u>m</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.047	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	25.00 7	.00	0.00	0.00	
					D	ischarge	Data						1	
			Name	Per	rmit Numbe	Disc	Permitt Disc Flow (mgd	Dis Flo	c Res	serve Te ictor	isc mp C)	Disc pH		
		ACID	A STP	PA	0218138	0.400	0.000	0.0	0000	0.000	25.00	7.50	-	
					P	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				i ai airiele	1 IVAIIIC	(m	ng/L) (r	mg/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

					шр	ut Date	a vvogi	VI 7 .U						
	SWP Basin			Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PV Witho (m	Irawal	App F0
	17E	46	169 NICH	DLSON R	UN		0.0	00	779.00	6.86	0.0000	0	0.00	V
					St	ream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Τe	<u>Strear</u> emp	<u>n</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(6	C)		
Q7-10 Q1-10 Q30-10	0.047	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	5.00 7.	00	0.00	0.00	
					Di	ischarge	Data						1	
			Name	Per	rmit Numbe	Disc	Permitt Disc Flow (mgd	Dis Flo	c Res	Dis serve Ter actor (°C	np	Disc pH		
						0.000	0 0.00	00 0.0	0000	0.000	0.00	7.00		
					P	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
						(m	ng/L) (i	mg/L)	(mg/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	<u>sw</u>	P Basin	Strea	m Code		<u>Stream Name</u>							
		17E	4	6169			NI	CHOLS	ON RUN				
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-1	0 Flow												
3.000	0.12	0.00	0.12	.6188	0.01559	.481	9.75	20.25	0.16	1.160	25.00	7.37	
Q1-1	0 Flow												
3.000	0.08	0.00	0.08	.6188	0.01559	NA	NA	NA	0.15	1.201	25.00	7.41	
Q30-	10 Flow	•											
3.000	0.17	0.00	0.17	.6188	0.01559	NA	NA	NA	0.16	1.123	25.00	7.34	

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
17E	46169	NICHOLSON RUN

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
3.00	ACIDA STP	7	7.89	7	7.89	0	0
H3-N (Chronic Allocat	ions					
H3-N (Chronic Allocat Discharge Name	ions Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBC	DD5	<u>NH</u>	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
3.00	ACIDA STP	25	25	1.46	1.46	5	5	0	0

Attachment 2

Toxics Management Spreadsheet Version 1.3, March 2021

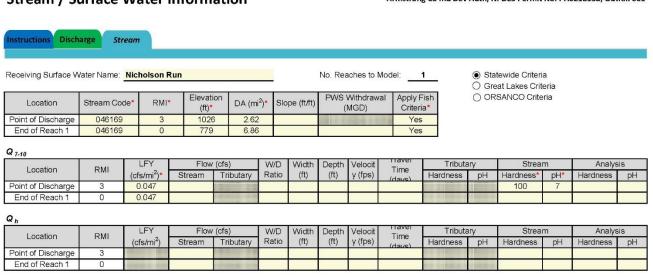
Discharge Information

Instructions	Discharge Strea	m		
Facility:	Armstrong Co Ind Dev	/ Auth	NPDES Permit No.: PA0218138	Outfall No.: 001
Evaluation T	ype: Major Sewage	e / Industrial Waste	Wastewater Description: Sewage	

	Discharge Characteristics											
Design Flow	Hardware (mar/l)*	pH (SU)*	F	Partial Mix Fa	Complete Mix Times (min)							
(MGD)*	Hardness (mg/l)*		AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h				
0.4	100	6.8										

						t blank	0.5 if le	eft blank	0	if left blan	k	1 if left blank	
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		434									
1	Chloride (PWS)	mg/L		231									
Group	Bromide	mg/L		1.39									
$\bar{\mathfrak{o}}$	Sulfate (PWS)	mg/L		52.3									
4505	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L											
	Total Antimony	μg/L											
	Total Arsenic	μg/L											
	Total Barium	μg/L											
	Total Beryllium	μg/L											
	Total Boron	μg/L											
	Total Cadmium	μg/L											
	Total Chromium (III)	μg/L											
	Hexavalent Chromium	μg/L											
	Total Cobalt	μg/L											
	Total Copper	mg/L	<	0.02									
10	Free Cyanide	μg/L											
💆	Total Cyanide	μg/L											
	Dissolved Iron	μg/L											
-	Total Iron	μg/L											
	Total Lead	mg/L	<	0.02									
	Total Manganese	μg/L											
	Total Mercury	μg/L											
	Total Nickel	μg/L											
	Total Phenols (Phenolics) (PWS)	μg/L											
	Total Selenium	μg/L											
	Total Silver	μg/L											
	Total Thallium	μg/L											
	Total Zinc	mg/L	<	0.02									
	Total Molybdenum	μg/L											
\Box	Acrolein	μg/L	<										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<										
	Benzene	μg/L	<										
	Bromoform	μg/L	<										

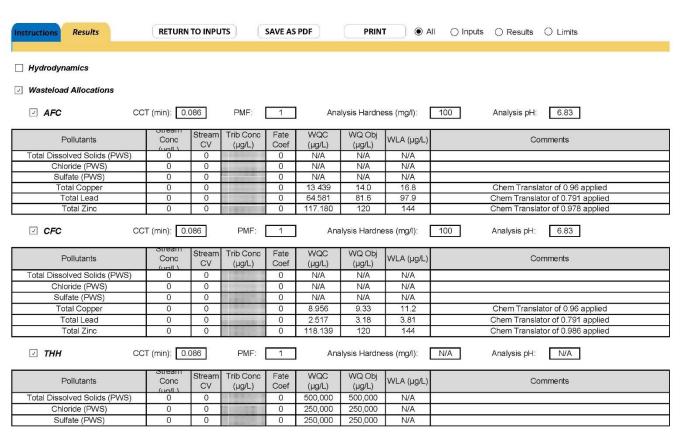
1	Caula au Tatra alala viala						
	Carbon Tetrachloride	μg/L	<	 		_	
	Chlorobenzene	μg/L				_	
	Chlorodibromomethane	μg/L	<				
	Chloroethane	μg/L	<		14		
	2-Chloroethyl Vinyl Ether	μg/L	<				
	Chloroform	μg/L	<				
	Dichlorobromomethane	μg/L	<				
	1,1-Dichloroethane	μg/L	<				
₆	1,2-Dichloroethane	μg/L	<				
Group	1,1-Dichloroethylene	μg/L	<				
₫	1,2-Dichloropropane	μg/L	<				
ַֿס	1,3-Dichloropropylene	μg/L	<				
	1.4-Dioxane	μg/L	<			_	
	Ethylbenzene	μg/L	<	+ + +	-	-	
1	Methyl Bromide	μg/L	<	 		-	
	·		<				
	Methyl Chloride	μg/L		- 		-	
	Methylene Chloride	μg/L	<			_	
1	1,1,2,2-Tetrachloroethane	μg/L	<			_	
1	Tetrachloroethylene	μg/L	<				
	Toluene	μg/L	<				
1	1,2-trans-Dichloroethylene	μg/L	<				
	1,1,1-Trichloroethane	μg/L	<				
	1,1,2-Trichloroethane	μg/L	<				
1	Trichloroethylene	μg/L	<				
	Vinyl Chloride	μg/L	<				
	2-Chlorophenol	μg/L	<				
	2,4-Dichlorophenol	μg/L	<				
	2,4-Dimethylphenol	μg/L	<	 		-	
	4,6-Dinitro-o-Cresol	μg/L	<			-	
4			<			-	
Group	2,4-Dinitrophenol	μg/L					
2	2-Nitrophenol	μg/L	<				
	4-Nitrophenol	μg/L	<				
	p-Chloro-m-Cresol	μg/L	<			_	
	Pentachlorophenol	μg/L	<				
	Phenol	μg/L	<				
	2,4,6-Trichlorophenol	μg/L	<				
	Acenaphthene	μg/L	<				
	Acenaphthylene	μg/L	<				
	Anthracene	μg/L	<				
	Benzidine	μg/L	<				
	Benzo(a)Anthracene	μg/L	<				
1	Benzo(a)Pyrene	μg/L	<				
1	3,4-Benzofluoranthene	μg/L	<				
1	Benzo(ghi)Perylene	μg/L	<				
1	Benzo(k)Fluoranthene	µg/L	<				
1	Bis(2-Chloroethoxy)Methane	μg/L	<				
1	Bis(2-Chloroethyl)Ether	μg/L	<				
l				+ + +	+	-+	
1	Bis(2-Chloroisopropyl)Ether	μg/L	<				
1	Bis(2-Ethylhexyl)Phthalate	μg/L	<				
1	4-Bromophenyl Phenyl Ether	μg/L	<				
1	Butyl Benzyl Phthalate	μg/L	<				
1	2-Chloronaphthalene	μg/L	<				
1	4-Chlorophenyl Phenyl Ether	μg/L	<				
1	Chrysene	μg/L	<				
1	Dibenzo(a,h)Anthrancene	μg/L	<				
1	1,2-Dichlorobenzene	μg/L	<				
1	1,3-Dichlorobenzene	μg/L	<				
S.	1,4-Dichlorobenzene	μg/L	<				
p 6	3,3-Dichlorobenzidine	μg/L	<				
Group	Diethyl Phthalate	μg/L	<				
ច	Dimethyl Phthalate		<				
1	Di-n-Butyl Phthalate	μg/L	<				
1		μg/L					
	2,4-Dinitrotoluene	μg/L	<				


	2.6 Dinitratalyana	ua/l					
	2,6-Dinitrotoluene	μg/L	<				
	Di-n-Octyl Phthalate	μg/L	<				
	1,2-Diphenylhydrazine	μg/L	<				
	Fluoranthene	μg/L	. 10				
	Fluorene	μg/L	<				
	Hexachlorobenzene	μg/L	<				
	Hexachlorobutadiene	μg/L	<				
	Hexachlorocyclopentadiene	μg/L	<				
	Hexachloroethane	μg/L	<				
	Indeno(1,2,3-cd)Pyrene	μg/L	<				
	Isophorone	μg/L	<				
	Naphthalene	μg/L	<				
	Nitrobenzene	μg/L	<				
	n-Nitrosodimethylamine	μg/L	<				
	n-Nitrosodi-n-Propylamine	µg/L	<				
	n-Nitrosodiphenylamine	μg/L	<				
	Phenanthrene	μg/L	<				
			<				
	Pyrene 1,2,4-Trichlorobenzene	μg/L	<				
_	The Control of The Co	μg/L					
	Aldrin	μg/L	<				
	alpha-BHC	μg/L	<				
	beta-BHC	μg/L	<				
	gamma-BHC	μg/L	<				
	delta BHC	μg/L	<				
	Chlordane	μg/L	<				
	4,4-DDT	μg/L	<				
	4,4-DDE	μg/L	<				
	4,4-DDD	μg/L	<				
	Dieldrin	µg/L	<				
	alpha-Endosulfan	µg/L	<				
	beta-Endosulfan	µg/L	<				
0	Endosulfan Sulfate	μg/L	<				
e dno e	to the territory and the terri		_				
2	Endrin	μg/L	<				
פ	Endrin Aldehyde	μg/L	<				
	Heptachlor	μg/L	<				
	Heptachlor Epoxide	μg/L	<				
	PCB-1016	μg/L	<				
	PCB-1221	μg/L	<				
	PCB-1232	μg/L	<				
	PCB-1242	μg/L	<				
	PCB-1248	μg/L	<				
	PCB-1254	μg/L	<				
	PCB-1260	µg/L	<				
	PCBs, Total	µg/L	<				
	Toxaphene	µg/L	<				
	2,3,7,8-TCDD	ng/L	<				
	Gross Alpha	pCi/L	_				
			1.2				
	Total Beta	pCi/L	<				
dnos	Radium 226/228	pCi/L	<				
ž	Total Strontium	μg/L	<				
	Total Uranium	μg/L	<				
	Osmotic Pressure	mOs/kg					
		1					

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Armstrong Co Ind Dev Auth, NPDES Permit No. PA0218138, Outfall 001



Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Armstrong Co Ind Dev Auth, NPDES Permit No. PA0218138, Outfall 001

Model Results 2/21/2024 Page 5

NPDES Permit Fact Sheet Armstrong County Ind Development Authority STP

Total Copper	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	

☑ CRL CCT (min): 0.751 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass Limits		Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.037	56.0	0.011	16.8	16.8	mg/L	0.011	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Lead	0.013	0.02	0.004	0.006	0.01	mg/L	0.004	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	mg/L	0.12	AFC	Discharge Conc > 10% WQBEL (no RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable

2/21/2024 Model Results Page 6 Attachment 3

March 29, 2022

Justin Nolder (<u>irnolder@co.armstrong.pa.us</u>)
Armstrong County Industrial Development Authority
187 Northpointe Boulevard Technology Center 2
Freeport, PA 16229

Re: Draft NPDES Permit - Sewage

Armstrong County Industrial Development Authority STP

Application No. PA0218138 Authorization ID No. 1357153

North Buffalo Township, Armstrong County

Dear Justin Nolder:

The Department of Environmental Protection (DEP) has reviewed your NPDES permit application and has reached a preliminary finding that new or more stringent water quality-based effluent limitations (WQBELs) for toxic pollutant(s) should be established in the permit. This finding is based on DEP's assessment that reasonable potential exists to exceed water quality criteria under Chapter 93 in the receiving waters during design flow conditions. The following WQBELs are anticipated based on the information available to DEP during its review:

	Maximum	O.I.	TD.	Proposed WQBELs			
Pollutant	Discharge Concentration (µg/L)	QL Used (μg/L)	Target QL (µg/L)	Average Monthly (µg/L)	Instantaneous Maximum (µg/L)		
Total Copper	< 20	< 20	4.0	11.2	22.4		
Total Lead	< 20	< 20	1.0	3.8	7.6		

Attached is a survey that DEP requests that you complete and return to DEP in 30 days. Completion of this survey will help DEP develop the draft NPDES permit and allow DEP to understand your current capabilities or plans to treat or control these pollutant(s). If you decide not to complete and return the survey, DEP will proceed with developing the draft NPDES permit based on all available information and certain assumptions. Your response to this notice does not constitute an official comment for DEP response but will be taken under consideration. When the draft NPDES permit is formally noticed in the *Pennsylvania Bulletin*, you may make official comments for DEP's further consideration and response.

In addition to completion of the survey, you may elect to collect a minimum of four (4) additional effluent samples, as 24-hour composites, and have the samples analyzed for the pollutant(s) identified above, using a quantitation limit (QL) that is no greater than the Target QLs identified in the permit application. The samples should be collected at least one week

Justin Nolder - 2 -

apart. If you elect this option, please check the appropriate box on the survey and return the survey to DEP. Review of your application will remain on hold until the additional sampling results are provided to DEP.

If you have any questions, please contact me at 814.332.6136.

Sincerely,

Stephen A. McCauley

Stephen A. McCauley, E.I.T. Environmental Engineering Specialist Clean Water Program

Enclosures

cc: Joshua James, Young & Associates (jjames@wjyaengineers.com)

Monitoring and Compliance

File

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PRE-DRAFT PERMIT SURVEY FOR TOXIC POLLUTANTS

Permittee N	me: Armstrong County Industrial Development Authority	Permit No.: PA0218138
Pollutant(s)	dentified by DEP that may require WQBELs:	
Is the permi	ee aware of the source(s) of the pollutant(s)?	o Suspected
If Yes or Su	pected, describe the known or suspected source(s) of pollutant(s)	in the effluent.
Has the per	nittee completed any studies in the past to control or treat the pollu	tant(s)?
	be prior studies and results:	
ii res, desc	be prior studies and results.	
Does the pe	mittee believe it can achieve the proposed WQBELs now?	∕es ☐ No ☐ Uncertain
If No, descr	e the activities, upgrades or process changes that would be neces	sary to achieve the WQBELs, if known.
Estimated d	te by which the permittee could achieve the proposed WQBELs:	☐ Uncertain
Will the peri	ittee conduct additional sampling for the pollutant(s) to supplemen	t the application?
	propriate box(es) below to indicate site-specific data that have been edata have <u>not</u> been submitted to DEP, please attach to this surve	
Discha	ge pollutant concentration coefficient(s) of variability	Year(s) Studied:
☐ Discha	ge and background Total Hardness concentrations (metals)	Year(s) Studied:
☐ Backg	ound / ambient pollutant concentrations	Year(s) Studied:
☐ Chemi	al translator(s) (metals)	Year(s) Studied:
Slope	nd width of receiving waters	Year(s) Studied:
☐ Veloci	of receiving waters at design conditions	Year(s) Studied:
☐ Acute	nd/or chronic partial mix factors (mixing at design conditions)	Year(s) Studied:
☐ Volatili	ation rates (highly volatile organics)	Year(s) Studied:
☐ Site-sp	ecific criteria (e.g., Water Effect Ratio or related study)	Year(s) Studied:

Please submit this survey to the DEP regional office that is reviewing the permit application within 30 days of receipt.

RE: [External] FW: Armstrong County Industrial Development Authority STP (NPDES Permit No. PA0218138 - Auth ID No. 1357153)

Ryan Jones <ri>rjones@cwmenvironmental.com>

Thu 1/26/2023 11:11 AM

To:McCauley, Stephen <smccauley@pa.gov>;losh James <jjames@wjyaengineers.com> CcAaron Serene <aserene@cwmenvironmental.com>;Darin D. Alviano <ddalviano@co.armstrong.pa.us>; giskamai@co.armstrong.pa.us <giskamai@co.armstrong.pa.us>

1 attachments (6 MB)

Armstronggodf;

Sorry, guys this testing was completed back in August 2022. The results are attached.

Ryan C. Jones

Director of Operations CWM Environmental 101 Parkview Drive Ext Kittanning, PA 16201 o. 724-543-3011 x114 c. 724-525-0748 f. 724-543-6768 www.cwmenvironmental.com

Turning Data Into Solutions

Confidentiality Note: This essail and any attachments are confidential and may be protected by legal priviledge. If you are not the intended recipient, be aware that any disclosure, copying, distribution, or use of this essail or any attachment is prohibited. If you have received this essail in error, please notify as immediately by returning it to the sender and delete this copy from your system. Thank Fou

From: McCauley, Stephen <smccauley@pa.gov> Sent: Thursday, January 26, 2023 8:40 AM

To: Josh James < jjames@wjyaengineers.com>

Cc: Ryan Jones <rjones@cwmenvironmental.com>; Aaron Serene <aserene@cwmenvironmental.com>; Darin D.

Alviano <ddalviano@co.armstrong.pa.us>; gjslamai@co.armstrong.pa.us

Subject: Re: [External] FW: Armstrong County Industrial Development Authority STP (NPDES Permit No.

PA0218138 - Auth ID No. 1357153)

Has the pre-draft sampling been performed for the Armstrong County Industrial Development Authority STP, yet?

Stephen A. McCauley, E.I.T. | Environmental Engineering Specialist

Department of Environmental Protection

Clean Water Program | Northwest Regional Office

230 Chestnut Street | Meadville, PA 16335 Phone: 814-332-6136 | Fax: 814-332-6121

www.dep.pa.gov

From: Josh James < jjames@wjyaengineers.com >

Sent: Monday, July 11, 2022 7:35 AM

To: McCauley, Stephen < smccauley@pa.gov>

Cc: Ryan Jones <<u>rijones@cwmenvironmental.com</u>>; Aaron Serene <<u>aserene@cwmenvironmental.com</u>>; Darin D. Alviano <<u>ddalviano@co.armstrong.pa.us</u>>; <u>gjskamai@co.armstrong.pa.us</u>
Subject: RE: [External] FW: Armstrong County Industrial Development Authority STP (NPDES Permit No.

PA0218138 - Auth ID No. 1357153)

Ryan,

Please keep us informed as the sampling progresses.

Thanks.

Josh

From: McCauley, Stephen < smccauley@pa.gov>

Sent: Friday, July 8, 2022 12:22 PM

To: Josh James < jjames@wjyaengineers.com>

Cc: Ryan Jones rjones@cwmenvironmental.com; Aaron Serene aserene@cwmenvironmental.com; Darin D.

Alviano < ddalviano@co.armstrong.pa.us >; gjskamai@co.armstrong.pa.us

Subject: Re: [External] FW: Armstrong County Industrial Development Authority STP (NPDES Permit No.

PA0218138 - Auth ID No. 1357153)

The Department encourages the pre-draft sampling be performed in the event that using the target QLs might eliminate the

need for monitoring or limits for the parameters in the NPDES permit.

Please perform the sampling and keep me up to date on its progress.

Stephen A. McCauley, E.I.T. | Environmental Engineering Specialist

Department of Environmental Protection

Clean Water Program | Northwest Regional Office

230 Chestnut Street | Meadville, PA 16335

Phone: 814-332-6136 | Fax: 814-332-6121

www.dep.pa.gov

From: Josh James < jjames@wjyaengineers.com >

Sent: Friday, July 8, 2022 7:32 AM

To: McCauley, Stephen < smccauley@pa.gov>

Cc: Ryan Jones < rjones@cwmenvironmental.com >; Aaron Serene < aserene@cwmenvironmental.com >; Darin D.

Alviano <ddalviano@co.armstrong.pa.us>; giskamai@co.armstrong.pa.us <gjskamai@co.armstrong.pa.us>

Subject: RE: [External] FW: Armstrong County Industrial Development Authority STP (NPDES Permit No.

PA0218138 - Auth ID No. 1357153)

Good morning, Stephen.

CWM Environmental just took over operations at the Industrial Development STP. The new operator would like to set-up sampling for total lead and total copper as mentioned in your March 29, 2022 letter;

and in anticipation for those new limits to be imposed at the plant. They'd like to get those samples started asap if the Department will permit that since we are outside the 30-day comment period. The 24-hour composite sampling could be set-up almost immediately and would be finished after the 4 week sampling period, with the results and summary ready to submit back to the Department along with the "Pre-Draft" permit survey early to mid-August.

if this is acceptable to the Department, please advise so that sampling can commence. If this is not acceptable, then I would assume the Department would just issue the draft permit. I would recommend that CWM perform the sampling either way.

Thanks in advance.

Josh

Joshua T. Jarnes, P.E.
Vice President
Young & Associates
2039 South 6th Street
Indiana, PA 15701
Email: Ilames@wiyaengineers.com

Website: www.wiysengineers.com O: (724) 463-7090, Ext. 119 F: (724) 463-7092

M: (724) 422 - 6438 YOUNG & ASSOCIATES

From: McCauley, Stephen <smccauley@pa.gov>

Sent: Tuesday, July 5, 2022 11:08 AM

To: Josh James < jjames@wiyaengineers.com>; Darin D. Alviano < <u>ddalviano@co.armstrong.pa.us</u>>
Subject: Re: [External] FW: Armstrong County Industrial Development Authority STP (NPDES Permit No. PA0218138 - Auth ID No. 1357153)

I still have not received the pre-draft survey for the Armstrong County Industrial Development Authority STP.

In addition, if any sampling is going to be performed, please let me know so I can plan for the results.

Stephen A. McCauley, E.I.T. | Environmental Engineering Specialist

Department of Environmental Protection

Clean Water Program | Northwest Regional Office

230 Chestnut Street | Meadville, PA 16335 Phone: 814-332-6136 | Fax: 814-332-6121

www.dep.ga.gov

From: Josh James < ijames@wiyaengineers.com>

Sent: Tuesday, May 31, 2022 1:58 PM

To: Darin D. Alviano <ddalvia no@co.armstrong.pa.us>

Cc: McCauley, Stephen < smccauley@pa.gov>

Subject: [External] FW: Armstrong County Industrial Development Authority STP (NPDES Permit No. PA0218138 -

Auth ID No. 1357153)

ATTENTION: This email message is from an external sender. Do not open links or attachments from unknown sources. To report suspicious email, forward the message as an attachment to CWOPA SPAM@pa.gov.

Darin,

Can you please read the email below and the attached survey letter and get back to Stephen at DEP?

Let me know if you have any questions.

Thanks.

Josh

Joshua T. James, P.E. Vice President Young & Associates 2039 South 6th Street Indiana, PA 15701

Email: <u>Ilames@wivaengineers.com</u>
Website: <u>www.wiyaengineers.com</u>
O: (724) 463-7090, Ext. 119

F: (724) 463-7092

From: McCauley, Stephen <smccauley@pa,gov>

Sent: Tuesday, March 29, 2022 1:42 PM

To: jrnolder@co.armstrong.pa.us; Josh James <jjames@wjyaengineers.com>

Subject: Armstrong County Industrial Development Authority STP (NPDES Permit No. PA0218138 - Auth ID No. 1357153)

The following email is regarding the permit renewal application for an Individual NPDES Sewage permit that the Department of Environmental Protection received on June 3, 2021 for the Armstrong County Industrial Development Authority STP located at 374 Bable Road, Freeport, PA 16229 in North Buffalo Township, Armstrong County (NPDES Permit No. PA0218138 - Auth ID No. 1357153).

In lieu of sending paper copies, the Department would like to know if emailing the NPDES Draft Permit documents would be acceptable? If so, we request that you please respond to this email as soon as possible.

In addition, based on the Department's Standard Operating Procedure (SOP) for Sewage Individual NPDES Permit Applications, a Pre-Draft Survey Letter has been attached to this email. Please review the Pre-Draft Survey Letter, complete the included survey, and return the survey to me at this email.

Thank you for your cooperation.

Stephen A. McCauley, E.I.T. | Environmental Engineering Specialist Department of Environmental Protection Clean Water Program | Northwest Regional Office 230 Chestnut Street | Meadville, PA 16335 Phone: 814-332-6136 | Fax: 814-332-6121

www.dep.pa.gov

101 Parkview Drive Ext. Kittanning, Pennsylvania 16201 724-543-3011 Lab # 03-457

Lab Analysis Report

Customer: Armstrong County Industrial Development

Project: North Point L & C Study **Sample: Effluent Composite** Collection Method: Composite Sample Number: 22G2038-01 Collection: 07/18/2022 09:00 Received: 07/18/2022 14:20

Matrix: NPW

Cert Analyte	Result	RL	Units	Prep Date	Analysis Date	Analyst	Method
Metals							
Copper	0.016	0.002	mg/L	07/21/2022 08:30	07/21/2022 16:41	ВМС	EPA 200.7
Lead	<1.00	1.00	μg/ L	07/23/2022 10:31	07/23/2022 13:45	MTW	EPA 200.8

Paul Bookmyer, Technical Director

PA DEP/TNI Accreditation # 03-00457. All analytes accredited unless otherwise specified.

101 Parkview Drive Ext. Kittanning, Pennsylvania 16201 724-543-3011 Lab # 03-457

Lab Analysis Report

Customer: Armstrong County Industrial Development

Project: North Point L & C Study **Sample: Effluent Composite** Collection Method: Composite Sample Number: 22G2574-01 Collection: 07/25/2022 09:30 Received: 07/25/2022 14:10

Matrix: NPW

Cert Analyte	Result	RL	Units	Prep Date	Analysis Date	Analyst	Method	
Metals								
Copper	0.015	0.002	mg/L	08/03/2022 07:30	08/03/2022 12:24	JRD	EPA 200.7	
Lead	<1.00	1.00	μg/ L	07/30/2022 08:44	07/30/2022 12:39	MTW	EPA 200.8	

Paul Bookmyer, Technical Director

PA DEP/TNI Accreditation # 03-00457. All analytes accredited unless otherwise specified.

101 Parkview Drive Ext. Kittanning, Pennsylvania 16201 724-543-3011 Lab # 03-457

Lab Analysis Report

Customer: Armstrong County Industrial Development

Project: North Point L & C Study Sample: Effluent Composite Collection Method: Composite Sample Number: 22H0982-01 Collection: 08/01/2022 09:00 Received: 08/01/2022 14:30

Matrix: NPW

Cert Analyte	Result	RL	Units	Prep Date	Analysis Date	Analyst	Method
Metals							
Copper	0.017	0.002	mg/L	08/12/2022 08:00	08/15/2022 11:29	ВМС	EPA 200.7
Lead	<1.00	1.00	μg/ L	08/06/2022 08:19	08/10/2022 10:58	MTW	EPA 200.8

Paul Bookmyer, Technical Director

PA DEP/TNI Accreditation # 03-00457. All analytes accredited unless otherwise specified.

101 Parkview Drive Ext. Kittanning, Pennsylvania 16201 724-543-3011 Lab # 03-457

Lab Analysis Report

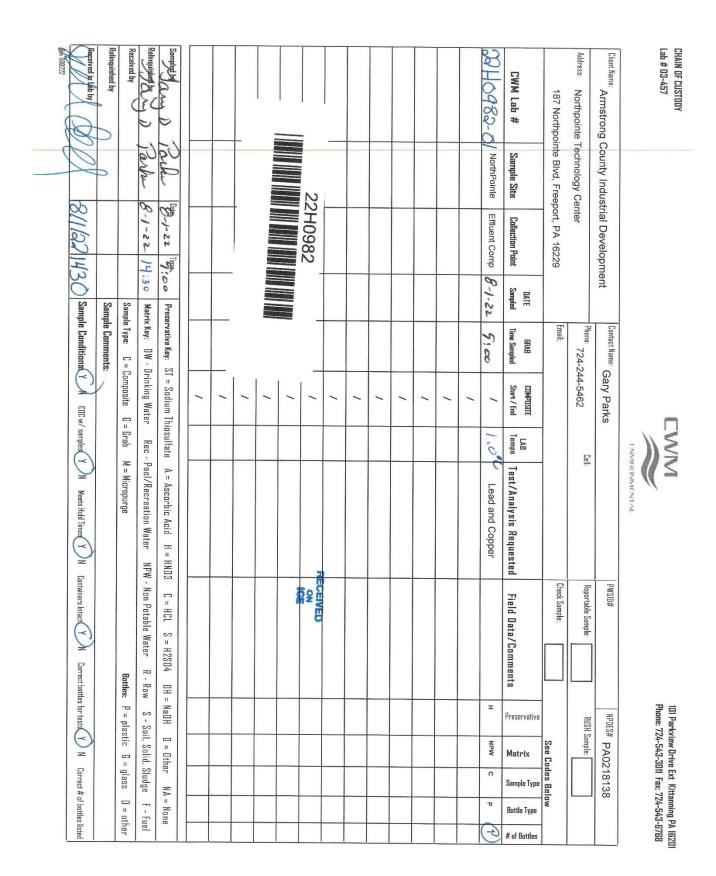
Customer: Armstrong County Industrial Development

Project: North Point L & C Study Sample: Effluent Composite Collection Method: Composite Sample Number: 22H1519-01 Collection: 08/08/2022 09:15 Received: 08/08/2022 15:00

Matrix: NPW

Cert Analyte	Result	RL	Units	Prep Date	Analysis Date	Analyst	Method	
Metals								
Copper	0.021	0.002	mg/L	08/18/2022 08:00	08/18/2022 13:57	ВМС	EPA 200.7	•
Lead	<1.00	1.00	μg/ L	08/13/2022 11:06	08/13/2022 13:42	MTW	EPA 200.8	

Paul Bookmyer, Technical Director


PA DEP/TNI Accreditation # 03-00457. All analytes accredited unless otherwise specified.

Received in Lab by	Relinquished by	Received by	Relinquistred by Po	101	Compledity									2 .		-		2	3862038-0/NorthPointe	CWM Lab # S	187 Northpointe Blvd, Freeport, PA 16229	Address: Northpointe Technology Center	Client Name: Armstrong County Industrial Development	CHAIN OF CUSTODY Lab # 03-457
			h	ado	7					77	330								lorthPointe	Sample Site	Blvd, Freep	hnology Ce	unty Indust	
OC/11/CC/8/1/2			7.18-22 14	7-18-20 5	Time						2038								Effluent Comp	Collection Point	ort, PA 16229	nter	rial Developm	**************************************
	Sam	Sam	14:20 Matu	7,00 Pres	_						,								7.18-22	DATE Sampled			lent	
Sample Conditions	Sample Comments:	Sample Type: [=	Matrix Key: DW -	Preservative Key:	- 1 1														9:00	GRAB Time Sampled	Email:	Phone: 724-2	Contact Name:	
N	,,	C = Composite	DW - Drinking Water	SI = Sodium Iniosultate	97 9 1: 1	1	,	,	/	,	`	_	_	,	/	,	/	/	_	COMPOSITE Start / End		724-244-5462	Gary Parks	
COC w/ samples		G = Grab		hiosultate															1.400	LAB Temps		Cell:		MM
N Meets Hold Times (Y) N		M = Micropurge	Rec - Pool/Recreation Water NPW -	A = ASCORDIC ACID H = HNU3			HAS.		スのこの										Lead and Copper	Test/Analysis Requested		·-		VM ENVIRONMENTAL
Containers Intact V N			- Non Potable Water	S L=HLL D						D										Field Data	Check Sample:	Reportable Sample:	PWSID#	
		Bottles:	20-	304	110011						1 10									Field Data/Comments				
Correct bottles for tests		les: P = plastic	Raw S - Soi	2															I	Preservative		KUSH Sample:	NPDES#	101 Parkvii Phone: 724
Z		tic G = glass	S - Soil, Solid, Sludge	n = Uther	- 1 1														NPW C	Matrix Sample Type	See Codes Below	mple:	PA0218138	101 Parkview Drive Ext Kittanning PA 16201 Phone: 724-543-3011 Fax: 724-543-6768
Correct # of bottles listed		= 0 SSE	idge f-fuel	1	4									-			_		ס	Sample Type Bottle Type	Below	L	138	Kittannin ax: 724-5

Page 5 of 8

마

IAIN OF CUSTODY 15 # 03-457					NA NADRÍFINA	ENVIFORMENTAL			101 Parkview Drive Ext Kittanning PA 1621 Phone: 724-543-3011 Fax: 724-543-6768	101 Parkview Orive Ext Kittanning PA 16201 Phone: 724-543-3011 Fax: 724-543-6768
lient Name: Armstrong Co	Armstrong County Industrial Development	nent	Contact Name:	Contact Name: Gary Parks			PWSID#		NPDES# PA0218138	3138
ddress: Northpointe Technology Center	hnology Center		Phone: 724-244-5462	44-5462	[]ell:		Reportable Sample:		RUSH Sample:	
187 Northpointe	187 Northpointe Blvd, Freeport, PA 16229		Email:				Check Sample:			
CWM Lab # S	Sample Site Collection Point	DATE Sampled	GRAB Time Sampled	COMPOSITE Start / End	LAB Temps	Test/Analysis Requested	Field Data/Comments		latrix	ample Type ottle Type of Bottles
167574-01 N	NorthPointe Effluent Comp	7-25-22	9:30	'	1.7	Lead and Copper		I	NPW C	7
				/		3				
				'						
				_						
				`						
				. ~		22G2	574			
				/				į	+	
				/						
				_						
				/						
				,						
				_						
Tolerando Do	m-25.22	Time; 30 Preservative Key:		ST = Sodium Thiosulfate		A = Ascorbic Acid H = HNO3	C = HCL S = H	H2SO4 OH = N	NaOH O = Other	NA = None
The D	1/25-20	14:10 Matrix Key:	Key: DW - Dr	DW - Drinking Water	Rec - Po	Rec - Pool/Recreation Water NPW -	NPW - Non Potable Water	R - Raw	Soil, S	
elved by		Sample Type:	1	C = Composite G =	G = Grab M :	M = Micropurge		Bottles: D	= plastic G = glass	ss 0 = other
nquished by		Sampl	Sample Comments:							
gived in Lab by R. A.M.	1115/12 14/10		Sample Conditions:	z	COC w/ samples	N Meets Hold Times 🕜 N Con	Containers Intact 🕜 N	Correct bottles for tests 🗫	z	Correct # of bottles listed
100222										

Page 7 of 8

Regeived in Jab by	Relinquished by	Received by	Relinquished by	Sampled by On D											34	32H1519-01	CWM Lab #	187 Northpoir	Address: Northpointe Technology Center	Client Name: Armstrong C	CHAIN DF CUSTODY Lab # 03-457
1			ahi	Jaka												NorthPointe	Sample Site	ite Blvd, Free	echnology Co	ounty Indus	
8/8/22 500			8-8-22 15:00	B-8-22 119:15												Effluent Comp	Collection Point	187 Northpointe Blvd, Freeport, PA 16229	enter	Armstrong County Industrial Development	
Samp	Samı	Samp		-		22										8-8-22	DATE Sampled			tne	
Sample Conditions: Y	Sample Comments:	Sample Type: [=	Matrix Key: DW - [Preservative Key: S		11519										5:15	GRAB Time Sampled	Email:	Phone: 724-244-5462	Contact Name: (
N		C = Composite G =	DW - Drinking Water	ST = Sodium Thiosulfate			/	/	\	_	/	/	/	/	/	/	COMPOSITE Start / End		44-5462	Contact Name: Gary Parks	,
COC w/ samples		Grab	Rec -	niosulfate												1.00	LAB Temps		Cell:		ENVIRON
N Meets Hold Times (Y) N		M = Micropurge	Pool/Recreation Water NPW -	A = Ascorbic Acid H = HNO3		iCE	MECEIVED									Lead and Copper	Test/Analysis Requested				CONTRONMENTAL
Containers Intact (Y)			- Non Potable Water	C = HCL S													Field Data.	Check Sample:	Reportable Sample:	PWSID#	
z		Bottles:	70 -	= H2SO4 O										®			Field Data/Comments				
Correct bottles for tests (Y		les: P = plastic	Raw S-S	DH = NaOH												I	Preservative		RUS	NPDES#	101 Par Phone:
Z			Soil, Solid, Sludge	0 = Other												NPW C	Matrix	See Codes Below	RUSH Sample:	S# PA0218138	101 Parkview Drive Ext Kittanning PA 16201 Phane: 724-543-3011 Fax: 724-543-6768
Correct # of bottles listed		glass 0 =	-	NA =		+										70	Sample Type Bottle Type	s Below		8138	xt Kittannir Fax: 724-5
ttles listed		= other	- Fuel	Nane		+									(7	# of Bottles				ng PA 162 343-6768

Page 8 of 8

Attachment 4

Toxics Management Spreadsheet Version 1.4, May 2023

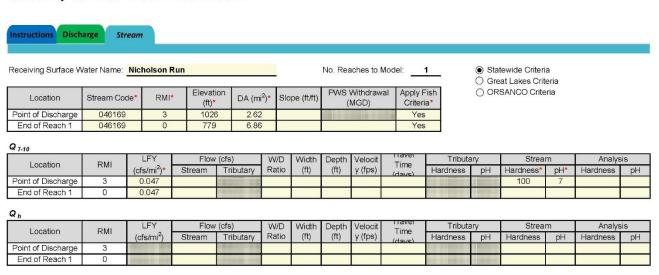
Discharge Information

Instructions	Discharge	Stream				
Facility: A	rmstrong Co	Ind Dev Auth		NPDES Permit No.:	PA0218138	Outfall No.: 001
Evaluation Typ	pe: <mark>Major s</mark>	Sewage / Ind	ustrial Waste	Wastewater Descrip	tion: Sewage	

			Discharge	Characteris	tics			
Design Flow	Hardness (mg/l)*	pH (SU)*	F	Partial Mix Fa	actors (PMF:	s)	Complete Mix	x Times (min)
(MGD)*	Hardness (mg/l)	рп (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h
0.4	100	6.8						

					0 if lef	t blank	0.5 if le	eft blank	0) if left blan	k	1 if lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		434									
1	Chloride (PWS)	mg/L		231									
Group	Bromide	mg/L		1.39									
Ιō	Sulfate (PWS)	mg/L		52.3									
4000	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L											
	Total Antimony	μg/L											
	Total Arsenic	μg/L											
	Total Barium	μg/L											
	Total Beryllium	μg/L											
	Total Boron	μg/L											
	Total Cadmium	μg/L											
	Total Chromium (III)	μg/L											
	Hexavalent Chromium	μg/L											
	Total Cobalt	μg/L											
	Total Copper	mg/L		0.02									
10	Free Cyanide	μg/L											
5	Total Cyanide	μg/L											
Group	Dissolved Iron	μg/L											
•	Total Iron	μg/L											
	Total Lead	μg/L	<	1									
	Total Manganese	μg/L											
	Total Mercury	μg/L											
	Total Nickel	μg/L											
	Total Phenols (Phenolics) (PWS)	μg/L											
	Total Selenium	μg/L						*					
	Total Silver	μg/L											
	Total Thallium	μg/L											
	Total Zinc	mg/L	<	0.02									
	Total Molybdenum	μg/L		0.02									
	Acrolein	μg/L	<										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<										
	Benzene	µg/L	<										
	Bromoform	μg/L	<										
1	DI ONO ONI	µ9/∟											

Group 3	Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane 2-Chloroethyl Vinyl Ether Chloroform Dichlorobromomethane 1,1-Dichloroethane 1,2-Dichloroethane	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <			
Group 3	Chlorodibromomethane Chloroethane 2-Chloroethyl Vinyl Ether Chloroform Dichlorobromomethane 1,1-Dichloroethane	μg/L μg/L μg/L μg/L	<			
Group 3	Chloroethane 2-Chloroethyl Vinyl Ether Chloroform Dichlorobromomethane 1,1-Dichloroethane	μg/L μg/L μg/L	<			
Group 3	2-Chloroethyl Vinyl Ether Chloroform Dichlorobromomethane 1,1-Dichloroethane	μg/L μg/L	<			
Group 3	Chloroform Dichlorobromomethane 1,1-Dichloroethane	μg/L	_			
Group 3	Dichlorobromomethane 1,1-Dichloroethane		<			
Group 3	1,1-Dichloroethane	μg/L	TOTAL			
Group 3			<			
Group	1.2-Dichloroethane	μg/L	<			
Group		µg/L	<			
	1,1-Dichloroethylene	µg/L	<			
	1,2-Dichloropropane	µg/L	<			
	1,3-Dichloropropylene	µg/L	<		<u> </u>	
	1,4-Dioxane	μg/L	<			
	Ethylbenzene	μg/L	<			
	Methyl Bromide	μg/L	<			
	Methyl Chloride	μg/L	<			
ı l	Methylene Chloride	μg/L	<			
1 1	1,1,2,2-Tetrachloroethane	μg/L	<			
	Tetrachloroethylene	μg/L	<			
	Toluene	μg/L	<			
	1,2-trans-Dichloroethylene	µg/L	<			
	1,1,1-Trichloroethane	µg/L	<			
1 1	1,1,2-Trichloroethane		<			
		μg/L	<			
	Trichloroethylene	μg/L	_			
\vdash	Vinyl Chloride	μg/L	<			
	2-Chlorophenol	μg/L	<			
	2,4-Dichlorophenol	μg/L	<			
	2,4-Dimethylphenol	μg/L	<			
	4,6-Dinitro-o-Cresol	μg/L	<			
4	2,4-Dinitrophenol	μg/L	<			
Group	2-Nitrophenol	μg/L	<			
5	4-Nitrophenol	μg/L	<			
	p-Chloro-m-Cresol	μg/L	<			
	Pentachlorophenol	μg/L	<			
	Phenol	µg/L	<			
	2,4,6-Trichlorophenol	µg/L	<		+	
${} =$	Acenaphthene	µg/L	<			
	Acenaphthylene		<			
		μg/L	<			
	Anthracene	μg/L				
	Benzidine	μg/L	<			
	Benzo(a)Anthracene	μg/L	<			
	Benzo(a)Pyrene	μg/L	<			
1 1	3,4-Benzofluoranthene	μg/L	<			
1 1	Benzo(ghi)Perylene	μg/L	<			
l I	Benzo(k)Fluoranthene	μg/L	<			
	Bis(2-Chloroethoxy)Methane	μg/L	<			
1 1	Bis(2-Chloroethyl)Ether	μg/L	<			
	Bis(2-Chloroisopropyl)Ether	μg/L	<			
	Bis(2-Ethylhexyl)Phthalate	µg/L	<			
	4-Bromophenyl Phenyl Ether	µg/L	<			
	Butyl Benzyl Phthalate	µg/L	<			
	2-Chloronaphthalene	μg/L	<			
	·	_	<			
	4-Chlorophenyl Phenyl Ether	μg/L				
	Chrysene	μg/L	<			
	Dibenzo(a,h)Anthrancene	μg/L	<			
	1,2-Dichlorobenzene	μg/L	<			
	1,3-Dichlorobenzene	μg/L	<			
	1,4-Dichlorobenzene	μg/L	<			
Group	3,3-Dichlorobenzidine	μg/L	<			
힐	Diethyl Phthalate	μg/L	<			
ا ت	Dimethyl Phthalate	μg/L	<			
	Di-n-Butyl Phthalate	μg/L	<			
	2,4-Dinitrotoluene	µg/L	<			


ı	0.0 Disitantal								
	2,6-Dinitrotoluene	μg/L	<						
	Di-n-Octyl Phthalate	μg/L	<						
	1,2-Diphenylhydrazine	μg/L	<						
	Fluoranthene	μg/L	<						
	Fluorene	μg/L	<						
ı	Hexachlorobenzene	μg/L	٧						
	Hexachlorobutadiene	μg/L	<						
- [Hexachlorocyclopentadiene	μg/L	٧						
- 1	Hexachloroethane	μg/L	<						
- 1	Indeno(1,2,3-cd)Pyrene	μg/L	<						
	Isophorone	μg/L	<						
	Naphthalene	μg/L	<		2				
	Nitrobenzene	μg/L	<						
	n-Nitrosodimethylamine		<		1	 -	-		
		μg/L	/		-				
	n-Nitrosodi-n-Propylamine	μg/L							
	n-Nitrosodiphenylamine	μg/L	<						
	Phenanthrene	μg/L	<						
	Pyrene	μg/L	<						
_	1,2,4-Trichlorobenzene	μg/L	٧						
	Aldrin	μg/L	<						
	alpha-BHC	μg/L	٧						
ı	beta-BHC	μg/L	٧						
ı	gamma-BHC	μg/L	<						
	delta BHC	μg/L	<						
ı	Chlordane	μg/L	<						
	4.4-DDT	μg/L	<		1				
	4,4-DDE	μg/L	<		1				
	4,4-DDD	μg/L	<						
	Dieldrin	μg/L	<						
	alpha-Endosulfan		′						
	·	μg/L	\ \		-				
	beta-Endosulfan	μg/L	-						
ا ۽	Endosulfan Sulfate	μg/L	<						
~ .	Endrin	μg/L	٧						
	Endrin Aldehyde	μg/L	<						
	Heptachlor	μg/L	<						
	Heptachlor Epoxide	μg/L	<						
	PCB-1016	μg/L	<						
	PCB-1221	μg/L	<						
	PCB-1232	μg/L	<						
ı	PCB-1242	μg/L	٧						
- 1	PCB-1248	μg/L	<						
ı	PCB-1254	μg/L	٧						
- [PCB-1260	μg/L	<						
1	PCBs, Total	μg/L	<						
	Toxaphene	μg/L	<						
	2,3,7,8-TCDD	ng/L	<						
	Gross Alpha	pCi/L	10						
	Total Beta	pCi/L	<						
۱۵	Radium 226/228	pCi/L	/						
	Total Strontium	µg/L	/						
5	Total Uranium		\ \						
ı		μg/L	_						
\dashv	Osmotic Pressure	mOs/kg	_						
ļ									
Į									
- [
-									
١									

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Armstrong Co Ind Dev Auth, NPDES Permit No. PA0218138, Outfall 001

Total Dissolved Solids (PWS)

Chloride (PWS)

Sulfate (PWS)

0

0

0

0

0

0

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results Armstrong Co Ind Dev Auth, NPDES Permit No. PA0218138, Outfall 001 RETURN TO INPUTS SAVE AS PDF PRINT All ○ Inputs ○ Results ○ Limits nstruction Results ☐ Hydrodynamics ☑ Wasteload Allocations ☑ AFC CCT (min): 0.086 PMF: 1 100 6.83 Analysis Hardness (mg/l): Analysis pH: Trib Cond WQC WQ Obj Pollutants WLA (µg/L) Conc Comments CV (µg/L) (µg/L) (µg/L) Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A Chloride (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A Total Copper 0 0 0 13.439 14.0 16.8 Chem Translator of 0.96 applied Total Lead n 0 0 64 581 81.6 97.9 Chem Translator of 0.791 applied Total Zinc 0 0 0 117.180 120 144 Chem Translator of 0.978 applied ☑ CFC CCT (min): 0.086 1 Analysis Hardness (mg/l): Analysis pH: 6.83 WQ Obj WQC Trib Conc Fate Stream Pollutants Conc WLA (µg/L) Comments Coef CV (µg/L) (µg/L) (µg/L) Total Dissolved Solids (PWS) 0 0 N/A N/A N/A Chloride (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 N/A N/A N/A Total Copper 0 0 8.956 9.33 11.2 0 Chem Translator of 0.96 applied Total Lead 0 0 0 2.517 3.18 3.81 Chem Translator of 0.791 applied 144 Total Zinc 0 0 118 139 120 Chem Translator of 0.986 applied CCT (min): 0.086 ✓ THH PMF: Analysis Hardness (mg/l): N/A Analysis pH: N/A Trib Conc WQC WQ Obj Stream Fate Pollutants Conc WLA (µg/L) Comments CV (µg/L) (µg/L) Coef (µg/L)

Model Results 2/21/2024 Page 5

500.000

250 000

250,000

500.000

250 000

250,000

0

0

0

N/A

N/A

N/A

NPDES Permit Fact Sheet Armstrong County Ind Development Authority STP

Total Copper	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	

☑ CRL CCT (min): 0.751 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.037	0.056	0.011	0.017	0.017	mg/L	0.011	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	mg/L	0.12	AFC	Discharge Conc > 10% WQBEL (no RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Lead	N/A	N/A	Discharge Conc < TQL

2/21/2024 Model Results Page 6