

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0218391

 APS ID
 1058998

 Authorization ID
 1388778

Applicant and Facility Information								
Applicant Name	George	es Creek Municipal Authority	Facility Name	Georges Creek Municipal Authority STP				
Applicant Address	14 Wat	er Street	Facility Address	Trail 500 @ Georges Crk				
	Smithfi	eld, PA 15478		Smithfield, PA 15478				
Applicant Contact	Jamie I	loone	Facility Contact	Vance James				
Applicant Phone	(724) 5	69-9601	Facility Phone	412-965-4061				
Client ID	45102		Site ID	263531				
Ch 94 Load Status	Not Ov	erloaded	Municipality	Georges Township				
Connection Status	No Lim	itations	County	Fayette				
Date Application Rece	eived	March 3, 2022	EPA Waived?	Yes				
Date Application Accepted March 11, 2022		If No, Reason						
Purpose of Application	n	NPDES permit renewal application						

Summary of Review

The PA Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application from K2 Engineering, Inc. on behalf of Georges Creek Municipal Authority (permittee) for permittee's Georges Creek Municipal Authority STP (facility) on March 3, 2022. The facility is a minor municipal WWTP with an average design flow of 0.16 MGD. The treated effluent is discharged into Georges Creek in state watershed 19-G, classified as WWF. The current permit will expire on August 31, 2022. The terms and conditions are automatically extended since the renewal application was received at least 180 days prior to the expiration date. Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001.

This fact sheet is developed in accordance with 40 CFR §124.56.

Changes in this renewal: E. Coli and Total Copper monitoring requirement added, Total Zinc limit with schedule is added, summer-time Fecal Coliform IMAX limit changed to 1,000 No./100 ml, and mass loading for NH3-N is added.

Sludge use and disposal description and location(s): Liquid sludge is hauled off to Somerset STP

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
\checkmark		Reza H. Chowdhury, E.I.T. / Project Manager	May 13, 2022
Х		<i>Pravin Patel</i> Pravin C. Patel, P.E. / Environmental Engineer Manager	05/06/2022

NPDES Permit Fact Sheet Georges Creek Municipal Authority STP

Discharge, Receiving Waters	and Water Supply Inforn	nation			
Outfall No. 001		Design Flow (MGD)	0.16		
Latitude <u>39° 47' 20.00'</u>	1	Longitude	-79° 48' 46.00"		
Quad Name Smithfield		Quad Code	2007		
Wastewater Description:	Sewage Effluent				
Receiving Waters George	es Creek (WWF)	Stream Code	41340		
NHD Com ID 994176	698	RMI	10.25		
Drainage Area 17.4 m	i ²	Yield (cfs/mi ²)	0.017		
Q ₇₋₁₀ Flow (cfs) 0.299		Q7-10 Basis	USGS StreamStats		
Elevation (ft) 950.46	6	Slope (ft/ft)			
Watershed No. 19-G		Chapter 93 Class.	WWF		
Existing Use WWF		Existing Use Qualifier	Ch. 93		
Exceptions to Use None		Exceptions to Criteria			
Assessment Status	Impaired				
Cause(s) of Impairment	METALS, SILTATION				
Source(s) of Impairment	ACID MINE DRAINAGE, A	E, ACID MINE DRAINAGE			
TMDL Status	None	Name N/A			
Background/Ambient Data		Data Source			
pH (SU)	7.0	Default per 391-2000-013			
Temperature (°C)	25	Default per 391-2000-007			
Hardness (mg/L)	100	Default			
Other:					
Nearest Downstream Public	Water Supply Intake	Dunkard Valley Joint Municipa	I Authority		
PWS Waters Mononga	hela River	Flow at Intake (cfs)			
PWS RMI 83.59		Distance from Outfall (mi) 12.12			

Changes Since Last Permit Issuance: None

Other Comments:

Streamflow:

There is no nearby active WQN Station or Streamgage from the discharge point. Therefore, USGS's web based watershed delineation tool StreamStats (accessible at <u>https://streamstats.usgs.gov/ss/</u>, accessed on May 12, 2022) was utilized to determine the drainage area and low flow statistics of the receiving stream at discharge point. The StreamStats delineation report shows a drainage area at the Outfall 001 to be 17.4 mi², Q₇₋₁₀ of 0.299 cfs, and Q₃₀₋₁₀ of 0.522 cfs.

 Q_{7-10} runoff rate (low flow yield): 0.299 cfs/17.4 mi² or 0.017 cfs/mi² $Q_{30-10}:Q_{7-10}: 0.522/0.299$ or 1.746 Default $Q_{1-10}:Q_{7-10}$ of 0.64 will be used for modeling, if needed.

PWS Intake:

The nearby downstream PWS intake is Dunkard Valley Joint Municipal Authority in Monongahela Township, Greene County, which is approximately 12.12 miles downstream of discharge point. Due to the distance, dilution of Monongahela River, and effluent limitations, it is expected that the discharge will not adversely impact the PWS intake.

Wastewater Characteristics:

A pH of 6.67 (median July- September 2021), default temperature of 20°C (Default per 391-2000-007), and default Hardness value of 100 mg/l will be used for modeling, if needed.

NPDES Permit Fact Sheet Georges Creek Municipal Authority STP

Background data:

There is no nearby WQN station from the discharge point. In absence of site-specific data, a default pH of 7.0 S.U., default stream temperature of 25°C, and default hardness of 100 mg/l will be used, as appropriate.

303d listed stream:

Georges Creek is impaired for metals and siltation from AMDs. No TMDL is proposed.

	Tre	eatment Facility Summa	ry	
reatment Facility Na	me: Georges Creek Munici	pal Authority STP		
WQM Permit No.	Issuance Date			
2600401	4/4/2001			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
	Secondary With			
Sewage	Ammonia Reduction	Extended Aeration	Ultraviolet	0.16
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa
· · /				Combination o
0.16	272	Not Overloaded	Drying	methods

Changes Since Last Permit Issuance: None

Treatment Plant Description

Georges Creek STP is a minor sewage treatment plant with design flow of 0.16 MGD, hydraulic design capacity of 0.16 MGD, and organic loading capacity of 272 lbs./day. The facility receives flow from the following contributors:

		Type of Se	wer System	
Municipalities Served	Flow Contribution (%)	Separate (%)	Combined (%)	Population
Smithfield Borough	80	100		432
Georges Township	20	100		108

Sewage enters into a comminutor and proceeds to a pump station at the plant where it is pumped to the two EQ tanks. Flow then is pumped to the division/splitter box where it goes to the two aerations tanks. From there, the flow enters the clarifier and then to UV disinfection. Post UV, flow enters into a post aeration tank, through flow meter, and then is discharged into Georges Creek. There is no planned upgrade for next five years. The facility is operated and maintained by D and B Environmental. There is no commercial contributor to this STP.

Compliance History

DMR Data for Outfall 001 (from April 1, 2021 to March 31, 2022)

Parameter	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21
Flow (MGD)												
Average Monthly	0.089	0.110	0.103	0.082	0.042	0.045	0.079	0.082	0.069	0.090	0.043	0.035
Flow (MGD)												
Daily Maximum	0.129	0.116	0.113	0.196	0.049	0.059	0.130	0.130	0.089	0.155	0.071	0.035
pH (S.U.)												
Minimum	6.7	6.8	6.8	6.8	6.4	6.4	6.5	6.5	6.5	6.5	7.0	6.0
pH (S.U.)												
Maximum	7.2	7.1	7.2	7.1	6.7	6.7	7.0	7.0	6.5	7.0	7.5	7.0
DO (mg/L)												
Minimum	6.4	6.1	6.2	5.6	5.5	5.1	5.0	4.5	5.0	5.0	5.0	5.0
CBOD5 (lbs/day)			. –			. –			4 70		4.07	
Average Monthly	< 2.7	< 2.9	< 1.7	< 2.7	< 0.7	< 1.7	2.0	2.0	1.72	2.25	1.07	0.087
CBOD5 (lbs/day)	5.4	0.0	0.4		10	0.4			4 70	0.05	4.07	0.007
Daily Maximum	5.1	3.8	< 2.4	< 3.3	< 1.2	3.1	2.0	2.0	1.72	2.25	1.07	0.087
CBOD5 (mg/L)	< 3.4	< 3.9	< 2.0	< 4.1	< 2.7	< 4.6	3.0	3.0	3.0	3.0	3.0	3.0
Average Monthly CBOD5 (mg/L)	< 3.4	< 3.9	< 2.0	< 4.1	< 2.1	< 4.0	3.0	3.0	3.0	3.0	3.0	3.0
Weekly Average	6.5	4.6	< 2.0	6.0	< 3.0	9.4	3.0	3.0	3.0	3.0	3.0	3.0
BOD5 (lbs/day)	0.5	4.0	< 2.0	0.0	< 3.0	9.4	3.0	5.0	3.0	5.0	5.0	5.0
Raw Sewage Influent												
Average Monthly	85.0	106.6	126.5	115.4	31.7	106.4	205	210	143	181	96	80
BOD5 (lbs/day)	0010		0.0		0							
Raw Sewage Influent												
Daily Maximum	134.5	132.1	155.2	138.1	68.3	117.2	251	244	184	271	124	105
BOD5 (mg/L)												
Raw Sewage Influent												
Average Monthly	104.1	143.7	166.4	172.5	133.2	274.0	311	307	249	241	270	276
BOD5 (mg/L)												
Raw Sewage Influent												
Weekly Average	10.0	180.0	265.0	210.0	234.0	325.0	382	358	321	407	346	362
TSS (lbs/day)												
Average Monthly	< 3.9	< 4.1	< 4.5	< 3.9	< 1.5	2.1	3.2	4.4	2.3	4.2	1.97	1.2
TSS (lbs/day)												
Raw Sewage Influent			70.0			-			101	~ -		
Average Monthly	63.6	53.8	72.0	82.7	21.5	71.6	177	118	124	83.5	73	74
TSS (lbs/day)		4.0				0.5	5.0		4.0		0.07	1.0
Daily Maximum	< 5.4	4.8	< 6.0	< 8.2	2.3	2.5	5.0	8.2	4.8	6.6	3.87	1.8

NPDES Permit Fact Sheet Georges Creek Municipal Authority STP

NPDES Permit No. PA0218391

TSS (lbs/day)												
Raw Sewage Influent												
Daily Maximum	94.7	73.7	129.3	111.2	53.1	117.6	250	157	184	132	122	155
TSS (mg/L)												
Average Monthly	< 5.0	< 5.3	< 5.0	< 5.0	< 6.1	5.5	5.0	6.5	4.0	5.6	5.5	4.3
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	79	71	100	119	91	178	268	173	215	111.2	203	254
TSS (mg/L)												
Raw Sewage Influent												
Weekly Average	118	92	224	178	182	300	380	230	320	176.0	342	532
TSS (mg/L)												
Weekly Average	< 5.0	6.0	< 5.0	< 5.0	7.6	7.6	7.6	12.4	8.4	8.8	10.8	6.4
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 1	< 2	< 1	< 1	< 1	< 1	1	1.0	< 1	1	1	1
Fecal Coliform												
(No./100 ml) IMAX	< 1	6	< 1	2	< 1	< 1	1	1.0	< 1	1	1	1
UV Transmittance (%)												
Average Monthly	E	E	E	E	E	E	0.0	0.0	0.0	0.1	0.0	0.0
Total Nitrogen (mg/L)												
Daily Maximum				4.5								
Ammonia (mg/L)												
Average Monthly	< 0.8	< 0.8	< 0.8	< 0.8	< 0.3	< 0.4	0.36	0.5	1.0	0.5	0.5	0.1
Ammonia (mg/L)												
Weekly Average	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	4.1	1.4	0.5	2.5	0.5	0.5	0.1
Total Phosphorus												
(mg/L)												
Daily Maximum				0.380								

Compliance History

No DMR violation noted. No inspection report available in WMS/eFACTS.

Compliance History

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

	Effluent Limitations						Monitoring Re	quirements
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Faranieter	Average	Daily		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Average	Maximum	Frequency	Туре
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Recorded
рН (S.U.)	xxx	xxx	6.0	xxx	9.0 Max	xxx	1/day	Grab
Dissolved Oxygen	XXX	XXX	4.0	XXX	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30	33.4	50.7	xxx	25.0	38.0	50	1/week	8-Hr Composite
Carbonaceous Biochemical Oxygen Demand (CBOD5) May 1 - Oct 31	26.7	40.0	xxx	20.0	30.0	40	1/week	8-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report	XXX	Report	Report	ХХХ	1/week	8-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	xxx	Report	Report	XXX	1/week	8-Hr Composite
Total Suspended Solids	40.0	60.0	xxx	30.0	45.0	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Nov 1 - Apr 30	xxx	xxx	xxx	2000 Geo Mean	xxx	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Oct 31	xxx	xxx	xxx	200 Geo Mean	XXX	400	1/week	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	xxx	xxx	xxx	9.0	13.5	18.0	1/week	8-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	xxx	xxx	xxx	3.0	4.5	6.0	1/week	8-Hr Composite
Ultraviolet light transmittance (%)	XXX	xxx	xxx	Report	XXX	XXX	1/day	Measured
Total Nitrogen	XXX	xxx	XXX	xxx	Report Daily Max	XXX	1/year	8-Hr Composite
Total Phosphorus	xxx	xxx	xxx	xxx	Report Daily Max	xxx	1/year	8-Hr Composite

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.16
Latitude	39º 47' 20.00	И	Longitude	-79º 48' 46.00"
Wastewater De	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform	200/100 ml	Geo Mean		02a 47(a)(4)
(5/1 – 9/30) Fecal Coliform	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

WQM 7.0:

WQM 7.0 is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD₅, NH₃-N and DO. DEP's guidance no. 391-2000-007 provides the technical methods contained in WQM 7.0 for conducting wasteload allocation and for determining recommended NPDES effluent limits for point source discharges. DEP recently updated this model (ver. 1.1) to include new ammonia criteria that has been approved by US EPA as part of the 2017 Triennial Review. The model was utilized for this permit renewal by using updated Q₇₋₁₀ and historic background water quality levels of the river. The following data were used in the attached computer model of the stream:

٠	Discharge pH	6.67	(median Jul-Sep, 2021, eDMR data)
٠	Discharge Temperature	20°C	(Default per 391-2000-007)
٠	Discharge Hardness	100 mg/l	(Default data)
٠	Stream pH	7.0	(Default per 391-2000-013)
٠	Stream Temperature	25°C	(Default per 391-2000-013, WWF)
٠	Stream Hardness	100 mg/l	(Application data)

The following nodes were considered in modeling:

Node 1:	Georges Creek MA ST Elevation: Drainage Area: River Mile Index: Low Flow Yield: Discharge Flow:	P (PA0218391) Outfall 001 at Georges Creek (41340) 950.46 ft (USGS National Map viewer, 05/10/2022) 17.4 mi ² (StreamStat Version 3.0, 05/10/2022) 10.25 (PA DEP eMapPA) 0.017 cfs/mi ² 0.16 MGD
Node 2:	At confluence with Mou Elevation: Drainage Area: River Mile Index: Low Flow Yield: Discharge Flow:	Intain Creek (41384) at Georges Creek RMI 9.89 948.17 ft (USGS National Map viewer, 05/10/2022) 34.2 mi ² (StreamStat Version 3.0, 05/10/2022) 9.89 (PA DEP eMapPA) 0.017 cfs/mi ² 0.0 MGD

Pre-Draft survey:

Based on the Reasonable Potential (RP) analysis, a new pollutant was identified with new WQBELs. Per PADEP's SOP titled "*Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers (SOP No. BCW-PMT-037, revised May 20, 2021)*", the permittee were provided a pre-draft survey on May 12, 2022. The response was received on May 16, 2022.

<u>NH₃-N:</u>

WQM 7.0 suggested NH₃-N limit of 3.0 mg/l as monthly average and 6.0 mg/l as IMAX limit during summer to protect water quality standards. The winter season limits are calculated by multiplying the summer limits with a factor of 3 that resulted in average monthly limit of 9.0 mg/l, and IMAX limit of 18.0 mg/l. Current permit has average weekly limits for both seasons. These are existing limits and will continue. The current permit doesn't have mass-based limits. The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

PADEP's SOP BCW-PMT-033 (revised March 24, 2021) section IV states that "For POTWs, mass loading limits will be established for CBOD5, TSS, NH3-N, and where necessary Total P and Total N. In general, average monthly mass loading will be established for CBOD5, TSS, NH3-N, and where necessary Total P and Total N, and average weekly mass loading limits will be established for CBOD5 and TSS."

Based on abode regulatory requirements and SOP's recommendation, summer and winter season average monthly mass-based limit for NH3-N will be imposed in this renewal. The above equation results in summer season average monthly mass limit to be 4 lbs./day and winter season average monthly mass limit to be 12 lbs./day.

CBOD₅:

The WQM 7.0 model suggests a monthly average CBOD₅ limit of 20 mg/l. The weekly average and IMAX limits are calculated to be 30 mg/l and 40 mg/l, respectively. The average monthly and average weekly mass loadings were calculated as 26.7 lbs./day and 40.0 lbs./day respectively. The current permit has winter season average monthly, weekly average, and IMAX limits as 25 mg/l, 38 mg/l and 50 mg/l. The calculated average monthly and weekly average limits are 33.4 lbs./day and 50.7 lbs./day. These limits are same as existing permit and will be carried over.

Dissolved Oxygen (DO):

The existing permit has a minimum DO of 4.0 mg/l. Per Pa Code 25 Ch.93.7, a minimum DO of 5.0 is required for WWF. This is also supported by WQM 7.0 output. However, the model also shows no adverse effects on the receiving stream at 4.0 mg/l. The SOP BCW-PMT-033 recommends a minimum DO limit of 4.0 mg/l based on BPJ to ensure adequate operation and maintenance where there is no water quality concerns. It is recommended that the existing limit will be carried over.

Toxics:

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic:

1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).

NPDES Permit Fact Sheet Georges Creek Municipal Authority STP

2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% - 50% of the WQBEL.

3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% - 50% of the WQBEL.

NOTE 4 – If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.

NOTE 5 – If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.

4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

The TMS model was utilized with maximum reported effluent concentrations for Total Copper, Total Lead, and Total Zinc. Model output is provided below:

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	19.7	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	0.22	0.35	169	263	421	µg/L	169	AFC	Discharge Conc ≥ 50% WQBEL (RP)

Each of the parameters are discussed below:

Total Copper:

The application provided a maximum Total Copper concentration of 0.005 mg/l out of 3 sample results. TMS suggests monitoring requirement for it. Therefore, a monthly monitoring will be added for Total Copper. The sample results will be analyzed in next permit term for a RP analysis.

Total Zinc:

A concentration of 0.146 mg/l was entered in TMS (The maximum of 3 effluent results). TMS suggests limits as 0.169 mg/l average monthly, 0.263 mg/l daily maximum, and 0.421 mg/l IMAX. The mass-based AML and MDL are 0.22 lbs./day and 0.35 lbs./day, respectively. The suggested limits are higher than maximum effluent concentration, however, since this is a new parameter with limits requirement it was included in the pre-draft survey. The survey was sent to the permittee on May 12, 2022 and was requested to return within 30 days. The survey response was returned to the Department on May 16, 2022. The permittee stated that they are not aware of the source, didn't complete any studies in the past, uncertain if they can meet the final WQBEL now, and uncertain when they can meet the final WQBEL. PADEP's SOP suggests, in this case, to provide a schedule for 36 months with a TRE requirement. The draft permit will have a proposed schedule with TRE.

Additional Considerations

Fecal Coliform:

The recent coliform guidance in 25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. The current permit has summer IMAX limit of 400/100 ml. An evaluation of past 12 months eDMR data indicated that the facility is discharging at <1/100 ml as IMAX year-round. The year 2000 permit proposed IMAX as 1,000. Therefore, it is believed that 400/100 ml was imposed due to an error and will be reverted at 1,000/100 ml from this permit term.

E. Coli:

DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends quarterly E. Coli monitoring for all dischargers with flow between ≥0.05 MGD to <1.0 MGD. This requirement will be applied from this permit term.

<u>pH:</u>

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 § 95.2(1)) which are existing limits and will be carried over.

Total Suspended Solids (TSS):

There is no water quality criterion for TSS. The existing limits of 30 mg/L average monthly, 45 mg/l as weekly average, and 60 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b). The mass based average monthly and weekly average load is calculated to be 40.0 lbs./day and 60.0 lbs./day, respectively, based on a flow of 0.16 MGD. These limits are same as existing limits and will be carried over.

UV Disinfection:

PADEP's SOP BCW-PMT-033 recommends UV parameter monitoring where UV is used as a method of disinfection, with the same frequency as would be if Chlorine is used for disinfection. The current permit has UV Transmittance monitoring in %, which will be carried over in this renewal.

Flow, Influent BOD₅ and TSS Monitoring Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). Influent BOD₅ and TSS monitoring requirements are established in the permit per the requirements set in Pa Code 25 Chapter 94.

Best Professional Judgement (BPJ):

Total Nitrogen:

PADEP's SOP BCW-PMT-033 suggests monitoring requirement, at a minimum, for facilities with design flow greater than 2,000 GPD. This requirement is applied for all facilities meeting the flow criteria. This is an existing requirement and will be carried over.

Total Phosphorus:

PADEP's SOP BCW-PMT-033 suggests monitoring requirement, at a minimum, for facilities with design flow greater than 2,000 GPD. This requirement is applied for all facilities meeting the flow criteria. This is an existing requirement and will be carried over.

Monitoring Frequency and Sample Types:

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

Anti-Backsliding

The proposed limits are at least as stringent as are in existing permit, unless otherwise stated; therefore, anti-backsliding is not applicable.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through End of Interim Period 1 (3 years from effective date).

	Effluent Limitations							quirements					
Parameter	Mass Units	Mass Units (Ibs/day) ⁽¹⁾ Concentrations (mg/L)					Mass Units (Ibs/day) ⁽¹⁾		Concentrations (mg/L)			Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Instant. Minimum Monthly Maximum Maximum				Sample Type					
		Report	Report	Report				8-Hr					
Zinc, Total	Report	Daily Max	Avg Mo	Daily Max	XXX	XXX	1/month	Composite					

Compliance Sampling Location: At Outfall 001

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: End of Interim Period 1 (3 years from effective date) through Permit Expiration Date.

Effluent Limitations							Monitoring Red	quirements		
Parameter	Barameter Mass Units (lbs/day) ⁽¹⁾ Concentrations (mg/L)				ay) ⁽¹⁾ Concentrations (mg/L)		Concentrations (mg/L) Minimum ⁽²		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
		0.35			0.263			8-Hr		
Zinc, Total	0.22	Daily Max	XXX	0.169	Daily Max	0.421	1/month	Composite		

Compliance Sampling Location: At Outfall 001

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)		Minimum ⁽²⁾	Required
Falameter	Average Monthly	Daily Maximum	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Recorded
рН (S.U.)	XXX	XXX	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	xxx	4.0	xxx	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30	33.4	50.7	XXX	25.0	38.0	50	1/week	8-Hr Composite
Carbonaceous Biochemical Oxygen Demand (CBOD5) May 1 - Oct 31	26.7	40.0	xxx	20.0	30.0	40	1/week	8-Hr Composite
Biochemical Oxygen Demand (BOD5)	Depert	Depart	VVV	Depart	Depert		1/1/2014	8-Hr
Raw Sewage Influent	Report	Report	XXX	Report	Report	XXX	1/week	Composite 8-Hr
Total Suspended Solids	40.0	60.0	xxx	30.0	45.0	60	1/week	Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	Report	ХХХ	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Nov 1 - Apr 30	XXX	xxx	xxx	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Oct 31	xxx	xxx	xxx	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	xxx	xxx	xxx	XXX	Report	1/quarter	Grab
Ultraviolet light transmittance (%)	xxx	xxx	Report	xxx	XXX	xxx	1/day	Measured

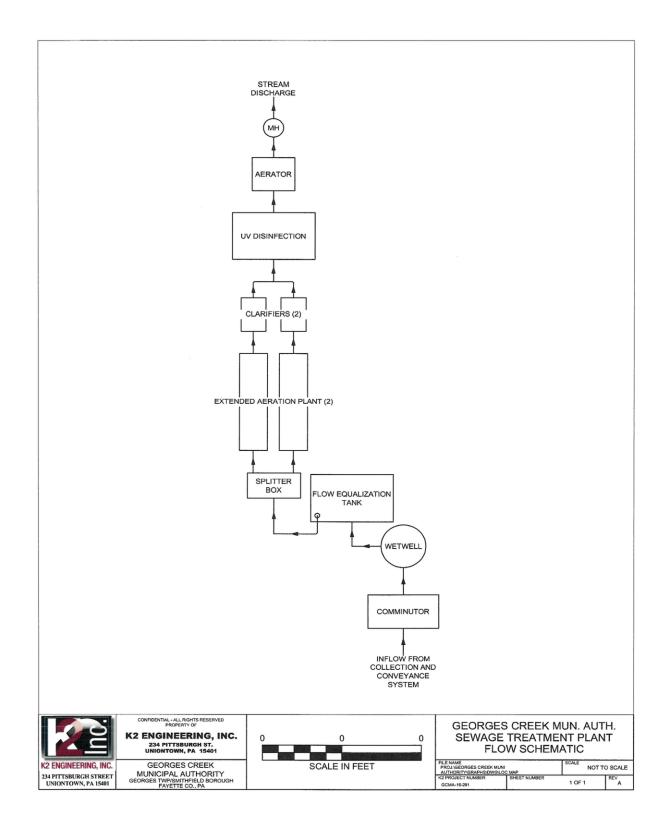
Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations							
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required			
Farameter	Average Monthly	Daily Maximum	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
					Report			8-Hr	
Total Nitrogen	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Composite	
Ammonia-Nitrogen								8-Hr	
Nov 1 - Apr 30	12.0	XXX	XXX	9.0	13.5	18	1/week	Composite	
Ammonia-Nitrogen								8-Hr	
May 1 - Oct 31	4.0	XXX	XXX	3.0	4.5	6	1/week	Composite	
					Report			8-Hr	
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Composite	
·					Report			8-Hr	
Copper, Total	Report	Report	XXX	Report	Daily Max	XXX	1/month	Composite	

Compliance Sampling Location: At Outfall 001

Other Comments: None

	Tools and References Used to Develop Permit
	WOM for Windows Model (see Attachment
	WQM for Windows Model (see Attachment) Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	 Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\square	SOP: BCW-PMT-033
	Other:


3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0218391

SMITHFIELD QUADRANGLE CORD 1 UNEI 1099 (1089) Smithfie Cem Ange S ED. Tkaiter Rark 00 00 ... -1 4 ... * 1115 0 1000 0 -(1= GEORGES CREEK 11 WWF' -1102 1000 OUTEAL 00 100-TREATMENT PLANT LOCATION 1 ā -Mountain 1000 1 1000 ,000. 1 B CONFIDENTIAL - ALL RIGHTS RESERVED PROPERTY OF SITE LOCATION **K2 ENGINEERING, INC.** 2000' 1000' 0 SMITHFIELD, PA 15478 234 PITTSBURGH ST. UNIONTOWN, PA 15401 FILE NAME PROJ GEORGES CREEK MUNI AUTHORITYIGRAPHSIDWGLOC MAP K2 PROJECT NUMBER SHEET NUM GCMA-16-291 SCALE SCALE IN FEET **K2 ENGINEERING, INC.** 1" = 1000" GCMA TREATMENT PLANT 234 PITTSBURGH STREET UNIONTOWN, PA 15401 EV GEORGES TOWNSHIP, FAYETTE COUNTY, PA 1 OF 1

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0218391

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0218391

PA0218391 at Outfall 001

Region ID: PA Workspace ID: PA20220511024639156000 Clicked Point (Latitude, Longitude): 39.78880, -79.81235 Time: 2022-05-10 22:46:59 -0400 Hatfield, acolin* Ronco Meadowbr Leckrone 50 53 Masontown Erirchanc Martin 20 Smithfield Greensboro New Geneva Par

Basin Characteri	Sucs		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	17.4	square miles
ELEV	Mean Basin Elevation	1360	feet

Low-Flow Statistics Parameters [Low Flow Region 4]

https://streamstats.usgs.gov/ss/

5/10/2022

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	17.4	square miles	2.26	1400
ELEV	Mean Basin Elevation	1360	feet	1050	2580

Low-Flow Statistics Flow Report [Low Flow Region 4]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	0.807	ft^3/s	43	43
30 Day 2 Year Low Flow	1.37	ft^3/s	38	38
7 Day 10 Year Low Flow	0.299	ft^3/s	66	66
30 Day 10 Year Low Flow	0.522	ft^3/s	54	54
90 Day 10 Year Low Flow	0.956	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and

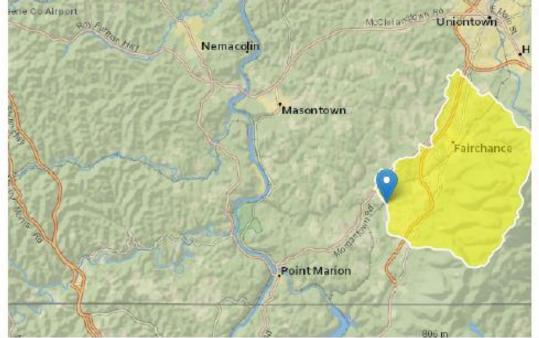
5/10/2022

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0218391

StreamStats

Page 2 of 4


PA0218391 at node 2

 Region ID:
 PA

 Workspace ID:
 PA20220511024909759000

 Clicked Point (Latitude, Longitude):
 39.78395, -79.81160

 Time:
 2022-05-10 22:49:29 -0400

Basin Characteri	SUCS		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	34.2	square miles
ELEV	Mean Basin Elevation	1534	feet

Low-Flow Statistics Parameters [Low Flow Region 4]

https://streamstats.usgs.gov/ss/

5/10/2022

StreamStats

Page 5 of 4

Parameter Code	Parameter Name	Value Units	Min Limit	Max Limit
DRNAREA	Drainage Area	34.2 square miles	2.26	1400
ELEV	Mean Basin Elevation	1534 feet	1050	2580

Low-Flow Statistics Flow Report [Low Flow Region 4]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	1.93	ft^3/s	43	43
30 Day 2 Year Low Flow	3.2	ft^3/s	38	38
7 Day 10 Year Low Flow	0.735	ft^3/s	66	66
30 Day 10 Year Low Flow	1.24	ft^3/s	54	54
90 Day 10 Year Low Flow	2.25	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and

	SWP Basin			Stre	am Name		RMI	Elevat (fi)		Area (sq ml)	Slope (ft/ft)	PWS Withdrawal (mgd)	Appl FC
	19G	413	340 GEOR	GES CR	EEK		10.2	50 98	50.46	17.40	0.00000	0.0) v
					St	tream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Т</u> Temp	ributary pH	Tem	<u>Stream</u> ip pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ff)	(ft)	(°C)		(°C)	
Q7-10 Q1-10	0.017	0.00 0.00	0.00	0.000 0.000	0.000 0.000	0.0	0.00	0.00	25.0	00 7.0	0 (0.00 0.0	0
230-10		0.00	0.00	0.000	0.000								
					D	lacharge l	Data						
			Name	Per	mit Numbe	Disc	Permitt Disc Flow (mgd)	Flow	Reser Facto		p p	sc H	
		Geor	ges Crk MA	PA	0218391	0.160	0 0.160	0 0.160	0 0.0	000 20	00.00	6.67	
					P	arameter I	Data						
			-	aramete	r Nama				eam onc	Fate Coef			
			-	aramete	i realine	(m	ig/L) (n	ng/L) (m	ng/L) (1/days)			

20.00

4.00

3.00

2.00

8.24

0.00

1.50

0.00

0.70

0.00

0.00

0.00

Input Data WQM 7.0

CBOD5

NH3-N

Dissolved Oxygen

Input	Data	WQM	7.0
-------	------	-----	-----

	SWF Basi			Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	19G	413	340 GEOR	GES CRE	EK		9.89	0	948.17	34.20	0.00000	0.00	v
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> р рН	
o o na.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ff)	(°C))	(°C)		
Q7-10	0.017	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 25	5.00 7.0	00 0	.00 0.0	0
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

	Dis	charge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserv Facto		np	Disc pH
		0.0000	0.0000	0.000	0.0	00 2	25.00	7.00
	Par	rameter D	ata					
	arameter Name	Dis Cor				Fate Coef		
	arameter Mallie	(mg	/L) (mg	νL) (m	g/L) (1	l/days)		
CBOD5		2	5.00 :	2.00	0.00	1.50		
Dissolved 0	Dxygen	;	3.00 (8.24	0.00	0.00		
NH3-N		2	5.00 (0.00	0.00	0.70		

		<u>P Basin</u> 19G	Strea	M 7.0 m Code 1340	Hydr	odyn		Stream				
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow		Depth	Width	W/D Ratio	Velocity	Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
10.250	0.30	0.00	0.30	.2475	0.00120	.505	15.2	30.09	0.07	0.311	22.72	6.82
Q1-1	0 Flow											
10.250	0.19	0.00	0.19	.2475	0.00120	NA	NA	NA	0.06	0.351	22.17	6.78
Q30-'	10 Flow	,										
10.250	0.52	0.00	0.52	.2475	0.00120	NA	NA	NA	0.09	0.257	23.38	6.86

Thursday, May 12, 2022

Version 1.0b

Page 1 of 1

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0218391

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.746	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	4		

Thursday, May 12, 2022

Version 1.0b

Page 1 of 1

	SWP Basin 19G		<u>am Code</u> 11340				ream Nan RGES CR	_	¢	
NH3-N	Acute Alloca	ation	ns							
RMI	Discharge N	lame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)		Multiple Criterion (mg/L)	Multipl WLA (mg/L		Critical Reach	Percent Reduction
10.2	50 Georges Crk	MA	9.33		6	9.33		6	0	0
NH3-N	Chronic Allo	cati	ons							
RMI	Discharge Na	me	Baseline Criterion (mg/L)	Baseline WLA (mg/L)		Multiple Criterion (mg/L)	Multiple WLA (mg/L)		Critical Reach	Percent Reduction
10.2	50 Georges Crk	MA	1.63		3	1.63		3	0	0
	ed Oxygen A									

Baseline Multiple Baseline Multiple Baseline Multiple

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

3 4

3

Thursday, May 12, 2022

RMI

Discharge Name

20

20

10.25 Georges Crk MA

Version 1.0b

Page 1 of 1

Reach Reduction

0

0

4

	110		0.0.0	imulatio		
SWP Basin S	tream Code			Stream Nam	ie.	
19G	41340		G	EORGES CR	EEK	
RMI	Total Discharg	e Flow (mgd	i) Ana	lysis Tempera	ture (°C)	Analysis pH
10.250	0.1	80		22.722		6.819
Reach Width (ft)	Reach D			Reach WDRa	atio	Reach Velocity (fps)
15.200	0.5			30.091		0.071
Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
10.20	1.2			1.37		0.863
Reach DO (mg/L)	Reach Kr			Kr Equation	<u>n</u>	Reach DO Goal (mg/L)
6.310	13.8	87		Owens		4
Reach Travel Time (days)	L	Subreact	Results			
0.311	TravTime		NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.031	9.74	1.33	6.47		
	0.062	2 9.31	1.30	6.59		
	0.093	8.89	1.26	6.71		
	0.124	8.50	1.23	6.80		
	0.155	5 8.12	1.20	6.89		
	0.187	7.76	1.16	6.97		
	0.218	3 7.41	1.13	7.05		
	0.249		1.10	7.12		
	0.280		1.07	7.19		
	0.311		1.05	7.25		

WQM 7.0 D.O.Simulation

Thursday, May 12, 2022

Version 1.0b

Page 1 of 1

	WQM	7.0 Ef	fluent Limits	5		
SWP Basin Strea	m Code		Stream Name	2		
19G 41	1340		GEORGES CRE	EK		
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
Georges Crk MA	PA0218391	0.160	CBOD5	20		
			NH3-N	3	6	
			Dissolved Oxygen			4
	19G 4 Name	<u>SWP Basin</u> <u>Stream Code</u> 19G 41340 Name Permit Number	SWP Basin Stream Code 19G 41340 Name Permit Number	SWP Basin Stream Code Stream Name 19G 41340 GEORGES CRE Name Permit Number Disc Flow (mgd) Parameter Georges Crk MA PA0218391 0.160 CBOD5 NH3-N	19G 41340 GEORGES CREEK Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Georges Crk MA PA0218391 0.160 CBOD5 20 NH3-N 3	SWP Basin 19G Stream Code 41340 Stream Name GEORGES CREEK Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Georges Crk MA PA0218391 0.160 CBOD5 20 NH3-N 3 6

WOM 7 0 EHL

Thursday, May 12, 2022

Version 1.0b

Page 1 of 1

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions Disc	harge Stream		
Facility: Georg	es Creek MA STP	NPDES Permit No.: PA0218391	Outfall No.: 001
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: Treated sewage	

	Discharge Characteristics											
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	Complete Mix Times (min)							
(MGD)*	Hardness (mg/l)*	рн (30)-	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh				
0.16	100	6.67										

						0 If le	ft blank	0.5 If le	eft blank	0	if left blan	k	1 If lef	t blank
	Discharge Pollutant	Units	Мар	Conc		rib onc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS		Chem Transl
	Total Dissolved Solids (PWS)	mg/L				$\left \cdot \right $	-							
5	Chloride (PWS)	mg/L												
Group	Bromide	mg/L												
5	Sulfate (PWS)	mg/L					-							
	Fluoride (PWS)	mg/L												
	Total Aluminum	µg/L												
	Total Antimony	µg/L												
	Total Arsenic	µg/L												
	Total Barium	µg/L												
	Total Beryllium	µg/L												
	Total Boron	µg/L												
	Total Cadmium	µg/L												
	Total Chromium (III)	µg/L			H	†††								
	Hexavalent Chromium	µg/L												
	Total Cobalt	µg/L			Ħ	++								
	Total Copper	µg/L		5	Ħ	Ħ								
2	Free Cyanide	µg/L												
Group	Total Cyanide	µg/L					-							
5	Dissolved Iron	µg/L			H									
-	Total Iron	µg/L												
	Total Lead	µg/L		0.3										
	Total Manganese	µg/L			Ħ	++								
	Total Mercury	µg/L			Ħ									
	Total Nickel	µg/L												
	Total Phenols (Phenolics) (PWS)	µg/L												
	Total Selenium	µg/L			Ħ	Ħ								
	Total Silver	µg/L												
	Total Thallium	µg/L												
	Total Zinc	µg/L		146		H								
	Total Molybdenum	µg/L			H									
	Acrolein	µg/L	<			Ħ								
	Acrylamide	µg/L	<											
1	Acrylonitrile	µg/L	<		H	H								
	Benzene	µg/L	<			††								
	Bromoform	µg/L	<											

Carbon Totrachlorido	
Carbon Tetrachloride µg/L <	
Chlorobenzene µg/L	
Chlorodibromomethane µg/L <	
Chloroethane µg/L <	
2-Chloroethyl Vinyl Ether µg/L <	
Chloroform µg/L <	
Dichlorobromomethane	
1,1-Dichloroethane µg/L <	
β 1.1-Dichloroethylene μg/L <	
g 1.1-Dichloroethylene µg/L 1.2-Dichloropropane µg/L	
1,3-Dichioropropylene pg/c <	
1,4-Dioxane µg/L <	
Ethylbenzene µg/L <	
Methyl Bromide µg/L <	
Methyl Chloride µg/L <	
Methylene Chloride µg/L <	
1,1,2,2-Tetrachloroethane µg/L <	
Tetrachloroethylene µg/L <	
Toluene µg/L <	
1,2-trans-Dichloroethylene µg/L <	
1,1,1-Trichloroethane µg/L <	
Part Part Part Part Part Part Part Part	
2-Chlorophenol µg/L <	
2,4-Dichlorophenol µg/L <	
2,4-Dimethylphenol µg/L <	
4,6-Dinitro-o-Cresol µg/L <	
2,4-Dinitrophenol µg/L <	
B 2-Nitrophenol µg/L <	
δ 4-Nitrophenol μg/L <	
p-Chloro-m-Cresol µg/L <	
Pentachlorophenol µg/L <	
Phenol µg/L <	
2,4,6-Trichlorophenol µg/L <	
Acenaphthene µg/L <	
Acenaphthylene µg/L <	
Anthracene µg/L <	
Benzidine µg/L <	
Benzo(a)Pyrene µg/L <	
3,4-Benzofluoranthene µg/L <	
Benzo(ghi)Perylene µg/L <	
Benzo(k)Fluoranthene µg/L <	
Bis(2-Chloroethoxy)Methane µg/L <	
Bis(2-Chloroethyl)Ether µg/L <	
Bis(2-Chloroisopropyl)Ether µg/L <	
Bis(2-Ethylhexyl)Phthalate µg/L <	
4-Bromophenyl Phenyl Ether µg/L <	
Butyl Benzyl Phthalate µg/L <	
2-Chloronaphthalene µg/L <	
4-Chlorophenyl Phenyl Ether µg/L <	
Chrysene µg/L <	
Dibenzo(a,h)Anthrancene µg/L <	
1,2-Dichlorobenzene µg/L <	
1,3-Dichlorobenzene µg/L <	
G 3,3-Dichlorobenzidine μg/L	
9 3,3-Dichlorobenzidine µg/L 0 Diethyl Phthalate µg/L 0 Diethyl Rhthalate µg/L	
Dimediyi Philaiate pgrc <	
Di-n-Butyl Phthalate µg/L <	
2,4-Dinitrotoluene µg/L <	

				 				 	 	 -	
	2,6-Dinitrotoluene	µg/L	<		Ì	İ					
	Di-n-Octyl Phthalate	µg/L	<								
	1,2-Diphenylhydrazine	µg/L	<		-	-					
	Fluoranthene	µg/L	<	H	Ŧ	÷					
	Fluorene	µg/L	<	Ħ	t	t					
	Hexachlorobenzene	µg/L	<	H	÷	÷					
	Hexachlorobutadiene		<	Ħ	ŧ	t					
		µg/L	<		+	+		 			
	Hexachlorocyclopentadiene	µg/L		 H	+	+		 			
	Hexachloroethane	µg/L	<	⊨	╪	╪					
	Indeno(1,2,3-cd)Pyrene	µg/L	<		\pm	\pm					
	Isophorone	µg/L	<		Ť	Ť					
	Naphthalene	µg/L	۷	T	T	T					
	Nitrobenzene	µg/L	<								
	n-Nitrosodimethylamine	µg/L	<	H	+	÷					
	n-Nitrosodi-n-Propylamine	µg/L	<	Ħ	÷	÷					
	n-Nitrosodiphenylamine	µg/L	<	\vdash	+	+					
				Ħ	Ŧ	÷					
	Phenanthrene	µg/L	<		÷	÷		 			
	Pyrene	µg/L	<			_					
	1,2,4-Trichlorobenzene	µg/L	<								
	Aldrin	µg/L	<	\vdash	+	+					
	alpha-BHC	µg/L	<	H							
	beta-BHC	µg/L	<	Ħ	Ť	t					
	gamma-BHC	µg/L	<	Ĺ	Ì	Í					
	delta BHC	µg/L	<		+	Ŧ					
	Chlordane	µg/L	<	H	+	+					
				┝┼	┿	┿					
	4,4-DDT	µg/L	<	╞╪	+	╪		 			
	4,4-DDE	µg/L	<	Ħ	+	+					
	4,4-DDD	µg/L	<	Ť	Ť	Ť					
	Dieldrin	µg/L	<								
	alpha-Endosulfan	µg/L	۷		-	-					
	beta-Endosulfan	µg/L	<		-	-					
9	Endosulfan Sulfate	µg/L	<	Ħ	Ŧ	t					
Ω.	Endrin	µg/L	<	\vdash	+	+					
2	Endrin Aldehyde	µg/L	<	Ħ	÷	÷					
0					+	+					
	Heptachlor	µg/L	<	\vdash	+	÷		 			
	Heptachlor Epoxide	µg/L	<								
	PCB-1016	µg/L	<		╞	╞					
	PCB-1016 PCB-1221										
	PCB-1016	µg/L	<				-				
	PCB-1016 PCB-1221	μg/L μg/L μg/L	< <								
	PCB-1016 PCB-1221 PCB-1232	μg/L μg/L μg/L μg/L	< < <								
	PCB-1016 PCB-1221 PCB-1232 PCB-1232 PCB-1242 PCB-1248	μg/L μg/L μg/L μg/L μg/L	v v v v v								
	PCB-1016 PCB-1221 PCB-1232 PCB-1232 PCB-1242 PCB-1248 PCB-1254	μg/L μg/L μg/L μg/L μg/L μg/L	v v v v v v								
	PCB-1016 PCB-1221 PCB-1232 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254	μg/L μg/L μg/L μg/L μg/L μg/L	v v v v v v								
	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCB5, Total	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	v v v v v v v								
	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	v v v v v v v v								
	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	v v v v v v v								
	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha	<u>µ9/L</u> µ9/L µ9/L µ9/L µ9/L µ9/L µ9/L µ9/L <u>µ9/L</u> <u>µ9/L</u> <u>рСi/L</u>	v v v v v v v v v								
7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta	μց/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L ηg/L ηg/L ρCi/L рCi/L	v v v v v v v v								
7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha	<u>µ9/L</u> µ9/L µ9/L µ9/L µ9/L µ9/L µ9/L µ9/L <u>µ9/L</u> <u>µ9/L</u> <u>рСi/L</u>	v v v v v v v v v								
7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta	μց/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L ηg/L ηg/L ρCi/L рCi/L	× × × × × × × × ×								
sroup 7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L									
sroup 7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L									
sroup 7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L									
sroup 7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L									
sroup 7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L									
sroup 7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L									
sroup 7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L									
sroup 7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L									
sroup 7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L									
sroup 7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L									
sroup 7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L									
sroup 7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L									
sroup 7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L									
sroup 7	PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	<u>µg/L</u> µg/L µg/L µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L									

Stream / Surface Water Information

Georges Creek MA STP, NPDES Permit No. PA0218391, Outfall 001

Toxics Management Spreadsheet Version 1.3, March 2021

Instructions Discharge	Stream	
------------------------	--------	--

Receiving Surface Water Name: Georges Creek

No. Reaches to Model: 1

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	041340	10.25	950.46	17.4			Yes
End of Reach 1	041340	9.89	948.17	34.2			Yes

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

0	
•	7 40

Location	RMI	LFY	(Flow (cfs)		W/D	Width	Depth	Velocit	Time	Tributary		Stream		Analysis	
Location	TSIWIT	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	10.25	0.017										100	7		
End of Reach 1	9.89	0.017													

Qh

Location	Location RMI		LFY Flow (cfs) V		W/D	Width	Depth	Velocit	Time	Indutary		Stream		Analysis	
Eocation	T SIMI	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	Time (days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	10.25														
End of Reach 1	9.89														

Stream / Surface Water Information

5/12/2022

Page 4

Pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Georges Creek MA STP, NPDES Permit No. PA0218391, Outfall 001

Instructions Results	RETURN TO INPU	ITS SAVE AS	PDF	PRINT) () A	ll ◯ Inputs ◯ Results ◯ Limits			
Hydrodynamics	Hydrodynamics								
Wasteload Allocations									
✓ AFC	CCT (min): 7.532	PMF: 1	Anat	ysis Hardnes	ss (mg/l):	100 Analysis pH: 6.82			
Pollutants	Conc CV	Trib Conc Fate (µg/L) Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments			
Total Copper	0 0		13.439	14.0	30.7	Chem Translator of 0.96 applied			
Total Lead	0 0	0	64.581	81.6	179	Chem Translator of 0.791 applied			
Total Zinc	0 0	0	117.180	120	263	Chem Translator of 0.978 applied			
✓ CFC	CCT (min): 7.532	PMF: 1		lysis Hardne	ss (mg/l):	100 Analysis pH: 0.82			
Pollutants	Conc CV	Trib Conc Fate (µg/L) Coef	WQC (µg/L)	(µg/L)	WLA (µg/L)				
Total Copper	0 0	0	8.956	9.33	20.5	Chem Translator of 0.96 applied			
Total Lead	0 0	0	2.517	3.18	6.98	Chem Translator of 0.791 applied			
Total Zinc	0 0	0	118.139	120	263	Chem Translator of 0.986 applied			
✓ THH	CCT (min): 7.532	PMF: 1	Ana	lysis Hardne	ss (mg/l):	N/A Analysis pH: N/A			
Pollutants	Conc CV	Trib Conc Fate (µg/L) Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments			
Total Copper	0 0	0	N/A	N/A	N/A				
Total Lead	0 0	0	N/A	N/A	N/A				
Total Zinc	0 0	0	N/A	N/A	N/A				
CRL	CCT (min): 7.144	PMF: 1	Ana	lysis Hardne	ss (mg/l):	N/A Analysis pH: N/A			
Pollutants	Conc CV	Trib Conc Fate (µg/L) Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments			
Total Copper	0 0	0	N/A	N/A	N/A				

Model Results

5/12/2022

Page 5

Total Lead	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	19.7	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	0.22	0.35	169	263	421	µg/L	169	AFC	Discharge Conc ≥ 50% WQBEL (RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Lead	6.98	µg/L	Discharge Conc ≤ 10% WQBEL

5/12/2022