

Southwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0218413

 APS ID
 758875

 Authorization ID
 1221240

Applicant Name	Econo	my Borough Municipal Authority	Facility Name	Big Sewickley Creek WWTP
Applicant Address	2860 C	Conway Wallrose Road	Facility Address	120 Wine Road
	Baden	, PA 15005-2306		Sewickley, PA 15143
Applicant Contact	Ms. Ja	anet Miklos	Facility Contact	Mr. Joseph DeLuca
Applicant Phone	(724) 8	369-3201	Facility Phone	(724) 869-3201
Client ID	64903		Site ID	532567
Ch 94 Load Status	Not Ov	verloaded	Municipality	Economy Borough
Connection Status	No Lim	nitations	County	Beaver
Date Application Rece	eived	March 15, 2018	EPA Waived?	No
Date Application Acce	pted	March 20, 2018	If No, Reason	Major Facility

Summary of Review

The applicant has applied for a renewal of an existing NPDES Permit, Permit No. PA0218413, which was previously issued by the Department on August 27, 2013. That permit expired on August 31, 2018.

WQM Permit 400406, issued on August 29, 2001, approved construction of a STP with a hydraulic design capacity of 1.25 MGD. The existing treatment process consists of SBRs, UV Disinfection and aerobic digestion. Solids are dewatered via a belt filter press and disposed of at a municipal landfill.

The receiving stream, Big Sewickley Creek, is classified as a TSF and is located in State Watershed No. 20-G.

The applicant has complied with Act 14 Notifications and no comments were received.

Please note that any reference to 36th or 37th Month in the draft NPDES Permit will be changed to a specific date once PED has been established. I will also request additional sampling from the Authority for dissolved Iron, total mercury, total selenium, total zinc, and free cyanide. Based upon the results, these parameters will be reevaluated prior to issuance.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		William C. Mitchell William C. Mitchell, E.I.T. / Environmental Engineering Specialist	June 18, 2020
Х		Donald J. Leone Donald J. Leone, P.E. / Environmental Engineer Manager	June 24, 2020

ischarge, Receiving Waters and Water Supp	ly Information			
ge, messering material and materials				
Outfall No. 001	Design Flow (MGD)	1.25 -8º 11' 05.00"		
Latitude 40° 35′ 51.00″	Longitude			
Quad Name Ambridge	Quad Code	1404		
Wastewater Description: Sewage Effluent				
Pagaining Weters - Pig Souighlay Creek /TS	F) Stream Code	26506		
Receiving Waters Big Sewickley Creek (TS		36596		
NHD Com ID 99681622	RMI	3.43		
Drainage Area 26.41	Yield (cfs/mi²)	0.0058 USGS Low Flow Statistics,		
Q ₇₋₁₀ Flow (cfs) 0.1532	Q ₇₋₁₀ Basis	Sta. # 03086100		
Elevation (ft)	Slope (ft/ft)	0.0057		
Watershed No. 20-G	<u> </u>	TSF		
Existing Use	Existing Use Qualifier			
Exceptions to Use	Exceptions to Criteria			
Assessment Status Attaining Use(s)	<u> </u>			
Cause(s) of Impairment				
Source(s) of Impairment				
TMDL Status	Name			
Background/Ambient Data	Data Source			
pH (SU)	Data Course			
Temperature (°F)	-			
Hardness (mg/L) 116.8	Sampled by the Authority			
Other:	- Campion by the Nationty			
Nearest Downstream Public Water Supply Inta	ake Nova Chemical Beaver Valley	Plant		
PWS Waters Ohio River	Flow at Intake (cfs)			
PWS RMI		Distance from Outfall (mi)		
	Distance from Satiali (iii)			

Changes Since Last Permit Issuance: None.

Treatment Facility Summary

Treatment Facility Name: Big Sewickley WWTP

WQM Permit No.	Issuance Date
400406	08/29/2001

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary with Ammonia Reduction	SBRs	Ultraviolet	0.412

Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
				Dewatered Solids
			Aerobic Digestion/Belt	are Hauled to a
1.25	2290	Not Overloaded	Filter Press	Municipal Landfill

Changes Since Last Permit Issuance: None

Compliance History

Operations Compliance Check Summary Report

Facility: Big Sewickley Creek WWTP

NPDES Permit No.: PA0218413

Compliance Review Period: 6/2015 – 6/2020

Inspection Summary:

INSP ID	INSPECTED DATE	INSP TYPE	INSPECTION RESULT DESC
2875331	05/02/2019	Compliance Evaluation	Violation(s) Noted
2768899	08/22/2018	Compliance Evaluation	Violation(s) Noted
2596928	05/04/2017	Compliance Evaluation	Violation(s) Noted
2452992	02/25/2016	Compliance Evaluation	No Violations Noted

Violation Summary:

VIOL ID	VIOLATION DATE	VIOLATION TYPE	VIOLATION TYPE DESC	RESOLVED DATE
848465	05/02/2019	92A.44	NPDES - Violation of effluent limits in Part A of permit	
848466	05/02/2019	92A.47(C)	NPDES - Illegal discharge to waters of the Commonwealth from a sanitary sewer overflow (SSO)	

826641	08/22/2018	92A.41(A)1	NPDES - Non-compliance with an issued permit, not classified by any other code	08/22/2018
826642	08/22/2018	92A.41(A)10C	NPDES - Failure to collect representative samples	08/22/2018
826643	08/22/2018	92A.44	NPDES - Violation of effluent limits in Part A of permit	08/22/2018
786366	05/04/2017	92A.41(A)1	NPDES - Non-compliance with an issued permit, not classified by any other code	05/24/2017
786367	05/04/2017	92A.44	NPDES - Violation of effluent limits in Part A of permit	05/24/2017

Open Violations by Client ID:

CLIENT	INSP ID	VIOLATION ID	VIOLATION DATE	VIOLATION CODE	VIOLATION
64903	2875331	848465	05/02/2019	92A.44	NPDES - Violation of effluent limits in Part A of permit
64903	2875331	848466	05/02/2019	92A.47(C)	NPDES - Illegal discharge to waters of the Commonwealth from a sanitary sewer overflow (SSO)

Enforcement Summary:

ENF ID	ENF TYPE	ENF TYPE DESC	ENF CREATION DATE	VIOLATIONS	# OF VIOLATIONS	ENF FINALSTATUS	ENF CLOSED DATE
376126	NOV	Notice of Violation	06/17/2019	92A.44; 92A.47(C)	2		
367063	NOV	Notice of Violation	08/29/2018	92A.41(A)1; 92A.41(A)10C; 92A.44	3	Administrative Close Out	08/30/2019
353606	NOV	Notice of Violation	05/24/2017	92A.41(A)1; 92A.44	2	Administrative Close Out	08/30/2019

DMR Violation Summary:

MONITORIN G START DATE	MONITORIN G END DATE	NON COMPLIANC E CATEGORY	PARAMETER	SAMPL E VALUE	PERMI T VALUE	UNIT OF MEASUR E	STATISTICA L BASE CODE
04/01/2020	04/30/2020	Concentration 3 Effluent Violation	Bis(2- Ethylhexyl)Phthalat e	< 0.005	0.003	mg/L	Daily Maximum
04/01/2020	04/30/2020	Concentration 3 Effluent Violation	Cyanide, Free	0.011	0.009	mg/L	Daily Maximum
05/01/2019	05/31/2019	Concentration 2 Effluent Violation	Ammonia-Nitrogen	3.8	2.0	mg/L	Average Monthly
01/01/2019	01/31/2019	Concentration 3 Effluent	Cyanide, Free	0.012	0.009	mg/L	Daily Maximum

		Violation					
12/01/2018	12/31/2018	Concentration 1 Effluent Violation	Dissolved Oxygen	5.47	6.0	mg/L	Minimum
08/01/2018	08/31/2018	Concentration 3 Effluent Violation	Cyanide, Free	0.014	0.009	mg/L	Daily Maximum
08/01/2018	08/31/2018	Concentration 2 Effluent Violation	Cyanide, Free	0.009	0.006	mg/L	Average Monthly
06/01/2018	06/30/2018	Concentration 3 Effluent Violation	Cyanide, Free	0.025	0.009	mg/L	Daily Maximum
06/01/2018	06/30/2018	Concentration 2 Effluent Violation	Cyanide, Free	0.013	0.006	mg/L	Average Monthly
05/01/2018	05/31/2018	Concentration 2 Effluent Violation	Cyanide, Free	0.008	0.006	mg/L	Average Monthly
05/01/2018	05/31/2018	Concentration 3 Effluent Violation	Cyanide, Free	0.015	0.009	mg/L	Daily Maximum
04/01/2018	04/30/2018	Concentration 3 Effluent Violation	Cyanide, Free	0.024	0.009	mg/L	Daily Maximum
04/01/2018	04/30/2018	Concentration 2 Effluent Violation	Cyanide, Free	0.020	0.006	mg/L	Average Monthly
03/01/2018	03/31/2018	Concentration 3 Effluent Violation	Cyanide, Free	0.019	0.009	mg/L	Daily Maximum
03/01/2018	03/31/2018	Concentration 2 Effluent Violation	Cyanide, Free	< 0.010	0.006	mg/L	Average Monthly
03/01/2018	03/31/2018	Load 2 Effluent Violation	Cyanide, Free	0.100	0.094	lbs/day	Daily Maximum
02/01/2018	02/28/2018	Load 2 Effluent Violation	Cyanide, Free	0.100	0.094	lbs/day	Daily Maximum
01/01/2018	01/31/2018	Concentration 3 Effluent Violation	Cyanide, Free	0.011	0.009	mg/L	Daily Maximum
01/01/2018	01/31/2018	Concentration 2 Effluent Violation	Cyanide, Free	0.008	0.006	mg/L	Average Monthly
12/01/2017	12/31/2017	Concentration 2 Effluent Violation	Copper, Total	0.020	0.012	mg/L	Average Monthly
12/01/2017	12/31/2017	Concentration 3 Effluent Violation	Copper, Total	0.019	0.018	mg/L	Daily Maximum
11/01/2017	11/30/2017	Concentration 2 Effluent Violation	Cyanide, Free	0.010	0.006	mg/L	Average Monthly
11/01/2017	11/30/2017	Concentration 3 Effluent	Cyanide, Free	0.027	0.009	mg/L	Daily Maximum

		Violation					
10/01/2017	10/31/2017	Concentration 3 Effluent Violation	Cyanide, Free	0.159	0.009	mg/L	Daily Maximum
10/01/2017	10/31/2017	Concentration 2 Effluent Violation	Copper, Total	0.074	0.012	mg/L	Average Monthly
10/01/2017	10/31/2017	Concentration 2 Effluent Violation	Cyanide, Free	0.050	0.006	mg/L	Average Monthly
10/01/2017	10/31/2017	Load 2 Effluent Violation	Cyanide, Free	0.300	0.094	lbs/day	Daily Maximum
10/01/2017	10/31/2017	Load 2 Effluent Violation	Copper, Total	0.600	0.188	lbs/day	Daily Maximum
10/01/2017	10/31/2017	Load 1 Effluent Violation	Copper, Total	0.200	0.125	lbs/day	Average Monthly
10/01/2017	10/31/2017	Concentration 3 Effluent Violation	Copper, Total	0.264	0.018	mg/L	Daily Maximum
10/01/2017	10/31/2017	Load 1 Effluent Violation	Cyanide, Free	0.090	0.063	lbs/day	Average Monthly
09/01/2017	09/30/2017	Concentration 3 Effluent Violation	Cyanide, Free	0.028	0.009	mg/L	Daily Maximum
09/01/2017	09/30/2017	Concentration 2 Effluent Violation	Cyanide, Free	0.020	0.006	mg/L	Average Monthly
08/01/2017	08/31/2017	Concentration 3 Effluent Violation	Cyanide, Free	0.025	0.009	mg/L	Daily Maximum
08/01/2017	08/31/2017	Concentration 3 Effluent Violation	Bis(2- Ethylhexyl)Phthalat e	0.005	0.003	mg/L	Daily Maximum
08/01/2017	08/31/2017	Concentration 2 Effluent Violation	Cyanide, Free	< 0.010	0.006	mg/L	Average Monthly
07/01/2017	07/31/2017	Concentration 3 Effluent Violation	Cyanide, Free	0.022	0.009	mg/L	Daily Maximum
07/01/2017	07/31/2017	Concentration 2 Effluent Violation	Cyanide, Free	0.010	0.006	mg/L	Average Monthly
06/01/2017	06/30/2017	Concentration 2 Effluent Violation	Cyanide, Free	0.020	0.006	mg/L	Average Monthly
06/01/2017	06/30/2017	Concentration 3 Effluent Violation	Cyanide, Free	0.028	0.009	mg/L	Daily Maximum
05/01/2017	05/31/2017	Concentration 2 Effluent Violation	Cyanide, Free	< 0.010	0.006	mg/L	Average Monthly
05/01/2017	05/31/2017	Concentration 3 Effluent	Cyanide, Free	0.016	0.009	mg/L	Daily Maximum

		Violation					
03/01/2017	03/31/2017	Concentration 2 Effluent Violation	Cyanide, Free	0.009	0.006	mg/L	Average Monthly
03/01/2017	03/31/2017	Concentration 3 Effluent Violation	Cyanide, Free	0.019	0.009	mg/L	Daily Maximum
02/01/2017	02/28/2017	Concentration 2 Effluent Violation	Bis(2- Ethylhexyl)Phthalat e	< 0.005	0.002	mg/L	Average Monthly
02/01/2017	02/28/2017	Concentration 3 Effluent Violation	Bis(2- Ethylhexyl)Phthalat e	0.009	0.003	mg/L	Daily Maximum
01/01/2017	01/31/2017	Concentration 3 Effluent Violation	Cyanide, Free	0.020	0.009	mg/L	Daily Maximum
01/01/2017	01/31/2017	Concentration 2 Effluent Violation	Cyanide, Free	< 0.010	0.006	mg/L	Average Monthly
01/01/2017	01/31/2017	Load 1 Effluent Violation	Cyanide, Free	< 0.080	0.063	lbs/day	Average Monthly
01/01/2017	01/31/2017	Load 2 Effluent Violation	Cyanide, Free	0.200	0.094	lbs/day	Daily Maximum
12/01/2016	12/31/2016	Concentration 2 Effluent Violation	Cyanide, Free	0.007	0.006	mg/L	Average Monthly
12/01/2016	12/31/2016	Concentration 2 Effluent Violation	Cyanide, Free	0.007	0.006	mg/L	Average Monthly
09/01/2016	09/30/2016	Concentration 2 Effluent Violation	Bis(2- Ethylhexyl)Phthalat e	< 0.033	0.002	mg/L	Average Monthly
09/01/2016	09/30/2016	Concentration 2 Effluent Violation	Copper, Total	0.013	0.012	mg/L	Average Monthly
09/01/2016	09/30/2016	Load 2 Effluent Violation	Bis(2- Ethylhexyl)Phthalat e	0.385	0.031	lbs/day	Daily Maximum
09/01/2016	09/30/2016	Concentration 3 Effluent Violation	Cyanide, Free	0.020	0.009	mg/L	Daily Maximum
09/01/2016	09/30/2016	Load 1 Effluent Violation	Bis(2- Ethylhexyl)Phthalat e	0.096	0.021	lbs/day	Average Monthly
09/01/2016	09/30/2016	Concentration 3 Effluent Violation	Bis(2- Ethylhexyl)Phthalat e	0.130	0.003	mg/L	Daily Maximum
09/01/2016	09/30/2016	Load 2 Effluent Violation	Bis(2- Ethylhexyl)Phthalat e	0.400	0.031	lbs/day	Daily Maximum
09/01/2016	09/30/2016	Concentration 2 Effluent Violation	Bis(2- Ethylhexyl)Phthalat e	< 0.033	0.002	mg/L	Average Monthly
09/01/2016	09/30/2016	Load 1 Effluent	Bis(2- Ethylhexyl)Phthalat	< 0.100	0.021	lbs/day	Average Monthly

		Violation	е				
09/01/2016	09/30/2016	Load 2 Effluent Violation	Bis(2- Ethylhexyl)Phthalat e	0.400	0.031	lbs/day	Daily Maximum
09/01/2016	09/30/2016	Concentration 2 Effluent Violation	Cyanide, Free	< 0.009	0.006	mg/L	Average Monthly
09/01/2016	09/30/2016	Load 1 Effluent Violation	Bis(2- Ethylhexyl)Phthalat e	< 0.100	0.021	lbs/day	Average Monthly
09/01/2016	09/30/2016	Concentration 2 Effluent Violation	Cyanide, Free	< 0.009	0.006	mg/L	Average Monthly
09/01/2016	09/30/2016	Concentration 2 Effluent Violation	Bis(2- Ethylhexyl)Phthalat e	0.032	0.002	mg/L	Average Monthly
09/01/2016	09/30/2016	Concentration 3 Effluent Violation	Cyanide, Free	0.020	0.009	mg/L	Daily Maximum
09/01/2016	09/30/2016	Concentration 3 Effluent Violation	Bis(2- Ethylhexyl)Phthalat e	0.130	0.003	mg/L	Daily Maximum
09/01/2016	09/30/2016	Concentration 3 Effluent Violation	Cyanide, Free	0.020	0.009	mg/L	Daily Maximum
09/01/2016	09/30/2016	Concentration 3 Effluent Violation	Bis(2- Ethylhexyl)Phthalat e	0.130	0.003	mg/L	Daily Maximum
06/01/2016	06/30/2016	Concentration 2 Effluent Violation	Fecal Coliform	250	200	CFU/100 ml	Geometric Mean

Compliance Status:

Ongoing .

Completed by: John Murphy

Completed date: 6/18/20

Development of Effluent Limitations							
Outfall No.	001	Design Flow (MGD)	1.25				
Latitude	40° 35' 51.00"	Longitude	-80° 11' 5.00"				
Wastewater D	escription: Sewage Effluent						

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Total Suspended Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

A "Reasonable Potential Analysis" (Attached Toxics Screening Analysis Spreadsheet Version 2.7) determined the following parameters were candidates for limitations: total copper, free cyanide, dissolved iron, total lead, total mercury, total selenium, and total zinc.

Based upon the PENTOXSD, Version 2.0c, modeling results (output files attached), the Toxics Screening Analysis Spreadsheet recommends Monitoring for total lead and the following WQBELs in the table below.

The discharge was previously modeled using WQAM63 to evaluate the CBOD₅, Ammonia Nitrogen and Dissolved Oxygen parameters. Because there have been no changes to the discharge or the receiving stream, the limits for those parameters are based on the previously approved modeling results (output files attached). It is unnecessary to remodel those three parameters using the current WQM 7.0.

The following limitations were determined through water quality modeling (output files attached):

Parameter	Parameter Limit (mg/l) SBC		Model
CBOD5	, ,		
May 1 - Oct 31	15	Average Monthly	WQAM63
CBOD5			
Nov 1 - Apr 30	25	Average Monthly	WQAM63
Dissolved Oxygen	6.0	Minimum	WQAM63
Ammonia-Nitrogen			
(May 1 – Oct 31)	2.0	Average Monthly	WQAM63
Ammonia-Nitrogen			
(Nov 1 – Apr 30)	3.5	Average Monthly	WQAM63
Iron, Dissolved	0.323	Average Monthly	PENTOXSD, Version 2.0c
Mercury, Total (ug/L)	0.054	Average Monthly	PENTOXSD, Version 2.0c
Selenium, Total	0.005	Average Monthly	PENTOXSD, Version 2.0c
Zinc, Total	0.104	Average Monthly	PENTOXSD, Version 2.0c
Copper, Total	0.012	Average Monthly	PENTOXSD, Version 2.0c
Cyanide, Free	0.006	Average Monthly	PENTOXSD, Version 2.0c

Best Professional Judgment (BPJ) Limitations

Comments: N/A

Anti-Backsliding

N/A

Additional Considerations:

Ultraviolet (UV) disinfection is used therefore Total Residual Chlorine (TRC) limits are not applicable. Routine monitoring of UV Transmittance will be at the same monitoring frequency that is used for TRC.

For pH, Dissolved Oxygen (DO) and UV Transmittance, a monitoring frequency 1/day has been imposed. In general, less frequent monitoring may be established only when the permittee demonstrates that there will be no discharge on days where monitoring is not required.

Nutrient monitoring is required to establish the nutrient load from the waste water treatment facility and the impacts that load may have on the quality of the receiving stream(s). A 1/quarter monitor and report requirement for Total N & Total P has been added to the permit as per Chapter 92.a.61.

Mass loading limits are applicable for publicly owned treatment works. Current policy requires average monthly mass loading limits be established for CBOD5, TSS, and NH₃-N and average weekly mass loading limits be established for CBOD5 and TSS. Average monthly mass loading limits (lbs/day) are based on the formula: design flow (MGD) x concentration limit (mg/L) x conversion factor (8.34).

Please note that changes were made to the Average Monthly & Average Weekly Mass Effluent Limitations for CBOD5, TSS and Ammonia Nitrogen. These changes were necessary to be consisted with rounding guidelines found in Chapter 5.C.2, Rounding-Off Mathematically Values, of the Department's Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001.

For POTWs with design flows greater than 2,000 GPD influent BOD₅ and TSS monitoring must be established in the permit, and the monitoring should be consistent with the same frequency and sample type as is used for other effluent parameters.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations. Please note that Monitoring Requirements were changed for Flow to 2/week Metered to be consistent with the guidance.

Total Dissolved Solids (TDS) and its Major Constituents

Total Dissolved Solids (TDS) and its major constituents including sulfate, chloride, and bromide have emerged as pollutants of concern in several major watersheds in the Commonwealth. The conservative nature of these solids allows them to accumulate in surface waters and they may remain a concern even if the immediate downstream public water supply is not directly impacted. Bromide has been linked to formation of disinfection byproducts at increased levels in public water systems. In addition, as a consequence of actions associated with Triennial Review 13, the Environmental Quality Board has directed DEP to collect additional data related to sulfate, chloride, and 1,4-dioxane. Furthermore, in an August 2013 letter from Jon Capacasa of the Region III Water Protection Program to DEP (attached), EPA has expressed concern related to bromide and the importance of monitoring all point sources for bromide when it may be present.

Based on these concerns and under the authority of §92a.61, DEP has determined it should implement increased monitoring in NPDES permits for these parameters: TDS, sulfate, chloride, bromide, and 1,4-dioxane.

Increased monitoring in NPDES permits will only occur when the following conditions are met:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.

- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 μg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 μg/L.

Monitoring is not required for TDS, sulfate, chloride, bromide & 1,4-dioxane. Concentrations of bromide is less than 1 mg/L (application reports <0.1 mg/L), TDS is less than 1000 mg/L (application reports 436 mg/L) & 1,4-dioxane is less than 10 ug/L (application reports <5.0 ug/L).

Whole Effluent Toxicity (WET)								
I 001, ☐ Acute ☑ Chronic WET Testing was completed:								
or the permit renewal application (4 tests).								
uarterly throughout the permit term.								
uarterly throughout the permit term and a TIE/TRE was conducted.								
ther:								

The dilution series used for the tests was: 100%, 97%, 93%, 47%, and 23%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 93 %.

Summary of Four Most Recent Test Results

TST Data Analysis

For Ou

(NOTE - Please see the attached DEP WET Analysis Spreadsheet).

	Ceriodaphnia R	Results (Pass/Fail)	Pimephales Re	esults (Pass/Fail)
Test Date	Survival	Reproduction	Survival	Growth
11/16/2014	PASS	PASS	PASS	PASS
11/10/2015	PASS	PASS	PASS	PASS
11/22/2016	PASS	PASS	PASS	PASS
11/07/2017	PASS	PASS	PASS	PASS

^{*} A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is less than the critical t value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (NOTE – In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests).

☐ YES ⊠ NO

Comments: No

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): **1.0** Chronic Partial Mix Factor (PMFc): **1.0**

1. Determine IWC - Acute (IWCa):

$$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$$

 $[(1.25 \text{ MGD} \times 1.547) / ((0.1532 \text{ cfs} \times 1.0) + (1.25 \text{ MGD} \times 1.547))] \times 100 = 92.66\%$

Is IWCa < 1%? ☐ YES ☒ NO (Chronic Test Required)

Type of Test for Permit Renewal: Chronic Testing

2b. Determine Target IWCc (If Chronic Tests Required)

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

 $[(1.25 \text{ MGD} \times 1.547) / ((0.1532 \text{ cfs} \times 1.0) + (1.25 \text{ MGD} \times 1.547))] \times 100 = 92.66\%$

3. Determine Dilution Series

(NOTE - check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).

Dilution Series = 100%, 97%, 93%, 47%, and 23%.

Has reasonable potential been determined? $\ \square$ YES $\ \boxtimes$ NO

Will WET limits be established in the permit? \square YES \boxtimes NO

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through 36th Month.

	Effluent Limitations					Monitoring Requirements		
Parameter	Mass Units	(lbs/day) ⁽¹⁾	Concentrations (mg/L)				Minimum ⁽²⁾	Required
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
Dissolved Iron	Report	Report	XXX	Report	Report	XXX	1/week	Composite
								24-Hr
Total Mercury (ug/L)	XXX	XXX	XXX	Report	Report	XXX	1/week	Composite
								24-Hr
Total Selenium	Report	Report	XXX	Report	Report	XXX	1/week	Composite
				-				24-Hr
Total Zinc	Report	Report	XXX	Report	Report	XXX	1/week	Composite

Compliance Sampling Location: Outfall # 001

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: 37th Month through Permit Expiration Date.

		Effluent Limitations					Monitoring Requirements	
Boromotor	Mass Units	(lbs/day) (1)	Concentrations (mg/L)				Minimum (2)	Required
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
Dissolved Iron	3.0	5.0	XXX	0.323	0.505	0.809	1/week	Composite
								24-Hr
Total Mercury (ug/L)	XXX	XXX	XXX	0.054	0.084	0.135	1/week	Composite
								24-Hr
Total Selenium	0.051	0.083	XXX	0.005	0.008	0.012	1/week	Composite
								24-Hr
Total Zinc	1.0	1.5	XXX	0.104	0.162	0.26	1/week	Composite

Compliance Sampling Location: Outfall # 001

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Monitoring Re	quirements				
Parameter	Mass Units	(lbs/day) (1)		Concentrati	ons (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Daily Maximum	Instantaneous Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	2/week	Metered
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	6.0	XXX	XXX	XXX	1/day	Grab
CBOD5		410.0	2004	0= 0	40.0			24-Hr
Nov 1 - Apr 30	260.0	Wkly Avg	XXX	25.0	Wkly Avg	50	2/week	Composite
CBOD5		235.0			23.0		_, .	24-Hr
May 1 - Oct 31	155.0	Wkly Avg	XXX	15.0	Wkly Avg	30	2/week	Composite
BOD5								24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
		465.0			45.0			24-Hr
TSS	310.0	Wkly Avg	XXX	30.0	Wkly Avg	60	2/week	Composite
TSS	_	_		_			_,	24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/week	Grab
UV Transmittance (%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Measured
							,	24-Hr
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Composite
Ammonia-Nitrogen								24-Hr
Nov 1 - Apr 30	36.0	XXX	XXX	3.5	XXX	7	2/week	Composite
Ammonia-Nitrogen								24-Hr
May 1 - Oct 31	20.0	XXX	XXX	2.0	XXX	4	2/week	Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations							
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	Minimum (2)	Required			
raiailletei	Average Monthly	Daily Maximum	Instantaneous Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
								24-Hr	
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Composite	
								24-Hr	
Total Copper	0.125	0.188	XXX	0.012	0.018	0.029	1/week	Composite	
								24-Hr	
Free Cyanide	0.063	0.094	XXX	0.006	0.009	0.015	1/week	Composite	
								24-Hr	
Total Lead	Report	Report	XXX	Report	Report	XXX	1/week	Composite	

Compliance Sampling Location: Outfall # 001

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.7

 Facility:
 Big Sewickley Creek WWTP
 NPDES Permit No.:
 PA0218413
 Outfall:
 001

 Analysis Hardness (mg/L):
 116.8
 Discharge Flow (MGD):
 1.25
 Analysis pH (SU):
 7

 Stream Flow, Q₇₋₁₀ (cfs):
 0.153
 0.153
 0.153
 0.153

Parameter Maximum Concentration in Application or DMRs (µg/L) Criterion (µg/L) Candidate for PENTOX3D Modeling	Most Stringent WQBEL (µg/L)	Soreening Recommendation
Chioride		
Sulfate		
Suffate		
Total Aluminum		
Total Antimony 0.8 5.6 No Total Arsenic 2 10 No Total Barlum 118 2400 No Total Beryllium 0.8 N/A No Total Beryllium 302 1600 No Total Cadmium <		
Total Arsenic 2 10 No Total Barlum 118 2400 No Total Berlyllium 0.8 Ni/A No Total Beron 302 1600 No Total Cadmium <		
Total Barlum 118 2400 No Total Beryillum 0.8 N/A No Total Boron 302 1600 No Total Cadmilum < 0.08		
Total Beryllium 0.8 N/A No Total Boron 302 1600 No Total Cadmium < 0.08		
Total Boron 302 1600 No Total Gadmlum < 0.08		
Total Cadmium 0.08 0.304 No (Value < QL) Total Chromium 2 N/A No Hexavalent Chromium 5 10.4 No		
Total Chromium 2 N/A No Hexavalent Chromium <		
Hexavalent Chromium < 5 10.4 No		
Total Cobalt 2 19 No		
Total Conner 16 10.7 Yes	12,479	Establish Limits
N	5.612	Establish Limits
Free Available Cyanide < 3.6 5.2 Yes		
8 Dissolved iron 200 300 Yes	323.764	Establish Limits
Total iron 26 1500 No		
Total Lead 2 3.9 Yes	4.837	Monitor
Total Manganese 20 1000 No		Patentine 17
Total Mercury 0.03 0.05 Yes	0.054	Establish Limits
Total Nickel 1 59.5 No		
Total Phenois (Phenois) Control Society	5.384	Establish Limits
Total Silver 2 4.9 No	5.304	Establish Limits
Total Thaillum		
Total Zinc 77 136.7 Yes	136.7	Establish Limits
Total Molybdenum 2 N/A No		
Acrolein < 1 3 No (Value < QL)		
Acrylonitrile O.5 0.051 No (Value < QL)		
Benzene < 0.5 1.2 No (Value < QL)		
Bromoform < 0.5 4.3 No (Value < QL)		
Carbon Tetrachloride < 0.5 0.23 No (Value < QL)		
Chlorobenzene 0.5 130 No (Value < QL) Chlorodibromomethane 0.5 0.4 No (Value < QL)		
Chlorodibromomethane 0.5 0.4 No (Value < QL) Chloroethane 0.5 N/A No		
2-Chloroethyl Vinyl Ether < 0.5 3500 No (Value < QL)		
Chloroform < 0.7 5.7 No		
Dichlorobromomethane < 0.5 0.55 No (Value < QL)		
1,1-Dichloroethane < 0.5 N/A No		
1,2-Dichloroethane < 0.5 0.38 No (Value < QL)		
n 1,1-Dichioroethylene < 0.5 33 No (Value < QL)		
1,2-Olchioropropane		
1,4-Dioxane < 5 N/A No (China de China		
Ethylbenzene 0.5 530 No (Value < QL) Methyl Bromide 0.5 47 No (Value < QL)		
Methyl Chloride		
Methylene Chloride O.5 Mo (Value < QL)		
1,1,2,2-Tetrachioroethane < 0.5 0.17 No (Value < QL)		
Tetrachioroethylene < 0.5 0.69 No (Value < QL)		
Toluene < 0.5 330 No (Value < QL)		
1,2-trans-Dichloroethylene < 0.5 140 No (Value < QL)		
1,1,1-Trichloroethane < 0.5 610 No (Value < QL)		
1,1,2-Trichloroethane < 0.5 0.59 No (Value < QL)		
Trichloroethylene < 0.5 2.5 No (Value < QL)		
Vinyl Chloride < 0.5 0.025 No (Value < QL)		
2-Chlorophenol < 1 81 No (Value < QL) 2,4-Dichlorophenol < 1 77 No (Value < QL)		
2,4-Dichiorophenol < 1 77 No (Value < QL) 2,4-Dimethylphenol < 1 130 No (Value < QL)		
4,6-Dinitro-o-Cresol < 1 13 No (Value < QL)		
* 2.4-Distrochand		
2-Nitrophenol		
65 4-Nitrophenol < 1 470 No (Value < QL)		
p-Chloro-m-Cresol < 1 30 No (Value < QL)		
Pentachlorophenol < 1 0.27 No (Value < QL)		
Phenol < 5 10400 No (Value < QL)		
2,4,6-Trichlorophenol < 1 1.4 No (Value < QL)		

Big Sewickley Creek STP Toxics Screening Analysis Spreadsheet (v 2.7), 5/7/2020

	Acenaphthene	٧	1	17	No (Value < QL)	
1	Acenaphthylene	*	1	N/A	No	
1	Anthracene	*	1	8300	No (Value < QL)	
1	Benzidine	٨	5	0.000086	No (Value < QL)	
1	Benzo(a)Anthracene	٨	1	0.0038	No (Value < QL)	
1	Benzo(a)Pyrene	•	1	0.0038	No (Value < QL)	
l	3,4-Benzofuoranthene	<	1	0.0038	No (Value < QL)	
l	Benzo(ghl)Perylene	٨	1	N/A	No	
l	Berzo(k)Fluoranthene	*	1	0.0038	No (Value < QL)	
l	Bis(2-Chloroethoxy)Methane	٧	1	N/A	No	
l	Bis(2-Chloroethyl)Ether	<	1	0.03	No (Value < QL)	
l	Bis(2-Chloroisopropyl)Ether	~	1	1400	No (Value < QL)	
l	Bis(2-Ethylhexyl)Phthalate	*	3	1.2	No (Value < QL)	
l	4-Bromophenyl Phenyl Ether	<	1	54	No (Value < QL)	
	Butyl Benzyl Phthalate	<	1	35	No (Value < QL)	
l	2-Chioronaphthalene	<	1	1000	No (Value < QL)	
	4-Chlorophenyl Phenyl Ether	<	1	N/A	No No	
	Chrysene	~	1	0.0038	No (Value < QL)	
	Dibenzo(a,h)Anthrancene	~	1	0.0038	No (Value < QL)	
		<	0.5	160		
	1,2-Dichlorobenzene		0.5	69	No (Value < QL)	
	1,3-Dichlorobenzene	$\overline{}$			No (Value < QL)	
p 5	1,4-Dichlorobenzene	<	0.5	150	No (Value < QL)	
dino	3,3-Dichlorobenzidine	<	1	0.021 800	No (Value < QL)	
ě	Diethyl Phthalate Dimethyl Phthalate	<	5.13	800 500	No No (Value of OL)	-
1	Din-Butyl Phthalate	<	1		No (Value < QL)	
			3	21	No (Value < QL)	
l	2,4-Dinitrotoluene	<	1	0.05	No (Value < QL)	
	2,6-Dinitrotoluene	<	1	0.05	No (Value < QL)	
	Di-n-Octyl Phthalate	<	3	N/A	No	
l	1,2-Diphenylhydrazine	<	1	0.036	No (Value < QL)	
l	Fluoranthene	<	1	40	No (Value < QL)	
	Fluorene	*	1	1100	No (Value < QL)	
l	Hexachlorobenzene	<	1	0.00028	No (Value < QL)	
	Hexachlorobutadiene	<	0.5	0.44	No (Value < QL)	
	Hexachlorocyclopentadiene	<	0.5	1	No (Value < QL)	
	Hexachloroethane	<	1	1.4	No (Value < QL)	
	Indeno(1,2,3-cd)Pyrene	<	1	0.0038	No (Value < QL)	
	Isophorone	<	1	35	No (Value < QL)	
	Naphthalene	<	1	43	No	
l	Nitrobenzene	•	1	17	No (Value < QL)	
	n-Nitrosodimethylamine	*	1	0.00069	No (Value < QL)	
l	n-Nitrosodi-n-Propylamine	~	1	0.005	No (Value < QL)	
	n-Nitrosodiphenylamine	*	1	3.3	No (Value < QL)	
l	Phenanthrene	~	1	1	No (Value < QL)	
l	Pyrene	~	1	830	No (Value < QL)	
	1,2,4-Trichlorobenzene	•	1	26	No	
	Aldrin	<		0.000049		
l	alpha-BHC	*		0.0026		
	beta-BHC	*		0.0091		
	gamma-BHC	*		0.098		
l	gamma bno			N/A		
	delta BHC	<		PM.C.		
		٧		0.0008		
	delta BHC	-				
	delta BHC Chlordane	<		0.0008		
9 0	delta BHC Chlordane 4,4-DDT	<		0.0008 0.00022		
0	delta BHC Chlordane 4,4-DDT 4,4-DDE	V V V		0.0008 0.00022 0.00022		
0	delta BHC Chiordane 4,4-DDT 4,4-DDE 4,4-DDD Dieldrin	V V V V		0.0008 0.00022 0.00022 0.00031		
dno.	delta BHC Chlordane 4,4-DDT 4,4-DDE 4,4-DDD	V V V V		0.0008 0.00022 0.00022 0.00031 0.000052		
0	delta BHC Chiordane 4,4-DDT 4,4-DDE 4,4-DDD Dieldrin sipha-Endosulfan	V V V V V		0.0008 0.00022 0.00022 0.00031 0.000052 0.056		
0	delta BHC Chlordane 4,4-DDT 4,4-DDE 4,4-DDD Dleidrin alpha-Endosuffan beta-Endosuffan	< < < < < < <		0.0008 0.00022 0.00022 0.00031 0.000052 0.056		
0	delta BHC Chiordane 4,4-DDT 4,4-DDE 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan Endosulfan Sulfate Endoru	V V V V V V		0.0008 0.00022 0.00022 0.00031 0.000052 0.056 0.056 N/A		
0	delta BHC Chlordane 4,4-DDT 4,4-DDE 4,4-DDD DIctiorin alpha-Endosulfan beta-Endosulfan Endosulfan Sulfate	V V V V V V V		0.0008 0.00022 0.00022 0.00031 0.000052 0.056 0.056 N/A 0.036		
0	delta BHC Chiordane 4,4-DDT 4,4-DDE 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde	V V V V V V V V		0.0008 0.00022 0.00022 0.00031 0.000052 0.056 0.056 0.056 0.056		
0	delta BHC Chiordane 4,4-DDT 4,4-DDE 4,4-DDD Dieldrin sipha-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior	V V V V V V V V V		0.0008 0.00022 0.00022 0.00031 0.000052 0.056 0.056 N/A 0.036 0.29		
0	delta BHC Chlordane 4,4-DDT 4,4-DDE 4,4-DDDD Deldrin alpha-Endosuffan beta-Endosuffan beta-Endosuffan Endosuffan Suffate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide	V V V V V V V V V V		0.0008 0.00022 0.00022 0.00031 0.000052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039		
0	delta BHC Chiordane 4,4-DDT 4,4-DDE 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Aldehyde Heptachior Heptachior Heptachior Endosulfan Epoxide Toxaphene 2,3,7,8-TCDD	V V V V V V V V V V V V V V V V V V V		0.0008 0.00022 0.00022 0.00031 0.000052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039		
7 Group	delta BHC Chiordane 4,4-DDT 4,4-DDE 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior Heptachior Heptachior Endsyle Epoxide Toxaphene 2,3,7,8-TCDD Gross Alpha (pCUL)	V V V V V V V V V V V V V V V V V V V		0.0008 0.00022 0.00022 0.00031 0.00052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 0.0002 0.000000005		
7 Group	delta BHC Chiordane 4,4-DDT 4,4-DDE 4,4-DDD Dieldrin aipha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior Heptachior Epoxide Toxaphene 2,3,7,8-TCDD Gross Alpha (pCi/L) Total Beta (pCi/L)			0.0008 0.00022 0.00022 0.00031 0.00052 0.056 N/A 0.036 0.29 0.000079 0.000039 0.0002 0.00000005 N/A N/A		
7 Group	delta BHC Chiordane 4,4-DDT 4,4-DDE 4,4-DDD Dicidirin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior Heptachior Epoxide Toxaphene 2,3,7,8-TCDD Gross Alpha (pCI/L) Total Beta (pCI/L) Radium 226/228 (pCI/L)			0.0008 0.00022 0.00022 0.00031 0.00052 0.056 N/A 0.036 0.29 0.000079 0.000039 0.0002 0.000000005 N/A N/A		
Group	delta BHC Chiordane 4,4-DDT 4,4-DDT 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior Heptachior Epoxide Toxaphene 2,3,7,8-TCDD Gross Alpha (pC/L) Total Beta (26/2L8) Total Strontium			0.0008 0.00022 0.00022 0.00031 0.00052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 0.0002 0.00000005 N/A N/A N/A N/A 4000		
7 Group	delta BHC Chiordane 4,4-DDT 4,4-DDE 4,4-DDD Dicidirin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior Heptachior Epoxide Toxaphene 2,3,7,8-TCDD Gross Alpha (pCI/L) Total Beta (pCI/L) Radium 226/228 (pCI/L)			0.0008 0.00022 0.00022 0.00031 0.00052 0.056 N/A 0.036 0.29 0.000079 0.000039 0.0002 0.000000005 N/A N/A		
7 Group	delta BHC Chiordane 4,4-DDT 4,4-DDT 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior Heptachior Epoxide Toxaphene 2,3,7,8-TCDD Gross Alpha (pC/L) Total Beta (26/2L8) Total Strontium			0.0008 0.00022 0.00022 0.00031 0.00052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 0.0002 0.00000005 N/A N/A N/A N/A 4000		
7 Group	delta BHC Chiordane 4,4-DDT 4,4-DDT 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior Heptachior Epoxide Toxaphene 2,3,7,8-TCDD Gross Alpha (pC/L) Total Beta (26/2L8) Total Strontium			0.0008 0.00022 0.00022 0.00031 0.00052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 0.0002 0.00000005 N/A N/A N/A N/A 4000		
7 Group	delta BHC Chiordane 4,4-DDT 4,4-DDT 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior Heptachior Epoxide Toxaphene 2,3,7,8-TCDD Gross Alpha (pC/L) Total Beta (26/2L8) Total Strontium			0.0008 0.00022 0.00022 0.00031 0.00052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 0.0002 0.00000005 N/A N/A N/A N/A 4000		
7 Group	delta BHC Chiordane 4,4-DDT 4,4-DDT 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior Heptachior Epoxide Toxaphene 2,3,7,8-TCDD Gross Alpha (pC/L) Total Beta (26/2L8) Total Strontium			0.0008 0.00022 0.00022 0.00031 0.00052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 0.0002 0.00000005 N/A N/A N/A N/A 4000		
7 Group	delta BHC Chiordane 4,4-DDT 4,4-DDT 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior Heptachior Epoxide Toxaphene 2,3,7,8-TCDD Gross Alpha (pC/L) Total Beta (26/2L8) Total Strontium			0.0008 0.00022 0.00022 0.00031 0.00052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 0.0002 0.00000005 N/A N/A N/A N/A 4000		
7 Group	delta BHC Chiordane 4,4-DDT 4,4-DDT 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior Heptachior Epoxide Toxaphene 2,3,7,8-TCDD Gross Alpha (pC/L) Total Beta (26/2L8) Total Strontium			0.0008 0.00022 0.00022 0.00031 0.00052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 0.0002 0.00000005 N/A N/A N/A N/A 4000		
7 Group	delta BHC Chiordane 4,4-DDT 4,4-DDT 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior Heptachior Epoxide Toxaphene 2,3,7,8-TCDD Gross Alpha (pC/L) Total Beta (26/2L8) Total Strontium			0.0008 0.00022 0.00022 0.00031 0.00052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 0.0002 0.00000005 N/A N/A N/A N/A 4000		
7 Group	delta BHC Chiordane 4,4-DDT 4,4-DDT 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior Heptachior Epoxide Toxaphene 2,3,7,8-TCDD Gross Alpha (pC/L) Total Beta (26/2L8) Total Strontium			0.0008 0.00022 0.00022 0.00031 0.00052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 0.0002 0.00000005 N/A N/A N/A N/A 4000		
7 Group	delta BHC Chiordane 4,4-DDT 4,4-DDT 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior Heptachior Epoxide Toxaphene 2,3,7,8-TCDD Gross Alpha (pC/L) Total Beta (26/2L8) Total Strontium			0.0008 0.00022 0.00022 0.00031 0.00052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 0.0002 0.00000005 N/A N/A N/A N/A 4000		
7 Group	delta BHC Chiordane 4,4-DDT 4,4-DDT 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior Heptachior Epoxide Toxaphene 2,3,7,8-TCDD Gross Alpha (pC/L) Total Beta (26/2L8) Total Strontium			0.0008 0.00022 0.00022 0.00031 0.00052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 0.0002 0.00000005 N/A N/A N/A N/A 4000		
7 Group	delta BHC Chiordane 4,4-DDT 4,4-DDT 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachior Heptachior Epoxide Toxaphene 2,3,7,8-TCDD Gross Alpha (pC/L) Total Beta (26/2L8) Total Strontium			0.0008 0.00022 0.00022 0.00031 0.00052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039 0.0002 0.00000005 N/A N/A N/A N/A 4000		

Big Sewickley Creek STP Toxics Screening Analysis Spreadsheet (v 2.7), 5/7/2020

PENTOXSD

Modeling Input Data

Stream Code		Elevation (ft)	A	inage rea mi)	Slope	PWS (m	With gd)			pply FC				
365	96 3.43	787.0	00	26.41	0.00000)	0.00			V	-			
							Stream D	ata						
	LFY	Flow	tream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	<u>iry</u> pH	<u>Strear</u> Hard	<u>n</u> pH	Analys Hard	<u>sis</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.0058	0	0	18	27	1.5	0	0	116.8	7	0	0	0	C
Qh		0	0	0	0	0	0	0	100	7	0	0	0	C
							Discharge I	Data						
	Name	Permit Number	. Di	sc	ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(m	gd) (mgd)	(mgd)						(mg/L)		
B Se	wickley STP	PA02184	13	0	1.25	0	0	0	0	0	0	132	7	_
						Р	arameter D	ata						
	Parameter N	lame		Disc Conc	Trib Conc	C	/ Hourl			Fate Coef		Crit Mod	Max Disc Conc	
COPPE				(µg/L)	(µg/L			(µg/l					(µg/L)	
				1E+07	0	0.			0	0	0	1	0	
	E, FREE			1E+07	0	0.			0	0	0	1	0	
	VED IRON			1E+07	0	0.			0	0	0	1	0	
LEAD	D) /			1E+07	0	0.			0	0	0	1	0	
MERCU				1E+07	0	0.	-		0	0	0	1	0	
SELENI	UM			1E+07	0	0.	_	-	0	0	0	1	0	
ZINC				1E+07	0	0.	5 0.5	0	0	0	0	1	0	

Strea		Elevati (ft)	,	iinage Area q mi)	Slope	PWS (m	With gd)		A	pply FC				
36	596 2.91	77	2.00	26.57	0.00000)	0.00			✓	-			
	949						Stream Da	ata						
	LFY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	pH	Strear Hard		Analys Hard	<u>is</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)	((mg/L)	
Q7-10	0.0058	0	0	18	27	1.5	0	0	100	7	0	0	0	0
Qh		0	0	0	0	0	0	0	100	7	0	0	0	0
						C	Discharge [Data						
	Name	Perr Num	ber D	isc	ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(n	ngd) ((mgd)	(mgd)						(mg/L)		
				0	0	0	0	0	0	0	0	100	7	
						Р	arameter D	ata						
	Parameter	Name		Disc Conc (µg/L)	Trib Cond (µg/L	C	y Hourl	y Con	c CV	Fate Coe		Crit Mod	Max Disc Conc (µg/L)	
COPP	ER			0	0		.5 0.5			0	0	1	0	
	IDE, FREE			0	0	0			0	0	0	1	0	
DISSO	LVED IRON			0	0	0	.5 0.5	0	0	0	0	1	0	
LEAD				0	0	0	.5 0.5	0	0	0	0	1	0	
MERC	URY			0	0	0	.5 0.5	0	0	0	0	1	0	
SELEN	MUIN			0	0	0	.5 0.5	0	0	0	0	1	0	
ZINC				0	0	0	.5 0.5	0	0	0	0	1	0	

PENTOXSD Analysis Results Hydrodynamics

<u>s</u>	WP Basir	<u>n</u>	Stream	n Code:			Stream	m Name	<u>:</u>		
	20G		36	596		ВІ	G SEWIC	KLEY C	REEK		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)
					Q7-	-10 Hyd	drodyna	mics			
3.430	0.1532	0	0.1532	1.93375	0.0055	1.5	27	18	0.0515	0.6167	.039
2.910	0.1541	0	0.1541	NA	0	0	0	0	0	0	NA
					Q	h Hydr	odynan	nics			
3.430	1.4416	0	1.4416	1.93375	0.0055	1.8534	27	14.568	0.0675	0.4711	.977
2.910	1.4492	0	1.4492	NA	0	0	0	0	0	0	NA

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name	Permit Number						
3.43	B Sewickley STP	PA0218413						
				AFC				
Q7	-10: CCT (min) 0.039 PMF	1	Analysis	pH 7	Analysis I	Hardness	130.884
	Parameter	Stream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
	- urumotor	(μg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	COPPER	0	0	0	0	17.318	18.04	19.469
						0.96 applied.		
	LEAD	0	0	0	0	86.461	115.008	124.118
						0.752 applied.		
	MERCURY	0	0	0	0	1.4	1.647	1.778
						0.85 applied.		
	SELENIUM	0	0	0	0	NA	NA	NA
	ZINC	0	0	0	0	147.195	150.506	162.429
						0.978 applied.		
	CYANIDE, FREE	0	0	0	0	22	22	23.743
	DISSOLVED IRON	0	0	0	0	NA	NA	NA
				CFC				
7-10:	CCT (min)	0.039 PM F	= 1	Analysis	pH 7	Analysis	Hardness	130.884
		Stream	Stream		Fate	WQC	WQ	WLA
	Parameter	Conc. (µg/L)	CV	Conc. (µg/L)	Coef	(μg/L)	Obj (µg/L)	(μg/L)
	COPPER	0	0	0	0	11.272	11.741	12.671
		Dissolved	WQC.	Chemical tra	inslator of	0.96 applied.		
	LEAD	0	0	0	0	3.369	4.482	4.837
		Dissolved	WQC.	Chemical tra	inslator of	0.752 applied.		
	MERCURY	0	0	0	0	0.77	0.906	0.978
		Dissolved	WQC.	Chemical tra	inslator of	0.85 applied.		
	SELENIUM	0	0	0	0	4.6	4.989	5.384
		Dissolved	WQC.	Chemical tra	inslator of	0.922 applied.		
	ZINC	0	0	0	0	148.399	150.506	162.429
	20	-	I WOC (Chemical tra	-	0.986 applied.		
	CYANIDE, FREE	0	0	0	0	5.2	5.2	5.612
	DISSOLVED IRON	0	0	0	0	NA	NA	NA
				-				
Q7-10:	CCT (min)) 0.039 PMF	NA	THH Analysis	spH NA	Analysis	Hardness	NA
		Stream	Stream	Trib	Fate	WQC	WQ	WLA
	Parameter	Conc (µg/L)	CV	Conc (µg/L)	Coef	(µg/L)	Obj (µg/L)	(µg/L)
	COPPER	0	0	0	0	NA	NA	NA
		U	U			11/1	1 1/1	13/3
	ıy, May 6, 2020			Version	2 0c			

PENTOXSD Analysis Results

Wasteload Allocations

			Waster	au Allo	cations			
RMI	Name	Permit Number						
3.43	B Sewickley STP	PA0218413						
	LEAD	0	0	0	0	NA	NA	NA
	MERCURY	0	0	0	0	0.05	0.05	0.054
,	SELENIUM	0	0	0	0	NA	NA	NA
	ZINC	0	0	0	0	NA	NA	NA
	CYANIDE, FREE	0	0	0	0	140	140	151.09
	DISSOLVED IRON	0	0	0	0	300	300	323.764
			С	RL				
Qh:	CCT (min)	0.977 PMF	1					
	Parameter	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	COPPER	0	0	0	0	NA	NA	NA
	LEAD	0	0	0	0	NA	NA	NA
	MERCURY	0	0	0	0	NA	NA	NA
	SELENIUM	0	0	0	0	NA	NA	NA
	ZINC	0	0	0	0	NA	NA	NA
	CYANIDE, FREE	0	0	0	0	NA	NA	NA
	DISSOLVED IRON	0	0	0	0	NA	NA	NA

LEAD

ZINC

MERCURY

SELENIUM

PENTOXSD Analysis Results

Recommended Effluent Limitations

SWP Basin	SWP Basin Stream Code			Stream	Name:		
20G	36596		BI	G SEWICK	LEY CREEK	(
RMI	Name		rmit nber	Disc Flow (mgd)			
3,43	B Sewickley STP	PA02	18413	1.2500	_		
		Effluent Limit			Max. Daily	Most S	tringent
F	Parameter	(µg/L)	Gover Crite		Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion
COPPER		12.479	AF	С	19.469	12.479	AFC
CYANIDE, FR	REE	5.612	CF	С	8.755	5.612	CFC
DISSOLVED I	IRON	323.764	THI	Н	505.124	323.764	THH

CFC

THH

CFC

AFC

7.546

0.084

162.429

8.4

4.837

0.054

5.384

104.11

CFC

THH

CFC

AFC

4.837

0.054

5.384

104.11

Low-Flow Statistics for Pennsylvania Streams

Page 1 of 1

Low-Flow Statistics for Pennsylvania Streams

Developed by the U.S. Geological Survey for the Pennsylvania Department of Environmental Protection

Pennsylvania Low-Flow Statistics - Query Results

LOW-FLOW STATISTICS

[All flow statistics in cubic feet per second (ft³/s)]

Query run on 05/05/00

Mouse over or click on table headings to view definition of statistic

STREAM NAME: Big

Sewickley Creek

GAGE OR BRIDGE SITE:

gage

STATION ID: 03086100

COUNTY: ALLEGHENY

USGS QUAD: Ambridge

PERIOD OF RECORD1:

1968-78

LATITUDE: 40° 36'

27"

LONGITUDE: 80° 09'

49"

DRAINAGE AREA (sq.

mi.): 15.6

Q _{1,10}	Q _{7,10}	Q _{30,10}	MEAN	MEDIAN	HARMONIC MEAN
**	0.09	0.13	17.27	7.60	1.14

		FLOW DU	JRATION	TABLE (F	robabil	ity of E	xceeda	nce)		
P5	P10	P20	P30	P40	P50	P60	P70	P80	P90	P95
65.30	41.00	25.60	17.30	11.90	7.60	4.90	3.10	1.60	0.58	0.29

¹Period of Record for climatic year, April 1 through March 31

0.09 cfs/15.6 ni2 = 0.0058 cfs/ni2

** Statistic has not been computed

Q30/Q7 = 13/109 = 1.44

RETURN TO PREVIOUS PAGE

RETURN TO START PAGE

This system designed and developed by the U.S. Geological Survey, Water Resources Division, Lemoyne, Pa. © 1999.

FILE: a:\bsewk\sum.wqm Big Sewickley STP

		Default Data	
a.	St	ream Values	
	1	Q1-10/Q7-10 ratio6	4
	2	Q30-10/Q7-10 ratio 1.	4
	3	Temperature 25	
	4	pH 7	
	5	C-BOD5 2	
	6	NH3-N	
	7	D.O. Saturation (%)	5
	8	D.O. Goal 6	
	9	Width/Depth ratio 18	
	0	<pre>KC(Headwaters only!)</pre>	
	11	KN 6	
b.	Dis	scharge Values (30-day avgs.)	
1	12	C-BOD5 25	
1	3	NH3-N	
- 0	4	Effluent D.O 3	
	5	Effluent Temp 20	
1	6	KC 1.5	5
1	7	Balanced Technology (1=y 0=no) 0	

(WQAM63.EXE) Release 1.2 05-25-2000 09:04:42

FILE: a:\bsewk\sum.wqm
Big Sewickley STP

REACH # 1
Headwaters and Tributary data

No. of Reaches: 1

Rh	Q7-10 (cfs)	T (C)	pH (su)	DO (mg/l)	CBOD5 (mg/l)	NH3-N (mg/l)
HW	0.1530	25	7	7.12	2	.1
. 1	0.0000					

FILE: a:\bsewk\sum.wqm
Big Sewickley STP

Stream Characteristics

Rh	Q7-10 (cfs)	T (c)	pH (su)		CBOD5 (mg/l)	
1	.15	25	7	7.12	2	.1

$$Q 1-10/Q 7-10 = .64$$

 $Q 30-10/Q 7-10 = 1.44$

(WQAM63.EXE) Release 1.2

05-25-2000

09:05:13

FILE: a:\bsewk\sum.wqm Big Sewickley STP

1.1

DISCHARGE # 1 Discharger Data Q7-10 Design Conditions

Rh	FLOW (MGD)	T (C)	pH (su)	DO (mg/l)	CBOD5 (mg/l)		KC (1/days)
1	1.2500	20	7	5	25	25	1.5

FILE: a:\bsewk\sum.wqm Big Sewickley STP

REACH # 1 Reach Characteristics Rh RCH. RCH. DRAIN SL. D.O. KN LEN. AREA W/D GOAL (/D) (FT/FT) (FT.) (MI^2) 1 6 .6 0.00570 2700 26.41 18

(WQAM63.EXE) Release 1.2 05-25-2000

09:05:33

FILE: a:\bsewk\sum.wqm Big Sewickley STP

> REACH # 1 Reach Characteristics

Rh

KR TT (/D) (Days)

and the second second

- Refault to EPA velocity based equation 0 1 0

FILE: a:\bsewk\sum.wqm Big Sewickley STP

NH3-N Discharge Allocations at Q30-10 (EMPR)

DIS BASE. MULT. CRIT. PCT. NH3-N CONC. CONC. RCH. RED. CRIT. (mgd) (mg/1) (mg/1)(%) (mg/l) 2.05 2.05 0 0 1 1.2500

(WQAM63.EXE) Release 1.2 05-25-2000 09:06:03

FILE: a:\bsewk\sum.wqm
Big Sewickley STP

NH3-N Discharge Allocations at Q1-10 (EMPR)

DIS Q BASE. MULT. CRIT. PCT. NH3-N CONC. CONC. RCH. RED. CRIT. (mgd) (mg/l) (mg/l) (%) (mg/l)

1 1.2500 9.98 9.98 0 0 9.51

FILE: a:\bsewk\sum.wqm
Big Sewickley STP

D.O. Allocations (EMPR)

DIS	Q	NH	3-N	CB	OD5	CRIT.	PCT.
#		IND.	CUM.	IND.	CUM.	RCH.	REM.
		Conc.	Conc.	Conc.	Conc.		
	(MGD)	(mg/l)	(mg/1)	(mg/1)	(mg/1)		(용)
1	1.2500	2	2	15 6	15.6	0	0
	1.2500	4	2	15.0	15.0	U	U

(WQAM63.EXE) Release 1.2 05-25-2000 09:06:14

```
FILE: a:\bsewk\sum.wqm
Big Sewickley STP
```

```
(Total) Discharge = 1.25 MGD
                       = 7 Width
= 1.86 Depth
  Temp = 20.4
                  Hq
                                                  15.51
                  NH3-N
  CBOD-5 = 14.6
                                                  0.86
                                    Velocity = 0.156
  D.O.
           6.08 D.O. Goal = 6
         ==
  KC'
                  KN = .6
           .924
                                    W/D RATIO = 18
  KR
         = 8.453
                  (TSIVOGLOU)
         Dis. 1
                   Rch. 1 Trvl Time: .2
            Tr.Tm.
                    CBOD-5 NH3-N
                                    D.O.
            (Days)
                    (mg/1)
                           (mg/l)
                                    (mg/l)
            _____
                    -----
                            -----
                                   ____
            0.020
                   14.33
                            1.84
                                   6.08
            0.040
                   14.06
                           1.82
                                   6.09
            0.060
                           1.79
                   13.80
                                   6.10
                   13.54
                           1.77
            0.080
                                   6.12
                                               no sug L bmg/l
            0.100
                   13.29
                            1.75
                                   6.14
            0.120
                   13.04
                           1.73
                                   6.17
            0.140
                   12.80
                           1.71
                                   6.20
            0.160
                   12.56
                           1.69
                                   6.23
```

1.66

1.64

6.27

6.31

FILE: a:\bsewk\sum.wqm Big Sewickley STP

0.180

Summer Effluent Limitations Display

0.200 12.10

12.33

DIS NH3-N TOX. DISS. OXYGEN 1 30 C-BOD5 NH3-N EFF. # DAY DAY 30-DAY D.O. MGD ----- -----1 1.25 4.1 2 15.6 2 6

FILE: a:\bsewk\wint.wqm winter period analysis

> REACH # 1 Headwaters and Tributary data

No. of Reaches: 1

Rh	Q7-10 (cfs)	T (C)	pH (su)	DO (mg/l)	CBOD5 (mg/l)	NH3-N (mg/1)
HW	0.3100	5	7	10.82	2 2	.1
1	0.0000					

FILE: a:\bsewk\wint.wqm winter period analysis

Stream Characteristics

Rh	Q7-10 (cfs)	T (c)	pH (su)	DO (mg/l)	CBOD5 (mg/l)	
1	.31	5	7	10.82	2 2	.1

$$Q 1-10/Q 7-10 = .64$$

 $Q 30-10/Q 7-10 = 1.36$

FILE: a:\bsewk\wint.wqm
winter period analysis

DISCHARGE # 1 Discharger Data Q7-10 Design Conditions

Rh	FLOW (MGD)	T (C)	pH (su)	DO (mg/l)	CBOD5 (mg/l)		KC (1/days)
1	1.2500	15	7	6	25	6	1.5

FILE: a:\bsewk\wint.wqm winter period analysis

REACH # 1 Reach Characteristics Rh RCH. RCH. DRAIN D.O. KN SL. LEN. AREA W/D GOAL (/D) (FT/FT) (FT.) (MI^2) 6 .6 0.00570 2700 26.41 18

(WQAM63.EXE) Release 1.2 05-25-2000

09:17:28

FILE: a:\bsewk\wint.wqm
winter period analysis

REACH # 1
Reach Characteristics

Rh

KR TT (/D) (Days)

1 0 0 - Refault to EPA velocity based equation

FILE: a:\bsewk\wint.wqm
winter period analysis

NH3-N Discharge Allocations at Q30-10 (EMPR)

DIS Q BASE. MULT. CRIT. PCT. NH3-N CONC. CONC. RCH. RED. CRIT. (mgd) (mg/1) (mg/1) (%) (mg/1) 1 1.2500 3.85 3.85 0 0 3.18

(WQAM63.EXE) Release 1.2 05-25-2000 09:18:05

FILE: a:\bsewk\wint.wqm
winter period analysis

NH3-N Discharge Allocations at Q1-10 (EMPR)

DIS Q BASE. MULT. CRIT. PCT. NH3-N CONC. CONC. RCH. RED. CRIT. (mgd) (mg/l) (mg/l) (%) (mg/l)

1 1.2500 12.00 12.00 0 0 15.04

FILE: a:\bsewk\wint.wqm
winter period analysis

D.O. Allocations (EMPR)

DIS	Q	NH	3-N	CE	30D5	-CRIT.	PCT.
#		IND.	CUM.	IND.	CUM.	RCH.	REM.
		Conc.	Conc.	Conc.	Conc.		
	(MGD)	(mg/1)	(mg/l)	(mg/1)	(mg/l)		(웅)
1	1.2500	3.9	3.9	25	25	0	0

(WQAM63.EXE) Release 1.2 05-25-2000 09:18:23

FILE: a:\bsewk\wint.wqm winter period analysis

(Total)Discharge = 1.25 MGD = 13.6pH Width 15.76 = 3.37 Depth 21.82 NH3-N 0.88 6.67 D.O. Goal = 6 Velocity = 0.163 KC' 1.479 = .6 W/D RATIO = 18 KR 8.804 (TSIVOGLOU) Rch. 1 Trvl Time: .192

> Tr.Tm. CBOD-5 NH3-N D.O. (Days) (mg/1)(mg/1)(mg/1)---------------0.019 21.36 3.35 6.52 0.038 20.92 3.33 6.40 0.058 20.48 3.30 6.32 3.28 0.077 20.05 6.27 0.096 19.63 3.26 6.23 0.115 19.21 3.24 6.22 0.135 18.81 3.21 6.22 0.154 18.42 3.19 6.23 0.173 18.03 3.17 6.25 0.192 17.65 3.14 6.28

FILE: a:\bsewk\wint.wqm winter period analysis

Effluent Limitations Display

DIS Q NH3-N TOX. DISS. OXYGEN

1 30 C-BOD5 NH3-N EFF.

MGD DAY DAY 30-DAY 30-DAY D.O.

1 1.25 7.7 3.9 25 3.9 6

Round down to nearest 0.5 mg/l, as per

ammonia implementation guidance.

09:18:49

(WQAM63.EXE) Release 1.2 05-25-2000

	DEP Whole	Effluent Toxi	icity (WET) Analysis	Spreadshee	t
Type of Test Species Test		onic iodaphnia	Ecor	Facility Na nomy Borough	MA - Big
Endpoint TIWC (decim		production 3	Se	wickley Creek	WWTP
No. Per Repli	icate 1			Permit No	
TST b value TST alpha va	0.73 lue 0.2			PA021841	3
Tot dipila va	0.2				
		pletion Date			oletion Date
Replicate		8/2014	Replicate		V2015
No.	Control 21	TIWC 31	No.	Control 4	TIWC 37
2	30	36	2	34	37
3	26	37	3	36	37
4	22	36	4	40	36
5	32	37	5	35	40
6	25	32	6	31	42
7 8	22 26	30 31	7 8	38 36	39
9	25	32	9	36	38
10	20	38	10	32	31
11			11		
12			12		
13			13		
14			14		
15			15		
Mean	24.900	34.000	Mean	32,200	37.300
Std Dev.	3.872	3.055	Std Dev.	10.250	2.908
# Replicates		10	# Replicates	10	10
T-Test Result	11.	4980	T-Test Result	5.0	594
Deg. of Freed		17	Deg. of Freed		16
Critical T Valu					
5 5 1		3633	Critical T Valu		647
Pass or Fail		9633 ASS	Pass or Fail		647 ASS
Pass or Fail	P/	ASS		PA	ISS
	P/ Test Com		Pass or Fail	PA Test Comp	
Pass or Fail Replicate No.	P/ Test Com	ASS pletion Date		PA Test Comp	ASS oletion Date
Replicate No.	Test Com 11/2 Control 29	pletion Date 2/2016 TIWC 41	Pass or Fail Replicate No. 1	Test Comp 11/7 Control 25	oletion Date //2017 TIWC 27
Replicate No. 1	Test Comp 11/2: Control 29 31	pletion Date 2/2016 TIWC 41 40	Pass or Fail Replicate No. 1 2	Test Comp 11/7 Control 25 24	oletion Date /2017 TIWC 27 28
Replicate No. 1 2 3	P/ Test Comp 11/2: Control 29 31 32	pletion Date 2/2016 TIWC 41 40 34	Pass or Fail Replicate No. 1 2 3	PA Test Comp 11/7 Control 25 24 26	SS Date
Replicate No. 1 2 3 4	P/ Test Comp 11/2: Control 29 31 32 31	Pletion Date 2/2016 TIWC 41 40 34 44	Replicate No. 1 2 3 4	PA Test Comp 11/7. Control 25 24 26 29	oletion Date /2017 TIWC 27 28 29 33
Replicate No. 1 2 3 4	P/ Test Comp 11/2: Control 29 31 32 31 36	Pletion Date 2/2016 TIWC 41 40 34 44 43	Pass or Fail Replicate No. 1 2 3	PA Test Comp 11/7. Control 25 24 26 29 26	SS oletion Date //2017
Replicate No. 1 2 3 4	P/ Test Comp 11/2: Control 29 31 32 31	Pletion Date 2/2016 TIWC 41 40 34 44	Pass or Fail Replicate No. 1 2 3 4 5	PA Test Comp 11/7. Control 25 24 26 29	oletion Date /2017 TIWC 27 28 29 33
Replicate No. 1 2 3 4 5	P/ Test Comp 11/2: Control 29 31 32 31 36 34	Pletion Date 2/2016 TIWC 41 40 34 44 43 39	Pass or Fail Replicate No. 1 2 3 4 5 6	PA Test Comp 11/7. Control 25 24 26 29 26 26	SS oletion Date //2017
Replicate No. 1 2 3 4 5 6 7 8	P/ Test Comp 11/2: Control 29 31 32 31 36 34 36 25 33	Pletion Date 2/2016 TIWC 41 40 34 44 43 39 42 43 42	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	PA Test Comp 11/7 Control 25 24 26 29 26 28	SS oletion Date //2017
Replicate No. 1 2 3 4 5 6 7 8 9	P/ Test Comp 11/2: Control 29 31 32 31 36 34 36 25	Pletion Date 2/2016 TIWC 41 40 34 44 43 39 42 43	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	PA Test Comp 11/7/ Control 25 24 26 29 26 28 27	SS oletion Date //2017
Replicate No. 1 2 3 4 5 6 7 8 9 10	P/ Test Comp 11/2: Control 29 31 32 31 36 34 36 25 33	Pletion Date 2/2016 TIWC 41 40 34 44 43 39 42 43 42	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	PA Test Comp 11/7/ Control 25 24 26 29 26 29 26 27 26	SS oletion Date //2017
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	P/ Test Comp 11/2: Control 29 31 32 31 36 34 36 25 33	Pletion Date 2/2016 TIWC 41 40 34 44 43 39 42 43 42	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	PA Test Comp 11/7/ Control 25 24 26 29 26 29 26 27 26	SS oletion Date //2017
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	P/ Test Comp 11/2: Control 29 31 32 31 36 34 36 25 33	Pletion Date 2/2016 TIWC 41 40 34 44 43 39 42 43 42	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	PA Test Comp 11/7/ Control 25 24 26 29 26 29 26 27 26	SS oletion Date //2017
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	P/ Test Comp 11/2: Control 29 31 32 31 36 34 36 25 33	Pletion Date 2/2016 TIWC 41 40 34 44 43 39 42 43 42	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	PA Test Comp 11/7/ Control 25 24 26 29 26 29 26 27 26	SS oletion Date //2017
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	P/ Test Comp 11/2: Control 29 31 32 31 36 34 36 25 33	Pletion Date 2/2016 TIWC 41 40 34 44 43 39 42 43 42	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	PA Test Comp 11/7/ Control 25 24 26 29 26 29 26 27 26	SS oletion Date //2017
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	P/ Test Comp 11/2: Control 29 31 32 31 36 34 36 25 33 40	ASS pletion Date 2/2016 TIWC 41 40 34 44 43 39 42 43 42 40 40.800	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	PA Test Comp 11/7 Control 25 24 26 29 26 28 27 26 27 26 27	SS oletion Date //2017
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	P/ Test Comp 11/2 Control 29 31 32 31 36 34 36 25 33 40 32.700 4.165	ASS pletion Date 2/2016 TIWC 41 40 34 44 43 39 42 43 42 40 40.800 2.860	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	PA Test Comp 11/7 Control 25 24 26 29 26 28 27 26 27 26 27	30.200 5.412
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	P/ Test Comp 11/2 Control 29 31 32 31 36 34 36 25 33 40 32.700 4.165	ASS pletion Date 2/2016 TIWC 41 40 34 44 43 39 42 43 42 40 40.800	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	PA Test Comp 11/7 Control 25 24 26 29 26 28 27 26 27 26 27	SS oletion Date //2017
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	P/ Test Comp 11/2 Control 29 31 32 31 36 34 36 25 33 40 32.700 4.165 10	ASS pletion Date 2/2016 TIWC 41 40 34 44 43 39 42 43 42 40 40.800 2.860 10	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	PA Test Comp 11/7 Control 25 24 26 29 26 28 27 26 27 26 27 26 1,430 10	30.200 5.412 10
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	P/ Test Comp 11/2 Control 29 31 32 31 36 34 36 25 33 40 32.700 4.165 10	ASS pletion Date 2/2016 TIWC 41 40 34 44 43 39 42 43 42 40 40.800 2.860 10	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	PA Test Comp 11/7 Control 25 24 26 29 26 28 27 26 27 27 28 28 27 28 27 28 28 27 28 27 28 28 27 28 27 28 28 28 27 28 28 28 27 28 28 28 27 28 28 28 27 28 28 28 27 28 28 28 27 28 28 28 27 28 28 28 27 28 28 28 27 28 28 28 28 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	30.200 5.412 10
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	7 Test Comp 11/2 Control 29 31 32 31 36 34 36 25 33 40 32.700 4.165 10	ASS pletion Date 2/2016 TIWC 41 40 34 44 43 39 42 43 42 40 40.800 2.860 10 1530	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	PA Test Comp 11/7 Control 25 24 26 29 26 28 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27	30.200 5.412 10
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	7 Test Comp 11/2 Control 29 31 32 31 36 34 36 25 33 40 32.700 4.165 10	ASS pletion Date 2/2016 TIWC 41 40 34 44 43 39 42 43 42 40 40.800 2.860 10	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	PA Test Comp 11/7 Control 25 24 26 29 26 28 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27	30.200 5.412 10

	DEP Whol	e Effluent Tox	icity (WET) Analysis	Spreadshee	t
Type of Test		hronic		Facility Na	
Species Test		imephales		nomy Borough	
Endpoint TIWC (decima		urvival 93	Se	wickley Creek	WWIP
No. Per Repli				Permit No	D.
TST b value		.75		PA021841	
TST alpha va	lue 0	.25			
	Test Co	mpletion Date		Test Comp	letion Date
Replicate	11/	/18/2014	Replicate	11/10	/2015
No.	Control	TIWC	No.	Control	TIWC
1	1	0.7	1	0.9	0.9
2	1	1	2	0.9	0.8
3	1	0.8	3	0.9	1
4	1	1	4	1	1
5		<u> </u>	5		
6			6		
7			7		
8			8		
9			9		
10			10		
11			11		
12			12		
13			13		
14			14		
15			15		
10			10		
	4.000	0.075		0.005	0.005
Mean	1.000	0.875	Mean	0.925	0.925
Std Dev.	0.000	0.150	Std Dev.	0.050	0.096
# Replicates	4	4	# Replicates	4	4
T-Test Result Deg. of Freed Critical T Valu Pass or Fail	om e (4.3376 3 0.7649 PASS	T-Test Result Deg. of Freed Critical T Valu Pass or Fail	om e 0.7	068 4 407 ASS
	Test Cor	mpletion Date		Test Comp	oletion Date
Replicate		/22/2016	Replicate		/2017
No.	Control		No.	Control	TIWC
1 1	1	1	1 1	1	1
2	1	1	2	1	
_	1	1	- 4		
3					1
	1	1	3	1	1
4		1	4		-
4 5	1		4 5	1	1
4 5 6	1		4 5 6	1	1
4 5 6 7	1		4 5 6 7	1	1
4 5 6	1		4 5 6	1	1
4 5 6 7	1		4 5 6 7	1	1
4 5 6 7 8	1		4 5 6 7 8	1	1
4 5 6 7 8 9	1		4 5 6 7 8 9	1	1
4 5 6 7 8 9 10 11	1		4 5 6 7 8 9 10	1	1
4 5 6 7 8 9 10 11	1		4 5 6 7 8 9 10 11	1	1
4 5 6 7 8 9 10 11 12 13	1		4 5 6 7 8 9 10 11 12	1	1
4 5 6 7 8 9 10 11 12 13	1		4 5 6 7 8 9 10 11 12 13	1	1
4 5 6 7 8 9 10 11 12 13	1		4 5 6 7 8 9 10 11 12	1	1
4 5 8 9 10 11 12 13 14	1	1	4 5 6 7 8 9 10 11 12 13 14	1	1 1
4 5 6 7 8 9 10 11 12 13 14 15	1.000	1.000	4 5 6 7 8 9 10 11 12 13 14 15	1.000	1.000
4 5 8 9 10 11 12 13 14	1	1	4 5 6 7 8 9 10 11 12 13 14	1	1
4 5 6 7 8 9 10 11 12 13 14 15	1.000	1.000	4 5 6 7 8 9 10 11 12 13 14 15	1.000	1.000
4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	1.000 0.000 4	1.000	4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	1.000 0.000 4	1.000

ı	DEP Whole	Effluent Toxic	ity (WET) Analysis	Spreadshee	t
Type of Test Species Test		onic ephales	Ecor	Facility Name	me MA - Big
Endpoint	Gro			wickley Creek	
TIWC (decim		3			
No. Per Repli				Permit No	
TST b value	0.75			PA021841	3
TST alpha va	lue 0.25	,			
		oletion Date			letion Date
Replicate	11/16	3/2014	Replicate	11/10	V2015
No.	Control	TIWC	No.	Control	TIWC
1	0.346	0.313	1	0.359	0.375
2	0.357	0.435	2	0.393	0.259
3	0.294	0.288	3	0.342	0.313
4	0.289	0.359	4	0.422	0.354
5	0.200	0.000	5	0.122	0.001
6			6		
			_		
7			7		
8			8		
9			9		
10			10		
11			11		
12			12		
13			13		
14			14		
15			15		
15			10		
	0.000	0.040		0.070	0.005
Mean	0.322	0.349	Mean	0.379	0.325
Std Dev.	0.035	0.065	Std Dev.	0.036	0.051
# Replicates	4	4	# Replicates	4	4
T-Test Result	3.0	1878	T-Test Result	14	213
	0.0		I TOST I VESGIL		
Dog of Erood	om	A	Dog of Frond	om	5
Deg. of Freed		4	Deg. of Freed		5
Critical T Valu	je 0.7	407	Critical T Valu	e 0.7	267
•	je 0.7	_	•	e 0.7	
Critical T Valu	e 0.7	407	Critical T Valu	e 0.7	267
Critical T Valu Pass or Fail	e 0.7 PA Test Comp	407 ASS	Critical T Valu Pass or Fail	e 0.7 PA Test Comp	267 ISS
Critical T Valu	e 0.7 PA Test Comp	407 ASS oletion Date	Critical T Valu	e 0.7 PA Test Comp	267 ISS eletion Date
Critical T Valu Pass or Fail Replicate	Test Comp	ASS Deletion Date	Critical T Valu Pass or Fail Replicate	e 0.7. PA Test Comp	267 ISS Detion Date 12017
Critical T Valu Pass or Fail Replicate No.	Test Comp 11/22 Control 0.331	ASS Deletion Date 2/2016 TIWC 0.38	Critical T Valu Pass or Fail Replicate No. 1	Test Comp 11/7/ Control 0.453	287 ISS sletion Date 12017 TIWC 0.442
Critical T Valu Pass or Fail Replicate No. 1	Test Comp 11/23 Control 0.331 0.383	ASS Deletion Date 2/2016 TIWC 0.38 0.375	Critical T Valu Pass or Fail Replicate No. 1	Test Comp 11/7/ Control 0.453 0.5056	287 ISS sletion Date 2017 TIWC 0.442 0.44
Critical T Valu Pass or Fail Replicate No. 1 2 3	Test Comp 11/23 Control 0.331 0.383 0.376	ASS Deletion Date 2/2016 TIWC 0.38 0.375 0.431	Critical T Valu Pass or Fail Replicate No. 1 2	Test Comp 11/7/ Control 0.453 0.5056 0.411	287 ISS Iletion Date 2017 TIWC 0.442 0.44 0.416
Critical T Valu Pass or Fail Replicate No. 1 2 3 4	Test Comp 11/23 Control 0.331 0.383	ASS Deletion Date 2/2016 TIWC 0.38 0.375	Critical T Valu Pass or Fail Replicate No. 1 2 3 4	Test Comp 11/7/ Control 0.453 0.5056	287 ISS sletion Date 2017 TIWC 0.442 0.44
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 11/23 Control 0.331 0.383 0.376	ASS Deletion Date 2/2016 TIWC 0.38 0.375 0.431	Critical T Valu Pass or Fail Replicate No. 1 2 3 4	Test Comp 11/7/ Control 0.453 0.5056 0.411	287 ISS Iletion Date 2017 TIWC 0.442 0.44 0.416
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 11/23 Control 0.331 0.383 0.376	ASS Deletion Date 2/2016 TIWC 0.38 0.375 0.431	Replicate No. 1 2 3 4 5	Test Comp 11/7/ Control 0.453 0.5056 0.411	287 ISS Iletion Date 2017 TIWC 0.442 0.44 0.416
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 11/23 Control 0.331 0.383 0.376	ASS Deletion Date 2/2016 TIWC 0.38 0.375 0.431	Replicate No. 1 2 3 4 5 6 7	Test Comp 11/7/ Control 0.453 0.5056 0.411	287 ISS Iletion Date 2017 TIWC 0.442 0.44 0.416
Replicate No. 1 2 3 4 5 6 7	Test Comp 11/23 Control 0.331 0.383 0.376	ASS Deletion Date 2/2016 TIWC 0.38 0.375 0.431	Replicate No. 1 2 3 4 5	Test Comp 11/7/ Control 0.453 0.5056 0.411	287 ISS Iletion Date 2017 TIWC 0.442 0.44 0.416
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 11/23 Control 0.331 0.383 0.376	ASS Deletion Date 2/2016 TIWC 0.38 0.375 0.431	Replicate No. 1 2 3 4 5 6 7	Test Comp 11/7/ Control 0.453 0.5056 0.411	287 ISS Iletion Date 2017 TIWC 0.442 0.44 0.416
Replicate No. 1 2 3 4 5 6 7	Test Comp 11/23 Control 0.331 0.383 0.376	ASS Deletion Date 2/2016 TIWC 0.38 0.375 0.431	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 11/7/ Control 0.453 0.5056 0.411	287 ISS Iletion Date 2017 TIWC 0.442 0.44 0.416
Replicate No. 1 2 3 4 5 6 7 8	Test Comp 11/23 Control 0.331 0.383 0.376	ASS Deletion Date 2/2016 TIWC 0.38 0.375 0.431	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Comp 11/7/ Control 0.453 0.5056 0.411	287 ISS Iletion Date 2017 TIWC 0.442 0.44 0.416
Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp 11/23 Control 0.331 0.383 0.376	ASS Deletion Date 2/2016 TIWC 0.38 0.375 0.431	Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp 11/7/ Control 0.453 0.5056 0.411	287 ISS Iletion Date 2017 TIWC 0.442 0.44 0.416
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 11/23 Control 0.331 0.383 0.376	ASS Deletion Date 2/2016 TIWC 0.38 0.375 0.431	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 11/7/ Control 0.453 0.5056 0.411	287 ISS Iletion Date 2017 TIWC 0.442 0.44 0.416
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 11/23 Control 0.331 0.383 0.376	ASS Deletion Date 2/2016 TIWC 0.38 0.375 0.431	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 11/7/ Control 0.453 0.5056 0.411	287 ISS Iletion Date 2017 TIWC 0.442 0.44 0.416
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 11/23 Control 0.331 0.383 0.376	ASS Deletion Date 2/2016 TIWC 0.38 0.375 0.431	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 11/7/ Control 0.453 0.5056 0.411	287 ISS Iletion Date 2017 TIWC 0.442 0.44 0.416
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 11/23 Control 0.331 0.383 0.376	ASS Deletion Date 2/2016 TIWC 0.38 0.375 0.431	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 11/7/ Control 0.453 0.5056 0.411	287 ISS Iletion Date 2017 TIWC 0.442 0.44 0.416
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 11/23 Control 0.331 0.383 0.376	ASS Deletion Date 2/2016 TIWC 0.38 0.375 0.431	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 11/7/ Control 0.453 0.5056 0.411	287 ISS Iletion Date 2017 TIWC 0.442 0.44 0.416
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 11/22 Control 0.331 0.383 0.376 0.37	407 ASS Deletion Date 2/2016 TIWC 0.38 0.375 0.431 0.415	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	e 0.7 PA Test Comp 11/7/ Control 0.453 0.5056 0.411 0.299	267 ISS Section Date 2017 TIWC 0.442 0.44 0.416 0.433
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	De 0.7 P/ Test Comp 11/22 Control 0.331 0.383 0.376 0.37	0.400	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	e 0.7 PA Test Comp 11/7/ Control 0.453 0.5056 0.411 0.299	267 ISS Section Date 2017 TIWC 0.442 0.44 0.416 0.433
Replicate No. Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	De 0.7 P/ Test Comp 11/22 Control 0.331 0.383 0.376 0.37 0.365 0.023 4 7.8	0.400 0.027 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.417 0.088 4	0.433 0.012 4
Replicate No. Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	0.385 0.323 0.385 0.323 4	0.400 0.0027 4 4 3384	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	0.417 0.088 4	0.433 0.012 4
Replicate No. Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.385 0.305 0.023 4	0.400 0.027 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.417 0.088 4	0.433 0.012 4

WET Summary and Evaluation

Facility Name Permit No. Big Sewickley Creek WWTP PA0218413

Design Flow (MGD)

1.25 0.153

Q₇₋₁₀ Flow (cfs) PMF_a

PMF_c

1

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	11/18/14	11/10/15	11/22/16	11/7/17
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	11/18/14	11/10/15	11/22/16	11/7/17
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	11/18/14	11/10/15	11/22/16	11/7/17
Pimephales	Survival	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	11/16/14	11/10/15	11/22/16	11/7/17
Pimephales	Growth	PASS	PASS	PASS	PASS

Reasonable Potential? NO

Permit Recommendations

Test Type Chronic

TIWC 93 % Effluent

Dilution Series 23, 47, 93, 97, 100 % Effluent

Permit Limit None

Permit Limit Species